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Objective: We investigated the roles and mechanisms of IRF2 in sepsis-related acute kidney 
injury (S-AKI) in a lipopolysaccharide (LPS)-induced HK-2 cell line and caecal ligation and 
puncture (CLP)-induced IRF2−/− mouse model.
Methods: Quantitative real-time polymerase chain reaction assay was used to detect IRF2 in 
the serum of S-AKI patients and LPS-induced HK-2 cells. Cell proliferation, death, and 
apoptosis were analysed by CCK-8, lactate dehydrogenase release, and flow cytometry 
assays, respectively. The levels of interleukin (IL)-1β, IL-18, IL-6, tumour necrosis factor 
(TNF)-α, non-canonical inflammasomes, including caspase-4 and gasdermin-D (GSDMD), 
and canonical inflammasomes, such as caspase-1, NLR family pyrin domain containing 3 
(NLRP3), and apoptosis-associated speck-like protein (ASC) in S-AKI cells or animal 
models were analysed by enzyme-linked immunosorbent assay or Western blotting.
Results: IRF2 was upregulated in the serum of S-AKI patients and LPS-induced HK-2 cells. 
IRF2 downregulation promoted cell proliferation and inhibited cell death and apoptosis, 
respectively. IRF2 inhibition reduced the levels of IL-1β, IL-18, IL-6, and TNF-α in S-AKI 
cells and animal models. IRF2 knockdown inhibited LPS-treated HK-2 cell pyroptosis by 
decreasing the expression of caspase-4 and GSDMD, instead of affecting caspase-1, NLRP3, 
and ASC. An elevated survival rate and alleviated pathological features and scores were 
observed in the CLP-induced IRF2−/− animal models. IRF2 deficiency also suppressed 
inflammation and pyroptosis by inhibiting non-canonical inflammasomes as indicated by 
the decreased expression of caspase-11 and GSDMD.
Conclusion: Our findings suggest that IRF2 downregulation protects against S-AKI in vitro 
and in vivo.
Keywords: sepsis acute kidney injury, IRF2, inflammation, pyroptosis

Introduction
Sepsis is characterised by diffuse inflammation, which is generally caused by the 
fungal, viral, or bacterial infections. It is the most common factor in the development 
of acute kidney injury (AKI), and AKI of any origin is associated with a high risk of 
sepsis.1 Sepsis-related AKI (S-AKI) is a common complication in critically ill patients 
and is associated with high morbidity and mortality.2 It is the 7th and 8th leading cause 
of the global mortality of 1–4-year-old children and 65–75-year-old adults, 
respectively.3 S-AKI is accompanied by abnormal changes in the expression and 
function of various genes, RNAs, and proteins, which can be ameliorated by effectively 
regulating the expression of these abnormal molecules. Sepsis is the primary cause of 
AKI in critically ill patients,4 however, the pathophysiological mechanisms of S-AKI 
remain unclear. Thus, more mechanistic studies are required to deeply understand the 
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complicated pathophysiology of S-AKI and to apply these 
results into potential treatment strategies for pharmacological 
approaches and clinical trials.

Studies have indicated that inflammation plays a critical 
role in the pathogenesis of S-AKI.5 Inflammation is triggered 
by pattern recognition receptors, which sense external stimuli 
to activate canonical inflammasomes, resulting in the produc-
tion of pro-inflammatory cytokines, including tumour necrosis 
factor-α (TNF-α), interleukin (IL)-18, and IL-1β, or leading to 
caspase-1 activation, thereby causing gasdermin-D 
(GSDMD)-mediated pyroptosis.6,7 Pyroptosis differs from 
other forms of cell death in morphology and mechanism, and 
it is characterised by rapid rupture of the plasma membrane 
and the release of pro-inflammatory factors that recruit 
a greater participation of inflammatory cells, thereby expand-
ing the inflammatory response.8–10 Both pyrolysis and apop-
tosis are programmed mechanisms of cell death, however, 
each process relies on different caspases. Caspase-1 and cas-
pase-11 (caspase-4 in humans) are activated by canonical and 
non-canonical inflammasomes in various sterile inflammatory 
and infectious states, such as septic shock.11,12 Activated 
caspase-1, caspase-11, and caspase-4 cleave GSDMD results 
cytokine release and rupture of the cytolytic membrane 
(pyroptosis).7 Distinct from apoptosis, pyrolysis leads to cell 
lysis and pro-inflammatory cytokine release into the extracel-
lular space, including IL-1β and IL-18.13,14 This inflammatory 
pathway is found in a variety of cells, such as macrophages, 
monocytes, and epithelial cells.15–17 The pathological charac-
teristics of S-AKI are renal tubular sublethal and lethal 
damage, leading to apoptosis, necrosis, and pyrolysis.18

Interferon regulatory factor 2 (IRF2) is a transcription 
factor located on chromosome 4, which was originally iden-
tified as a regulator of the type I interferon system.19 

Emerging evidence has shown that IRF2 plays an important 
role in the inflammatory response.20 IRF2 is important for 
GSDMD transcriptional activation.21 Destruction of a single 
IRF2 binding site eliminates signal transduction in canonical 
and non-canonical inflammasomes.21 Apolipoprotein L1 
(APOL1) risk variants considerably elevate the risk of kidney 
disease in African Americans, and IRF2 knockdown mark-
edly decreases APOL1 expression in the unstimulated 
state.22 However, the roles and mechanisms of IRF2 in 
S-AKI have not been elucidated.

In this study, we explored the effects and potential 
mechanisms of IRF2 regulation on S-AKI using 
a lipopolysaccharide (LPS)-induced in vitro model and 
caecal ligation and puncture (CLP)-induced in vivo 
model. We found that IRF2 was upregulated in the serum 

of S-AKI patients and LPS-treated HK2 cells. IRF2 down-
regulation could alleviate sepsis-induced renal injury by 
inhibiting inflammation and pyroptosis in vivo and 
in vitro. Our results provide a new potential therapeutic 
target for S-AKI treatment.

Materials and Methods
Serum Samples
The serum samples were collected and then refrigerated at 
−80 °C. All serum samples were obtained with informed 
consent from patients. This study was approved by the 
Ethics Committee of the Affiliated Suzhou Hospital of 
Nanjing Medical University (KL907125), and was con-
ducted in accordance with the Declaration of Helsinki.

Cell Culture, Induction, and Transfection
The human renal tubular epithelial cell line (HK-2) was 
purchased from Procell (Wuhan, China). HK-2 cells were 
cultured in Dulbecco’s Modified Eagle Medium 
(Invitrogen, MA, USA) containing 10% foetal bovine 
serum (Invitrogen) in an incubator at 37 °C with 5% 
CO2. To establish the S-AKI model in vitro, HK-2 cells 
were treated with 1 μg/mL LPS (Sigma-Aldrich, MO, 
USA) for 24 h. The LPS-treated HK-2 cells were seed 
into 60 mm culture plates at a density of 1×106 cells/mL. 
Si-RNAs (JTS Scientific, Wuhan, China) were transfected 
into HK-2 cells using Lipofectamine 3000 reagent 
(Invitrogen) following the manufacturer’s instructions.

Experimental Animals
Male 8–12-week-old C57BL/6N mice and IRF2 knockout 
(IRF2−/−) mice (20–25 g body weight) were purchased 
from Vital River (Beijing, China). A sepsis in vivo 
model was established using CLP surgery, as previously 
described.23 The survival rate of each mouse was deter-
mined starting 24 h after CLP treatment for 10 days. The 
renal tissue of each mouse was collected 24 h later.

Quantitative Real-Time Polymerase Chain 
Reaction (qRT-PCR)
Total RNA was isolated from cells and tissues using TRIzol 
Reagent (TIANGEN, Beijing, China). cDNA was synthe-
sized from RNA by TIANSeq M-MLV reverse transcriptase 
(TIANGEN, China). Subsequently, qRT-PCR was per-
formed. The primer sequences used in this section are as 
follows: IRF2, Forward (F): 5ʹ-AGTGTGGCCAGTG 
ATGAAGA-3ʹ, Reverse (R): 5ʹ-GAGCTGTTGTA 
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AGGCATCGG-3ʹ; GAPDH, F: 5ʹ- ACATGGCCT 
CCAAGGAGTAAGAA-3ʹ, R:5ʹ-GGGATAGGGCCTCTC 
TTGCT-3ʹ. The results of this assay were calculated using 
2−ΔΔCT method.

Lactate Dehydrogenase (LDH) Release, 
Enzyme-Linked Immunosorbent Assay 
(ELISA), and Serum Biochemical 
Indicators Assays
Cytotoxicity was assessed using the LDH release assay 
according to the manufacturer’s instructions (Clontech, 
CA, USA). The levels of TNF-α, IL-6, IL-1β, and IL-18 
were tested using ELISA kits (Beyotime, Jiangsu, China) 
following the manufacturer’s instructions. The levels of 
serum creatinine (SCR) and blood urea nitrogen (BUN) 
were detected using the automatic biochemical analyzer 
(Hitachi 7170A, Japan).

Flow Cytometry
HK-2 cells cell apoptosis was detected using an Annexin 
V-FITC/Propidium Iodide Apoptosis Detection Kit 
(Abcam, Cambridge, UK) following the manufacturer’s 
instructions. The cells were fixed in FACS fixing buffer 
containing 1% paraformaldehyde. Flow cytometry (FACS 
Calibre, BD Biosciences, NJ, USA) was used to perform 
the assay. The positive cells were analysed using the 
FlowJo software (Ashland, DE, USA).

Cell Proliferation Assay
Cells were seeded onto 96-well culture plates and grown 
in an incubator for 48 h. Cell Counting Kit 8 (CCK-8) 
reagent (Beyotime) was added to each well, and the cells 
were incubated for 1 h. The optical density value of each 
well at 450 nm was measured using a microplate reader 
(ELX-800, BioTek, VT, USA).

Haematoxylin and Eosin (H&E)
For H&E staining, tissues were fixed in 4% formaldehyde for 
24 h and then dehydrated with ethanol in a gradient manner. 
The samples were embedded in paraffin and cut into 5 
μm-thick sections. The sections were stained with haematox-
ylin for 5 min and stained with eosin for 30 s. The stained 
sections were scored in a blinded manner, and tubular damage, 
including tubular necrosis, apoptosis, dilatation, and cast for-
mation was recorded as follows: 0 (none), 1 (1–10%), 2 
(11–25%), 3 (26–45%), and 4 (46–75%).24

Western Blot
HK-2 cells and animal tissues were lysed using RIPA lysis 
buffer (Thermo Fisher Scientific, MA, USA). Each protein 
sample was electrophoresed by 12% SDS-PAGE and trans-
ferred to polyvinylidene fluoride membranes (Sigma-Aldrich). 
Next, the membranes were blocked with 5% bovine serum 
albumin (BSA) at room temperature for 2 h and incubated 
with the following primary antibodies: anti-IRF2 (ab124744, 
1:1000, Abcam); anti-Bax (ab32503, 1:1000, Abcam); anti- 
Bcl-2 (ab196495, 1:1000, Abcam); anti-caspase-1 (ab62698, 
ab138483, 1:1000, Abcam); anti-caspase-4 (4450, 1:1000, 
Cell Signaling Technology, MA, USA), anti-caspase-11 
(ab246496, 1:1000, Abcam); anti- apoptosis-associated speck- 
like protein (ASC; 13833, 67824, 1:1000, Cell Signaling 
Technology); anti-TNF-α (3707, 1:500, Cell Signaling 
Technology); anti-IL-1β (12242, 1:500, Cell Signaling 
Technology); anti-IL-18 (54943, 57058, 1:500, Cell 
Signaling Technology); anti-IL-6 (ab259341, 1:500, Abcam); 
anti-GSDMD (39754, 1:1000, Cell Signaling Technology); 
anti-NLRP3 (13158, 15101, 1:1000, Cell Signaling 
Technology); and GAPDH (ab8245, 1:3000, Abcam) over-
night at 4 °C. Each membrane was incubated with correspond-
ing secondary antibodies (7233, 7076, 1:5000, Cell Signaling 
Technology) for 1 h at room temperature. Protein expression 
was detected using an enhanced chemiluminescence detection 
kit (Thermo Fisher Scientific).

Statistics
Statistical analysis was carried out using GraphPad Prism 
software (version 8.0). Data are presented as mean ± 
standard deviation (SD). Comparisons among groups 
were performed using t-test or one-way ANOVA. 
Differences were considered statistically significant at 
P<0.05 and P<0.01.

Results
IRF2 is Upregulated in the Serum of 
S-AKI Patients and LPS-Induced HK-2 
Cells
To investigate IRF2 in expression S-AKI, we recruited 27 
S-AKI patients and 18 healthy volunteers. Using qRT- 
PCR, we found that IRF2 expression was significantly 
upregulated in the serum of S-AKI patients compared to 
that in normal serum (Figure 1A). IRF2 expression in the 
LPS-induced S-AKI in vitro model was quantified; like-
wise, IRF2 expression was markedly elevated in LPS- 
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treated HK-2 cells (Figure 1B). These results suggest that 
IRF2 may be involved in the development of S-AKI.

IRF2 Knockdown Promotes Proliferation 
and Inhibits Cell Death and Apoptosis in 
LPS-Induced HK-2 Cells
We transfected the negative control siRNA or IRF2 siRNA 
into HK-2 cells treated with LPS to explore the role of IRF2 
in S-AKI. We found that IRF2 inhibition notably reduced 
IRF2 mRNA expression (Figure 2A) and protein levels 
(Figure 2B) in S-AKI cells. Additionally, CCK-8 assay 
results revealed that IRF2 inhibition promoted the viability 
of S-AKI cells (Figure 2C). The results of LDH release and 
flow cytometry assays indicated that IRF2 downregulation 
remarkably suppressed cell death (Figure 2D) and apoptosis 
(Figure 2E) in the S-AKI in vitro model. Western blotting 
results showed that IRF2 inhibition notably reduced the 
protein expression of Bax, whereas it induced the protein 
expression of Bcl-2 (Figure 2F). Taken together, IRF2 
knockdown attenuated LPS-induced injury in HK-2 cells.

IRF2 Knockdown Inhibits LPS-Induced 
Inflammatory Response in HK-2 Cells
We measured the concentrations of certain inflammatory 
cytokines by ELISA to investigate the effects of IRF2 on 
LPS-induced inflammatory response in S-AKI cells. LPS 
treatment significantly increased the levels of IL-1β, IL-18, 
IL-6, and TNF-α in HK-2 cells, while these inflammatory 

factors were notably reduced following IRF2 inhibition 
(Figure 3A–D). Similarly, lower protein expression levels 
of IL-1β, IL-18, IL-6, and TNF-α were observed in S-AKI 
cells after suppressing IRF2 (Figure 3E). These results 
indicate that IRF2 knockdown inhibited the LPS-induced 
inflammatory response in HK-2 cells.

IRF2 Knockdown Inhibits Non-Canonical 
Inflammasomes and Pyroptosis
Infection and pathological stimuli exacerbate inflammation 
and frequently trigger pyroptosis.25 The activation of cas-
pase-1, caspase-4, NLRP3, ASC, and GSDMD might be 
involved in the process of pyroptosis in S-AKI.26 The results 
of Western blotting showed that LPS treatment significantly 
enhanced caspase-4, caspase-1, NLRP3, ASC, and GSDMD 
expression (Figure 4A and B), indicating that canonical and 
non-canonical inflammasomes were activated. IRF2 down-
regulation dramatically reduced the expression levels of cas-
pase-4 and GSDMD, however, it had no significant effect on 
caspase-1, NLRP3, and ASC expression (Figure 4A and B), 
suggesting that the non-canonical pathway of pyroptosis was 
suppressed. Collectively, IRF2 knockdown inhibited non- 
canonical inflammasomes, thereby ameliorating pyroptosis.

IRF2 Knockout Alleviates the Inflammation 
and Pyroptosis of S-AKI in vivo
We determined the effects of IRF2 on CLP-induced renal 
injury in vivo to validate the protective activity of IRF2 
inhibition. Figure 5A confirmed that IRF2 was not 

Figure 1 IRF2 expression is upregulated in the serum of S-AKI patients and cells. (A) The mRNA level of IRF2 in the serum of of S-AKI patients and healthy individuals was 
measured by qRT-PCR. (B) The mRNA level of IRF2 in LPS-induced HK-2 cells was detected by qRT-PCR. Data were expressed as mean + SD. **p<0.01. 
Abbreviations: IRF2, interferon regulatory factor 2; S-AKI, sepsis-related acute kidney injury; mRNA, messenger RNA; qRT-PCR, quantitative real-time polymerase chain 
reaction; LPS, lipopolysaccharide; HK-2, human renal tubular epithelial cell line; SD, standard deviation.
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expressed in CLP-induced IRF2−/− mice. IRF2 knockout 
remarkably increased the survival rate of CLP-induced 
mice (Figure 5B). SCR and BUN levels were signifi-
cantly higher in mice injected with LPS. In contrast, 
IRF2 knockout decreased the elevation of the levels of 
SCR and BUN (Figure 5C and D). Histological evalua-
tion revealed that IRF2 knockout reduced inflammatory 
cell infiltration in the renal tissues of S-AKI mice, and 
reduced the scores of pathological sections in S-AKI 
mice (Figure 5E). IRF2 knockout notably decreased the 
levels of inflammatory cytokines IL-1β, TNF-α, IL-18, 
and IL-6 in the renal tissues of mice (Figure 5F). The 
protein expression of caspase 1, NLRP3, and ASC was 
unchanged in the renal tissues of mice by IRF2 knockout 
(Figure 5G). Western blot assay showed that the expres-
sion of pyroptosis pathway-associated proteins, caspase- 

11 and GSDMD, was markedly reduced (Figure 5H). 
Taken together, our results demonstrated that IRF2 
knockout alleviated renal damage of S-AKI mice 
through a non-canonical inflammatory pathway.

Discussion
Sepsis is the leading cause of AKI in intensive care units. 
Furthermore, S-AKI is associated with a high mortality 
rate.27 Therefore, new therapeutic interventions are 
required to reduce S-AKI.

In this study, we collected serum samples from S-AKI 
patients and healthy individuals and established an S-AKI 
model in vitro. Our data demonstrated that IRF2 expression 
was upregulated in the serum of S-AKI patients and LPS- 
induced HK-2 cells. Moreover, IRF2 inhibition significantly 
increased S-AKI cell viability. Apoptosis and necrosis are the 

Figure 2 IRF2 knockdown attenuates the LPS-induced injury in HK-2 cells. (A) qRT-PCR was performed to measure the level of IRF2 in LPS-induced HK-2 cells. (B) The 
protein level of IRF2 was detected in LPS-induced HK-2 cells by Western blotting. (C) CCK-8 assay was used to determine the changes in cell viability. (D) LDH release 
assay was used to detect cell death. (E) The apoptotic cells were quantified using flow cytometry. (F) Western blotting was used to detect the protein expression levels of 
Bax and Bcl-2. Data were expressed as mean + SD. *p<0.05, **p<0.01. 
Abbreviations: IRF2, interferon regulatory factor 2; LPS, lipopolysaccharide; HK-2, human renal tubular epithelial cell line; qRT-PCR, quantitative real-time polymerase 
chain reaction; CCK-8, cell counting kit 8; LDH, lactate dehydrogenase; Bcl-2, B-cell lymphoma 2; Bax, Bcl-2 associated X; SD, standard deviation.
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Figure 3 IRF2 knockdown inhibits LPS-induced inflammatory cytokines in HK-2 cells. (A–D) ELISA was performed to compare the levels of IL-1β, IL-18, IL-6, and TNF-α in 
LPS-induced HK-2 cells. (E) Western blotting was used to detect the protein expression levels of IL-1β, IL-18, IL-6, and TNF-α in LPS-induced HK-2 cells. Data were 
expressed as mean + SD. *p<0.05, **p<0.01. 
Abbreviations: IRF2, interferon regulatory factor 2; LPS, lipopolysaccharide; HK-2, human renal tubular epithelial cell line; ELISA, enzyme-linked immunosorbent assay; IL- 
1β, interleukin-1β; TNF-α, tumour necrosis factor-α; SD, standard deviation.
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major pathways of cell death in S-AKI28,29. In the present 
study, we found that IRF2 downregulation dramatically 
reduced cell death and apoptosis in S-AKI. Increasing evi-
dence has shown that sepsis can promote inflammatory factor 
release in kidney tissues, thereby causing severe renal cell 
apoptosis, leading to AKI.30 Thus, we explored the effect of 
IRF2 on inflammation in S-AKI by measuring the levels of 
several inflammatory cytokines. IL-1β is an important 
inflammatory factor that participates in the defence mechan-
ism of hosts against pathogens.31 IL-18 is a pluripotent cyto-
kine primarily produced by activated mononuclear 
macrophages and mediates ischaemic AKI.32 IL-1β and IL- 
18 can also elevate the expression of other inflammatory 
cytokines, such as TNF-α and IL-6, and facilitate the 

exudation of inflammatory cells.33 Our data showed that 
LPS treatment increased the levels of IL-1β, IL-18, IL-6, 
and TNF-α in HK-2 cells, thereby inducing an inflammatory 
response resulting in S-AKI. However, IRF2 knockdown 
notably reduced the levels of these factors to inhibit inflam-
mation in S-AKI.

Apoptosis is characterised by cell shrinkage, mem-
brane blebbing, phosphatidylserine externalization, nuclear 
DNA fragmentation, and nuclear externalisation.34 

Apoptosis is considered to be immunologically silent and 
even anti-inflammatory, resulting in cell clearance in the 
absence of explicit activation of the immune system.35 Our 
data showed that LPS treatment increased LDH release, 
cell apoptosis, and the protein expression of Bax, and 

Figure 4 IRF2 knockdown inhibits LPS-induced pyroptosis. (A) The expression of caspase-1, caspase-4, NLRP3, and ASC was measured by Western blotting. (B) The 
expression of GSDMD was detected by Western blotting. Data were expressed as mean + SD. *p<0.05, **p<0.01. 
Abbreviations: IRF2, interferon regulatory factor 2; LPS, lipopolysaccharide; NLRP3, NLR family pyrin domain containing 3; ASC, apoptosis-associated speck-like protein; 
GSDMD, gasdermin-D; SD, standard deviation.
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decreased the protein expression of Bcl-2 in an in vitro 
S-AKI model. IRF2 knockdown attenuated LPS-induced 
apoptosis in HK-2 cells. In recent years, increasing evi-
dence has shown that, in addition to necrosis and apopto-
sis, pyroptosis also plays an important role in the 
pathogenesis of S-AKI.33 NLRP3 is predominantly distrib-
uted in the intercellular substance and cell membrane, and 
plays crucial roles in AKI by regulating inflammation and 

pyroptosis.6 It is responsible for caspase-1 activation by 
interacting with ASC to trigger the production of mature 
IL-1β and IL-18.36,37 NLRP3 is activated in an LPS- 
induced AKI cell model, leading to a decrease in cell 
viability,38 which is consistent with our results. GSDMD 
has been identified as a critical mediator of pore formation 
in cells undergoing pyroptosis.39 The tetramer active forms 
of caspase-1, caspase-4, and caspase-11 were found to be 

Figure 5 IRF2 knockout alleviates the renal damage of CLP-induced mice. (A) The IRF2 expression in renal tissues of CLP-induced IRF2−/− mice was detected by Western 
blotting. (B) The survival rates of mice from each group with the indicated condition were recorded for 10 days. (C and D) The content of SCR and BUN among different 
mice groups. (E) H&E staining and pathological scores of S-AKI mice were assessed. (F) The levels of the inflammatory cytokines, IL-1β, TNF-α, IL-18, and IL-6 in renal 
tissues collected were measured by Western blotting. (G) The protein expression of caspase-1, NLRP3, and ASC in renal tissues was determined by Western blotting. (H) 
The protein expression of caspase-11 and GSDMD in renal tissues was determined by Western blotting. Data were expressed as mean + SD. *p<0.05, **p<0.01. 
Abbreviations: IRF2, interferon regulatory factor 2; CLP, caecal ligation and puncture; SCR, serum creatinine; BUN, blood urea nitrogen; S-AKI, sepsis-related acute kidney 
injury; IL-1β, interleukin-1β; TNF-α, tumour necrosis factor-α; NLRP3, NLR family pyrin domain containing 3; ASC, apoptosis-associated speck-like protein; GSDMD, 
gasdermin-D; SD, standard deviation.
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capable of cleaving purified recombinant GSDMD.7 

GSDMD is a component of the inflammasome that is 
responsible for the implementation of pyroptosis and the 
secretion of mature IL-1β.40 Moreover, IRF2 binds to 
a unique site within the promoter of GSDMD and drives 
the GSDMD transcription to perform pyroptosis.21 Our 
results showed that inhibiting IRF2 does not alleviate the 
pyrolysis of S-AKI in vitro by affecting the expression of 
NLRP3, ASC, and caspase-1 (canonical inflammasomes), 
but by reducing the expression of caspase-4 and GSDMD 
(non-canonical inflammasomes).

In mice, caspase-11 is associated with non-canonical 
inflammasomes activated by multiple infections, resulting 
in cell death by pyroptosis.41 GSDMD is a crucial target of 
caspase-11, and its cleavage and resultant N-terminal frag-
ments were identified as the executioner of pyroptosis.42 

IL-1β levels in the serum and kidney tissues of caspase- 
11−/− mice remained low after LPS challenge.41 In the 
present study, IRF2 knockout dramatically ameliorated 
CLP-induced renal injury in vivo. Meanwhile, we found 
that IRF2 knockout could inhibit the CLP-induced inflam-
matory response and pyroptosis in vivo by suppressing 
non-canonical inflammasomes. Our study provides a new 
insight into the pathogenesis and treatment of S-AKI.

Conclusion
In conclusion, this study revealed that IRF2 is upregulated in 
the serum of S-AKI patients and LPS-induced HK-2 cells. 
IRF2 downregulation showed protective effects in LPS- 
induced HK-2 cells and CLP-induced mice. IRF2 inhibition 
can reduce inflammation and pyroptosis in vitro and in vivo 
by regulating non-canonical inflammasomes, showing that 
IRF2 is an effective drug target for S-AKI treatment.
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