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The bacteria, fungi, and viruses that live on and in us have a tremendous impact on 
our day-to-day health and are often linked to many diseases, including autoimmune 
disorders and infections. Diagnosing and treating these disorders relies on accurate 
identification and characterization of the microbial community. Current sequencing 
technologies allow the sequencing of the entire nucleic acid complement of a sample 
providing an accurate snapshot of the community members present in addition to the full 
genetic potential of that microbial community. There are a number of clinical applications 
that stand to benefit from these data sets, such as the rapid identification of pathogens 
present in a sample. Other applications include the identification of antibiotic-resistance 
genes, diagnosis and treatment of gastrointestinal disorders, and many other diseases 
associated with bacterial, viral, and fungal microbiomes. Metagenomics also allows the 
physician to probe more complex phenotypes such as microbial dysbiosis with intestinal 
disorders and disruptions of the skin microbiome that may be associated with skin disor-
ders. Many of these disorders are not associated with a single pathogen but emerge as 
a result of complex ecological interactions within microbiota. Currently, we understand 
very little about these complex phenotypes, yet clearly they are important and in some 
cases, as with fecal microbiota transplants in Clostridium difficile infections, treating the 
microbiome of the patient is effective. Here, we give an overview of metagenomics and 
discuss a number of areas where metagenomics is applicable in the clinic, and progress 
being made in these areas. This includes (1) the identification of unknown pathogens, 
and those pathogens particularly hard to culture, (2) utilizing functional information and 
gene content to understand complex infections such as Clostridium difficile, and (3) 
predicting antimicrobial resistance of the community using genetic determinants of resis-
tance identified from the sequencing data. All of these applications rely on sophisticated 
computational tools, and we also discuss the importance of skilled bioinformatic support 
for the implementation and use of metagenomics in the clinic.

Keywords: metagenomics, diagnositics, pathogen detection, Clostridium difficile, antibiotic resistance, 
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1. iNTRODUCTiON

The complement of microorganisms that live on and within us, 
our microbiome, and its role in health and disease has become 
a central focus of current research. Research over the past few 
years has revealed how fundamentally intertwined we are with 
our microbial passengers. We have known for many years the 
connection to immune system development and gut health, but 
the impact of the microbiome on our health goes far beyond 
this (1). Metabolism (2), skin health (3–6), and even our mental 
health (7) have been shown to be influenced or to influence the 
microbiome. Many diseases, often complex and multi-factorial, 
such as allergy (8), asthma (9), inflammatory bowel disease (10), 
and even cardiovascular disease (11) and cancer (12, 13) have all 
been associated with alterations to the microbiome.

Shotgun sequencing of purified DNA, or metagenomics, 
is rapidly emerging as a powerful tool for both microbiology 
research and clinical applications due to the depth and breadth of 
information that can be acquired. The volume of DNA sequenc-
ing required to fully sequence a sample such as the human gut 
microbiome has traditionally made routine metagenomics unfea-
sible, particularly for diagnostics. However, the ever-increasing 
volumes and dropping prices are slowing bringing metagenom-
ics into the clinician’s toolbox. One of the powerful aspects of 
metagenomics is the non-targeted nature of the sequencing. 
Once acquired, the DNA sequence can be queried for any num-
ber of interesting questions such as the presence of pathogens, 
metabolic pathways, antimicrobial resistance genes, and overall 
community composition. In this review, we discuss how this 
information is useful in a clinical context for both diagnostics 
and research with a particular emphasis on complex microbiome-
associated phenotypes such as dysbiosis and Clostridium difficile 
infection. Furthermore, we make the case that if metagenomics is 
to be useful in the clinical context, skilled bioinformatic support 
will be essential, not just in the development of novel tools and 
algorithms but in the application of these tools and interpreting 
results. As sequencing technology continues to evolve rapidly, 
the most significant bottleneck for metagenomics (and other 
genomic analysis, for that matter) will not be sequencing, but the 
presence of skilled analysts to analyze the data and tease out the 
clinically relevant information is required.

2. wHAT iS MeTAGeNOMiCS?

Historically, microbial diversity has been primarily studied 
with culturing. Selective media and careful selection of culture 
conditions can recover tremendous range of organisms and is 
remarkably sensitive. In fact, culturing remains a valuable, albeit 
undervalued tool to study the microbiome (14–17). However, 
microbiologists noticed some time ago, a discrepancy in the 
number of organisms that could be counted under a microscope 
and the number that was able to be recovered in laboratory cul-
ture (18). This has led to the development of culture-independent 
techniques, based primarily on the analysis of single-subunit 
(SSU) rRNA genes. The reduced costs and ever-increasing read 
lengths of high-throughput sequencing have transformed this 
into an accessible and powerful technique. Sequencing of rRNA 

gene amplicons from hundreds of samples can be done in parallel, 
and these data are used to infer abundance and taxonomic pro-
files of the microbial species in a sample. Metagenomics, on the 
other hand, is the collective genetic material from all the genomes 
present in the sample (1) and provides a view into the functional 
potential of the population.

The workflow for a metagenomics is fairly straightforward and 
is easily implemented in molecular biology laboratories. Several 
studies have been published recently that outline well many of the 
steps required when undertaking a microbiome study (19–23). A 
brief overview of the key steps for a metagenomics experiment is 
given here and is outlined in Figure 1.

2.1. DNA extraction
The first step in a metagenomics experiment is the same as any 
other culture-independent method and that is to extract the DNA 
from the sample. Unfortunately, sample extraction gets little 
attention relative to other aspects of the workflow, yet can have a 
significant impact on outcome. A recent evaluation of extraction 
protocols from two major microbiome initiatives, the Human 
Microbiome Project (HMP) and metaHIT, revealed differences 
in the distribution of bacterial taxa as well as differences in gene 
composition based on which protocol the fecal samples were 
extracted with (24). Such differences are thought to arise in part 
from differential lysis due to cell wall composition (24) and will 
likely be even more pronounced for analysis that wish to evaluate 
a multi-kingdom microbiota that would include fungi. Therefore 
choice of extraction protocol is an important first step and will 
influence downstream results. Preliminary or pilot studies may 
choose to include a few different protocols to evaluate. For clini-
cal applications, rigorous and systematic evaluation of different 
protocols for different tissues will no doubt be a key component 
of implementing a metagenomics workflow.

To improve the detection of target organisms, sample prepara-
tion can also include steps to enrich target sequences or remove 
un-wanted sequences. For example, detection of viruses can be 
improved by filtering out cellular material (25). Human DNA can 
be removed using laboratory methods to increase the amount of 
DNA coming from target sequences, although this often leaves 
small amounts of DNA remaining and requires newer kits to 
prepare the sequencing library (23).

2.2. Kit Contamination and Batch effects
It is worth discussing in brief some recent work that has looked 
at the microbiome components that can be identified within the 
reagents and buffers of many commercial DNA extraction kits 
(26). The authors of this study sequenced the components of 
commonly used DNA extraction kits and demonstrated that con-
taminating DNA in these kit could significantly confound both 
16S gene sequencing and metagenomics results, particularly low 
biomass samples. They went on to analyze a previously published 
study (27) demonstrating that the main finding in that study 
was completely confounded by which lot the extraction kit was 
from. Once the contaminating sequences were removed, the most 
significant feature of the data disappeared. Clearly batch effects 
are key issue for metagenomics studies, yet not often considered 
when designing these experiments. For example, a recent primer 
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FiGURe 1 | Overview of a metagenomics experiment from sample preparation to analysis. There are a number of key steps in a metagenomics experiment 
that require attention as they will influence the final results. Considerations on DNA extraction method and contamination issues are very important at the sample 
preparation stage. At the sequencing stage, the main consideration is read depth and pilot experiments are recommended for this. Analysis can be quite complex 
and will vary depending on the research or clinical question. Essentially, following quality control, analysis can be done at the contig level, i.e. following metagenome 
assembly, or directly at the read level.
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in cell (20) neglects to even mention batch effects, although 
the authors do include a section on potential contamination. 
Batch effects are widespread within high-throughput genom-
ics experiments (28), and ameliorating and dealing with batch 
effects should be a key priority for any metagenomics experiment. 
Salter et  al. (26) provide some recommendations (summarized 
in Figure 1), which mainly include sequencing reagent blanks as 
well as processing samples randomly if they need to be processed 
in multiple batches.

2.3. Sequencing Depth and 
instrumentation
Although long-read sequencers from companies like PacBio and 
Oxford Nanopore have great potential for improving metagen-
omic datasets, particularly de novo assembly, these methods are 
currently too expensive to be practical. Hence Illumina’s short-
read sequencers are currently the main choice for these types of 
experiments, and to acquire the read depth needed for good sam-
ple coverage, the higher output instruments such as the HiSeq and 
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NextSeq are used. Previously, the main competitor for Illumina 
was a company called 454 (owned by Roche) whose sequencers 
could produce much longer reads (600–700 bp) as compared to 
Illumina’s 300  bp. However, in 2013, Roche announced it was 
closing 454 (https://www.genomeweb.com/sequencing/roche-
shutting-down-454-sequencing-business) and phasing out all the 
sequencers. Currently, Illumina’s sequencers cannot be matched 
in terms of read quality and price-per-base and are really the 
only option for metagenomic studies. The ubiquity of Illumina’s 
sequencers across research laboratories and growing number of 
clinical laboratories makes them relatively accessible for both 
clinical and basic researchers.

The question then becomes one of read depth; how many reads 
are needed to answer a particular question. There has been some 
attempt to calculate the required sequencing depth based on the 
predicted taxonomic profile of the community of interest (29); 
however, currently there is no hard and fast rule for how much 
sequence to acquire and will depend on the desired outcome. 
For instance, if the sequencing is being done solely to identify 
an unknown pathogen, presumably this pathogen will be present 
in some numbers and may require less depth in order to detect 
it. The final choice of read depth will be highly dependent on 
experimental design and budget and is best determined empiri-
cally in pilot experiments.

2.4. Analysis
Generating sequencing data is done mostly with standard molec-
ular biology protocols that are accessible to most research and 
clinical laboratories. However, analysis of metagenomic data is 
far from being standardized and is an area of active research and 
often the bottleneck for these types of studies. New methods are 
being published almost on a weekly basis, and a good analysis will 
invariably require a skilled analyst (see section at the end for more 
discussion on this point). Clinical applications of metagenomics 
are still limited by computational methods (see next section for 
a specific example); however, with good experimental design 
and the appropriate budget for analysis (often underestimated or 
neglected), the bioinformatics need not be prohibitory to success-
ful application of metagenomics.

Figure  1 includes an overview of the main steps that may 
be included in a typical analysis. Very important is the initial 
quality control steps to ensure nothing went wrong with the 
sequencing. From there an analysis typically, depending on the 
experiment, can be divided up into different areas, although in 
most cases a variety of analysis will be done. Assigning taxonomy 
to the individual reads gives the taxonomic composition of the 
community, similar to what one would obtain from a 16S gene 
survey and is a key step for pathogen identification. There are 
quite a number of tools available to do this but few reach the 
speed and accuracy of Kraken (30) with MetaPhlAn as another 
common choice (31). To get functional composition, the reads 
are searched against a protein database such as KEGG. Again, a 
number of tools are available for this including web based tools 
such as MG-RAST (32) and MEGAN (33), which includes a 
graphical user interface. Some tools, such as HUMAnN (34), 
attempt to do metabolic reconstruction of the metagenomic 

data. As an alternative to read-level analysis, there is considerable 
work being done on metagenome assembly. A typical workflow 
might consist of a genome assembly with a specialized assem-
bler such as Meta-IDBA (35) followed by binning contigs into 
groups with software like CONCOCT (36) and manual analysis 
and binning correction with a tool like Anvi’o (37). Contigs can 
then be annotated and subsequent functional analysis can be 
performed. Newer algorithms and tools are allowing for strain 
level analysis of metagenomic samples (38, 39), which holds 
much promise for infectious disease metagenomics as it allows 
the simultaneous identification of specific pathogenic strains 
and any corresponding antibiotic resistance and virulence genes 
these strains might carry.

3. MeTAGeNOMiCS FOR DiAGNOSiS OF 
iNFeCTiOUS DiSeASe

Currently diagnosis of the vast majority of microbial diseases is 
carried out using traditional culture-based methods. In a clinical 
context, culture-based methods can fail to isolate disease-causing 
organism (40–42) and are time consuming and labor intensive 
(43). While not yet standard practice, utilizing a metagenomics 
approach in a clinical setting has the potential to identify and 
characterize bacterial and viral pathogens (44, 45). It is likely 
that reduced costing and increased sensitivity will endorse the 
use of culture-independent metagenomics approaches in clinical 
practice, particularly for new and emerging pathogens, which do 
not yet have standard diagnostic testing (44).

As discussed in the previous section, extracting useful infor-
mation from these large datasets is non-trivial, often requiring 
multiple complex steps, which are dependent on the particulars 
of the data set being examined [e.g., see Ref. (44)]. Some inroads 
have been made in the development of tools for the rapid detec-
tion of pathogens in metagenomic datasets, which are designed 
to be fast and easy to use, important factors for integration into a 
clinical lab. PathSeq (46) utilizes a sequence subtraction method, 
where host DNA is first identified by aligning to a human refer-
ence database and removed leaving a much smaller dataset to 
search. This approach was used to identify a previously unknown 
pathogen as the causative agent in cord colitis syndrome (47). 
Clinical PathoScope (48) also uses the sequence subtraction 
method but claims to be much faster. Other computational 
strategies have been employed to deal with the large amount of 
host DNA; rapid identification of non-human sequences (RINS) 
(49) utilizes a custom reference database, which, while dramati-
cally reduces run times requires some sort of hypothesis about 
the organism being identified. Parallel processing has also been 
used as a way to reduce computational times (50) while others 
have attempted to leverage improved alignment algorithms and 
increasingly available cloud computing resources (51). The later, 
known as sequence-based ultrarapid pathogen identification 
(SURPI) was recently used to diagnose a viral infection in a 
patient with encephalitis (52).

Given the rapid development of tools targeted for pathogen 
identification, it is feasible that this may be an area where 
metagenomics will play a key role in the clinical laboratory.
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4. MeTAGeNOMiCS FOR STUDYiNG 
DYSBiOSiS AND CLOSTRIDIUM DIFFICILE 
iNFeCTiON

In addition to infection diagnostics, metagenomics has a great 
deal of potential for unraveling the microbial ecology of com-
plicated disorders such as Clostridium difficile infection (CDI). 
The role of the microbiome in CDI is well studied, and CDI is 
considered as the prototypical example of a disease state, which 
occurs as a result of dysbiosis. Reduction of microbial diversity 
in the gut, most often as a result of antibiotic use (53, 54), results 
in reduced colonization resistance, promoting the overgrowth of 
Clostridium difficile. Using non-sequencing methods, it has been 
demonstrated that CDI patients had a decrease in the number 
of Bacteroides, Prevotella, and Clostridia groups IV and XIVa as 
well as higher levels of Enterobacteriaceae compared with healthy 
counterparts (55, 56). More recent sequencing studies, which 
provide a more in-depth analysis of the community structure, 
have demonstrated a less diverse gut microbiota in CDI patients 
relative to controls and CDI individuals demonstrated reduc-
tions in Bacteroidaceae, Lachnospiraceae, and Ruminococcaceae 
families (57–59).

In the clinic standard treatment of CDI is with metronidazole 
for mild disease or vancomycin for more severe disease (60). Both 
treatments are damaging to the normal microbiota, which con-
tributes to the approximately 20% recurrence risk of disease (56). 
Therefore, new treatments for CDI must not only kill the pathogen 
but also simultaneously prevent destruction of the protective host 
microbial microflora. We are beginning to see studies looking at 
the microbiome sparing properties of new antibiotics (61) and 
anticancer drugs (62) in the literature, but it has been suggested 
that the going forward the Food and Drug administration could 
look at the host microbiota during clinical trial phase for all new 
drugs to determine their effect on the microbiome.

Remarkably, a lot of the information that has been gathered on 
the gut microbiota has come about as a result of studies on fecal 
microbiome transplantation (FMT). FMT is essentially transfer of 
the gut microbiota from the stool of healthy donor to sick patients. 
It has become widely used in the last decade due to its high suc-
cess rate (up to 92–100% depending on the protocol used) (63, 
64). In studies comparing recurrent CDI patients and pre- and 
post-FMT, it has been shown that intestinal microbiota changes 
from a low-diversity disease state dominated by Streptococcaceae, 
Enterococcaceae, and Enterobacteriaceae to a more diverse com-
munity, with significantly increased numbers of Lachnospiraceae 
and Ruminococcaceae (65, 66). However, although we know FMT 
works in the clinic we do not yet fully understand the specific 
mechanisms of why it works. Studies over the last two decades 
ago have demonstrated that bacterial mixtures of 6–33 different 
species can resolve recurrent C. difficile as effectively as whole fecal 
transplants (67–69). Additionally, recent germ free mouse stud-
ies have shown that a single Lachnospiraceae strain can suppress  
C. difficile infection in mice (70). Understanding the mechanism of 
what constitutes colonization resistance is made inherently more 
complex by the variability of the gut microbiome between people 
and the fact that identification of specific bacterial populations 

in the gut does not provide any concrete information regarding 
overall function.

The diversity of the human intestinal microbiome is a key to 
a number of biological processes that ensure the wellbeing of an 
individual. While certain bacterial species have been suggested 
as potential “keystone” species (71), it is likely that the functional 
state of the microbiome plays a more important role, rather then 
presence of a single species. Metagenomic sequencing offers a 
more comprehensive approach than marker gene approaches. 
Not only it can provide a complete view of the microbial com-
munity present but it also has the ability to resolve information 
about overall community function. Weingarden et  al. (72) 
demonstrated that patients with recurrent CDI (rCDI) have high 
concentrations of primary bile acids and that FMT can restore 
the intestinal microbiota and the composition of fecal bile acids 
to that seen in non-CDI donor samples (72). Further evidence 
of a role for bile acids (BAs) was indicated by a recent study 
which identified Clostridium scindens, as an efficient inhibitor 
of CDI. This bacterium can convert primary BAs to secondary 
BAs thereby correcting the biosynthesis of secondary bile acids 
and inhibiting CDI.

Additional studies looking at the role of other metabolites in 
CDI have suggested butyrate deficiency in the colon increases 
growth and toxin production of C. difficile (73, 74). In turn, 
butyrate producers in the gut such as Lachnospiraceae and 
Ruminococcaceae are thought to have a protective role in pre-
venting CDI. Paradoxically, butyrate has also been shown to be 
an activator of toxin synthesis in C. difficile (75). Furthermore, 
it was demonstrated using a gnotobiotic mouse model it that an 
abundance of commensally derived succinate allows C. difficile 
to expand efficiently and cause disease (76). In addition, genes 
involved in the conversion of succinate to butyrate were highly 
expressed under these conditions, suggesting a complex meta-
bolic network is involved in pathogenesis. Finally, metagenomics 
will identify not only potentially beneficial bacteria and their 
functional role but also potential issues, such as antibiotic-
resistance genes, or virulence genes; 16S RNA gene profiling is 
not sufficiently sensitive to differentiate between pathogenic and 
non-pathogenic or antibiotic-resistant and antibiotic-sensitive 
strains.

5. UNDeRSTANDiNG THe GLOBAL 
THReAT OF ANTiMiCROBiAL 
ReSiSTANCe USiNG MeTAGeNOMiCS

Antimicrobial resistance is recognized as a growing global threat. 
Studying disruption of the human microbiome through use of 
antimicrobials is a topic of growing interest among healthcare 
professionals, because it could be a driving force behind the intro-
duction and proliferation of antibiotic-resistant organisms (ARO) 
in health-care settings. In addition to CDI, microbial imbalance in 
the gut is the major predisposing factor for vancomycin-resistant 
enterococci (VRE) (77, 78) as well as other AROs including 
Klebsiella and Escherchia coli (53). If microbial imbalance is the 
major predisposing factor for infection with these organisms, 
then it stands to reason that a healthy microbiome is ones best 
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defense against acquiring these organisms. Using a metagenomics 
approach, we can investigate the functional role of the host micro-
biome on the carriage and transmission of AROs; in patients who 
are asymptomatic carriers or actively infected with AROs, what 
is the state of their gut microbiome relative to non-carriers? Can 
we identify specific communities and functions that provide 
colonization resistance against some or all AROs?

In a diagnostic context, metagenomic data has tremendous 
potential for predicting antimicrobial sensitivity and resistance. 
Traditional methods of detecting antibiotic resistance suffer from 
the same problems as identifying pathogens given that these assays 
are performed on isolated organisms. However, the metagenome 
contains the collection of resistance determinants within the 
microbial community, known as the resistome (79), and can 
provide a comprehensive picture of the resistance “potential” of 
a community (80). Here, genetic determinants of resistance are 
identified in the data set and used to predict what resistance pat-
terns will be. This works well for known mechanisms of resistance 
but would not be a useful for discovering novel methods or if 
the primary mechanism of resistance in a particular community 
is one that is unknown. The key advantage of a metagenomics 
approach is that all known determinants can be identified even 
ones that are not present in the disease causing pathogen, but may 
be transfered due to the highly mobile nature of many of these 
genes and pathways.

Although designed for whole genomes from single organisms, 
a great example of how this could work effectively is software 
called Mykrobe predictor (81), which uses de Bruijn graphs to 
identify a variety of different allele types, such as single-nucleotide 
polymorphisms (SNPs), indels and genes that are associated with 
antibiotic resistance. Using these data, a prediction is made on 
what antibiotics the organism will be resistant to. Although the 
authors demonstrate that it can be used to identify very minor 
alleles in a mixed infection it is at this stage, unlikely to work well 
in a complex infection environment such as the gut which would 
contain a fairly large number of antibiotic-resistance determinants 
from a variety of organisms (82, 83). Nonetheless, due to its speed, 
ease of use, and accuracy, this tool demonstrates how sequencing 
data can be used to make rapid predictions about antibiotic resist-
ance very well and is a very promising step forward.

Identifying antibiotic-resistance genes in metagenomic 
datasets will depend strongly on the quality and completeness 
of resistance gene databases. Efforts such as the Comprehensive 
Antibiotic-Resistance Database (CARD) (84) and the Antibiotic-
Resistance Gene Database (ARDB) (85) are extremely important 
for the appropriate interpretation of resistance levels of a sample 
based on gene content.

6. THe ROLe OF THe BiOiNFORMATiCiAN 
iN CLiNiCAL MeTAGeNOMiCS

The semantics of definitions aside (86, 87), we put forward 
that if metagenomics is to be useful in a clinical context, it will 
require skilled bioinformatic analysts in addition to novel and 
efficient computational tools. Metagenomics can be immensely 
useful in clinical diagnostics as demonstrated by a study using 
a sequence-based metagenomics approach to investigate a 
shiga-toxigenic Escherichia coli (44) but such a study required 
a complex and non-standard analysis. Standard pipelines and 
tools with simple user interfaces can be setup and Mykrobe 
predictor (81) is a good example of this. Indeed as demonstrated 
by the number of pathogen identification tools intended to be 
user friendly there is considerable effort being put forth to 
remove complex analysis as a bottleneck. However, many data-
sets and analysis are not standard and require custom analysis. 
Furthermore, and perhaps more importantly, interpreting the 
output of analysis should never be done blindly, that is to say, 
a fundamental understanding of the tools and their limitations 
is paramount to acquiring accurate answers from metagenomic 
data in the clinic.

An advantage of metagenomics is that as new tools are created 
and new discoveries made the sequencing data can be utilized in 
ways previously unknown (Figure 1). In addition, new sequenc-
ing technologies, such as single-molecule sequencing, which 
produces very long reads, are emerging and established tools may 
or may not work with these new types of data. Having skilled 
bioinformaticians will become even more important as clinical 
labs and research become more and more dependent on sequenc-
ing data.

7. CONCLUSiON

Metagenomics holds much promise for microbial diagnostics 
and research and there are several exiting proof-of-concept 
studies demonstrating the power of this approach for the clini-
cal laboratory. Decreasing costs and increasing throughput will 
likely remove sequencing as a bottleneck leaving computational 
power, effective tools, and timely analysis as key issues that will 
need to be addressed to see to the full potential of metagenomic 
sequencing in the clinic.
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