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Small heat shock proteins (sHSPs) are known to bind non-native substrates

and prevent irreversible aggregation in an ATP-independent manner. How-

ever, the dynamic interaction between sHSPs and their substrates in vivo is

less studied. Here, by utilizing a genetically incorporated crosslinker, we

characterized the interaction between sHSP IbpB and its endogenous sub-

strates in living cells. Through photo-crosslinking analysis of five Bpa vari-

ants of IbpB, we found that the substrate binding of IbpB in living cells is

reversible upon short-time exposure at 50 °C. Our data provide in vivo evi-

dence that IbpB engages in dynamic substrate release under nonstress con-

ditions and suggest that photo-crosslinking may be a suitable method for

investigating dynamic interaction between molecular chaperones and their

substrates in living cells.

Molecular chaperone proteins play key roles in main-

taining proteostasis in vivo by assisting the folding of

substrate proteins, preventing or reversing misfolding

proteins, and the degradation of their misfolded forms

[1,2]. Small heat shock proteins (sHSPs), as a con-

served family of molecular chaperone with a low

molecular mass of 12–43 kDa, are present in all forms

of life [3]. The ability of sHSPs to confer resistance on

cells under various stress conditions has been widely

reported [4–7]. They are in proteostasis network

referred to as first line stress defenders, binding non-

native substrate proteins and holding them in a fold-

ing-competent state as ‘holdases’, which might be sub-

sequently refolded with the assistance of other ATP-

dependent molecular chaperones such as Hsp60,

Hsp70, and Hsp100 [3,8–13]. It has been shown that

the sHSPs associate with protein aggregates, altering

their biochemical properties, and subsequently facili-

tate efficient disaggregation and refolding [9,14–17].
However, the basic understandings about the interac-

tion between sHSPs and their substrate proteins have

been obtained mostly from in vitro studies [3], raising
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the question of their unique in vivo characteristics.

Such unresolved scientific questions regarding the

unique properties as regard to mode of operation of

sHSPs in vivo include among others, what kind of

dynamic changes take place in the interaction between

sHSPs and their endogenous substrate proteins and,

whether such interaction is reversible or irreversible?

The answers to these questions may further our under-

standing of the molecular mechanisms for sHSPs to

function in vivo.

To address these questions, we chose the inclusion

body binding protein IbpB, a sHSP from

Escherichia coli (E. coli) as a model to investigate the

interaction characteristics of sHSPs and their substrate

proteins in living cells. IbpB, which was initially identi-

fied as a component of inclusion bodies [18,19] and

later reported to be present in heat shock formed

aggregates [20], confers E. coli cells resistance against

stresses [21,22]. In our previous studies, substrate-bind-

ing residues of IbpB were characterized by using

in vivo site-specific photo-crosslinking as mediated by

the genetically incorporated unnatural amino acid p-

benzoyl-L-phenylalanine (Bpa) [23], and the substrate

proteins captured by Bpa were identified to have

remarkable preference for translation-related proteins

and metabolic enzymes [24]. In the present study, we

chose a total of five IbpB Bpa variants to investigate

the interaction features of IbpB-substrate in E. coli

cells subjected to both stress and nonstress conditions

by adopting in vivo site-specific photo-crosslinking, as

it is capable of covalently capturing transiently or

weakly interacting proteins [25]. Our results revealed

that the IbpB-substrate interaction in living cells is

reversible upon short-time exposure to 50 °C, provid-
ing the in vivo evidence on the existence of substrate

protein release at nonstress conditions.

Materials and methods

Bacterial strains, plasmid construction, and

protein expression

Escherichia coli BW25113-DibpB strain was obtained from

Nara Institute of Science and Technology in Japan. E. coli

DH5a cells were used for gene manipulation. The recombi-

nant plasmids, expressing wild-type or Bpa variants of IbpB

with a tag of six histidine residues being added at the C ter-

minus, were constructed as described previously [23]. The

pSup-BpaRS-6TRN plasmid, expressing the orthogonal

aminoacyl-tRNA synthetase/tRNA pair for the incorpora-

tion of Bpa into IbpB, was cotransformed with the recombi-

nant plasmid into E. coli DibpB cells. Cells were cultured at

30 °C in the presence of appropriate antibiotics (final

concentrations of 100 lg�mL�1 ampicillin, 50 lg�mL�1

kanamycin, and 50 lg�mL�1 chloramphenicol; Sigma, St

Louis, MO, USA), 1 mM Bpa (Bachem AG, Bubendorf,

Switzerland), and 0.02% arabinose to induce protein expres-

sion.

Chaperone-like activity assay for Bpa variants of

IbpB

The chaperone-like activity of each Bpa variant was mea-

sured to determine its capacity to suppress the heat-induced

aggregation of whole cell extract of E. coli DibpB cells.

Briefly, the E. coli DibpB cells overexpressing each Bpa

variant of IbpB-His6 were cultured overnight at 30 °C.
Cells were harvested by centrifugation, washed twice, and

resuspended in 20 mM Tris/HCl buffer (pH 8.0), lysed by

sonication, and centrifuged at 13 000 g for 30 min at 4 °C
to remove the cell debris. The resultant whole cell extract

was incubated at 50 °C for 1 h. After heat shock treatment,

400 lL cell extract was divided into two parts and 20 lL
was taken from one part as the whole proteins. The other

part was centrifuged at 13 000 g for 30 min at 4 °C; then,
20 lL was taken from the supernatant as the soluble pro-

teins fraction. After discarding all the supernatants, the pel-

let was washed twice and resuspended using 200 lL Tris/

HCl; then, 20 lL was taken as the insoluble proteins frac-

tion. The whole cell extract, soluble proteins, and insoluble

protein aggregates were subjected to 10% Tricine/SDS/

PAGE and Coomassie blue staining analysis. The relative

chaperone-like activity was defined by the percentage of the

soluble protein of the whole cell extract according to the

semiquantification results based on the corresponding Coo-

massie blue staining results. The mean gel density analysis

was measured using IMAGEJ software [26]

Bpa-mediated in vivo photo-crosslinking

The E. coli DibpB cells transformed with pBAD carrying

the gene of IbpB Bpa variant and pSup-BpaRS-6TRN plas-

mid were initially grown at 30 °C to A600 = 0.4; induced by

arabinose for 2 h to express the IbpB variant protein;

washed twice using fresh LB to remove arabinose; incubated

at 50 °C for 10 min; and transferred back to 30 °C for a

prolonged incubation. Cultures were taken out at indicated

time points and immediately transferred to 24-well plate

before being subjected to UV irradiation at 365 nm for

10 min using a Hoefer UVC 500 crosslinker. The cells were

lysed, analyzed by 10% Tricine/SDS/PAGE, and then

immunoblotted with anti-His tag monoclonal antibody.

Semiquantification of relative substrate binding

The relative levels of photo-crosslinked substrates of each

Bpa variant were calculated as the percentage of IbpB
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crosslinked to substrates based on the immunoblotting

results. It should be mentioned that the portion of mono-

meric, dimeric, and trimeric forms of IbpB Bpa variant was

subtracted from the total crosslinked protein products dur-

ing image processing using IMAGEJ software.

Results

Incorporation of the unnatural amino acid Bpa

into the N-terminal arm of IbpB at five selected

individual position

The interaction between IbpB and its substrate pro-

teins in E. coli cells at 30 °C and 50 °C has been inves-

tigated by utilizing genetically incorporated photo-

crosslinker Bpa [23]. Given that the substrate protein

binding of IbpB was shown to be enhanced upon tem-

perature elevation, it is of interest to determine

whether a decrease in growth temperature will rever-

sely weaken such interactions. To address this point,

five individual residue positions (Phe-4, Leu-6, Trp-13,

Ala-20, and Phe-32 as shown in Fig. 1A) from the N-

terminal arm of IbpB were selected for Bpa incorpora-

tion because these IbpB Bpa variants have been shown

to participate primarily in homo-oligomerization at 30
oC and switch to substrate binding at 50 °C [23], mak-

ing it easy to compare the changes in substrate binding

of IbpB when temperature rises from 30 °C to 50 °C
and then falls back to 30 °C. To avoid the interference

of endogenous IbpB, E. coli BW25113-DibpB strain

was used to express the Bpa variants. Besides, these

Bpa variants were all expressed with a tag of six his-

tidine residues being added at the C terminus for the

convenience of western immunoblot analysis. As

displayed in Fig. 1B, the expression of five IbpB vari-

ants cannot be detected unless by the addition of Bpa,

while the expression of wild-type IbpB is independent

of Bpa, confirming the successful incorporation of

unnatural amino acid Bpa into the selected position.

The chaperone-like activity of IbpB is barely

affected by incorporation of Bpa at five selected

individual residue positions

To confirm that the insertion of Bpa at the selected

residue positions does affect the known chaperone

function of IbpB, we first determined the chaperone-

like activity of five Bpa variants of IbpB by measuring

their abilities of suppressing heat-induced aggregation

of the whole cell extract prior to performing in vivo

photo-crosslinking. Wild-type IbpB or its Bpa variants

were overexpressed in E. coli BW25113-DibpB strain

and cultured at 30 °C, and then, the whole cell extract

was isolated and incubated at 50 °C for 1 h. After cen-

trifugation, the soluble proteins and insoluble proteins

were analyzed by Coomassie blue staining. As for

DibpB cells, only about half of the cell extract proteins

remained soluble upon heat treatment (Fig. 2A, Lane

3), while almost all the cell extract proteins were kept

in the soluble state when wild-type IbpB was overex-

pressed (Fig. 2A, lane 6). This probably could be due

to the high level of expression of wild-type IbpB pro-

tein, which protected the cell extract proteins from

aggregation, therefore unable to detect insoluble pro-

teins in the pellet fraction. The protein level of Bpa

variants in the cell extract varied with the Bpa incor-

poration site and is much lower than that of the wild-

Fig. 1. Incorporation of Bpa into the N-terminal arm of IbpB at five selected individual position. (A) The five selected residue positions at the

N-terminal arm (amino acid 1–39) were chosen to incorporate Bpa as indicated by asterisks and underlines. (B) Determination of the

expression of five IbpB Bpa variants in Escherichia coli BW25113-DibpB strain. The IbpB/Bpa variant was induced by arabinose in the

absence/presence of Bpa. IbpB/Bpa variant expression was immunoblotted with anti-His tag monoclonal antibody. The internal control EF-Tu

was immunoblotted with anti-EF-Tu monoclonal antibody.
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type IbpB. However, most of the cell extract proteins

were still maintained in the supernatant fraction

(Fig. 2A, lanes 8, 11, 14, 17, 20). We further compared

the relative chaperone-like activity of the Bap variants

by using semiquantitative analysis. Despite the relative

low level of protein expression, all the Bpa variants

exhibited over 75% chaperone-like activities (Fig. 2B),

indicating that the incorporation of Bpa has a negligi-

ble effect on the molecular chaperone function of

IbpB.

Substrate protein binding of IbpB in living cells

is reversible upon short-time exposure to 50 °C

Given that the chaperone-like activity of IbpB has been

shown to be maximal at 50 °C but almost undetectable

at 30 °C [22], we selected 50 °C as the heat shock

temperature and 30 °C as the recovery temperature.

The E. coli cells expressing IbpB Bpa variants precul-

tured at 30 °C were subjected to heat shock at 50 °C
for 10 min and then transferred back to 30 °C for a

prolonged incubation. The cell cultures were sampled

at different time points (i.e., before heat shock, immedi-

ately after heat shock and 1, 2, 4 h after returning

to 30 °C) and subsequently subjected to photo-

crosslinking analysis. We observed that after experienc-

ing a heat shock treatment, the interaction of the tested

residues Bpa with cellular proteins, as reflected by its

photo-crosslinked products (exception of crosslinked

homo-oligomers), was substantially decreased when

returned to incubation for varying length of time at

30 °C, and this decrease in the in vivo photo-cross-

linked bound proteins showed different patterns, which

is dependent on the locations of the residue.

Fig. 2. Determination of the chaperone-

like activities of IbpB Bpa variants. (A) The

whole cell extract (T) of DibpB cells

expressing his-tagged wild-type or Bpa

variant of IbpB was incubated at 50 °C for

1 h. After that, the supernatant (S) and the

pellet (P) were separated by

centrifugation. The whole cell extract,

supernatant, and pellet for each sample

were then analyzed by Coomassie blue

staining. (B) Semiquantification of relative

chaperone-like activity for the five Bpa

variants of IbpB. The relative chaperone-

like activity was defined by the percentage

of the soluble protein of the whole cell

extract based on the Coomassie blue

staining results from (A). Each experiment

was repeated three times.

Semiquantitative analysis data are

presented as mean � SEM.

Fig. 3. Characterization of the IbpB-substrate interaction in living cells during recovery from heat shock. Escherichia coli DibpB cells were

grown at 30 °C with the presence of 0.02% arabinose to mid-exponential phase, centrifuged at 2504 g for 1 min, resuspended and washed

by fresh LB medium. The obtained cell cultures were exposed to heat shock at 50 °C for 10 min, cooled down on ice for 30 s and returned

to the incubation at 30 °C. The cell cultures were sampled at different time points, i.e. before heat shock, right after heat shock and 1, 2,

and 4 h after returning to 30 °C. All the samples were exposed to UV light irradiation for 10 min, resolved by SDS/PAGE and

immunoblotted by anti-His tag antibody. (A–E) The western blotting analysis of the crosslinking of F4Bpa, L6Bpa, W13Bpa, A20Bpa, and

F32Bpa with cellular proteins and the semiquantification of relative substrate-binding levels for each of the five Bpa variants of IbpB,

respectively. Each experiment was repeated three times. Semiquantitative analysis data are presented as mean � SEM.
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Specifically, the photo-crosslinked products in the

F4Bpa were not decreased during recovery for 1 and

2 hours until 4 hours (Fig. 3A). In contrast, the photo-

crosslinked products of other 4 Bpa variants were grad-

ually decreased at indicated time upon a recovery from

heat shock treatment (Fig. 3B–E). It could be seen that

a 4-h incubation at 30 °C enabled all these five IbpB

Bpa variants to display almost the same crosslinking

profile similar to that of the cells without heat shock.

Besides, it should be mentioned that we have removed

the arabinose after the induction of Bpa variants,

avoiding the interference of newly synthesized variants

in the crosslinking results during the prolonged incuba-

tion at 30 °C. Together, these data suggested that the

substrate protein binding of IbpB in living cells was

reversible upon short-time exposure to 50 °C, which

implied that the substrate proteins bound with IbpB

upon heat shock stress and are released at nonstress

conditions.

Discussion

It has been found that IbpB was able to bind a wide

spectrum of natural substrate proteins at 50 °C in living

cells [23,24]. Although it is believed that the substrate

proteins which are bound to sHSPs would be released

after the heat shock condition is removed, this interac-

tion between sHSPs and their substrates during the

recovery stage has rarely been examined in vivo. Here,

by using Bpa-mediated photo-crosslinking, we charac-

terize the interaction between IbpB and its endogenous

substrates in living cells. Our data suggested that the

substrate protein binding of IbpB in vivo was reversible

upon short-time exposure to 50 °C, providing the evi-

dence that decreasing temperature leads IbpB to gradu-

ally hand off its bound aggregation-prone and partially

unfolded proteins. In vitro study demonstrated that

IbpB-bound proteins were stabilized in a conformation

that can be subsequently released and specifically

refolded by the DnaK-DnaJ-GrpE chaperones [15,16].

However, it remains unknown how does the release of

substrate take place in vivo. Further research needs to

be done to reveal how the ATP-dependent chaperones

participate in this process.

IbpB, or sHSPs in general, function as a robust

molecular chaperone to act upon a large diversity of

substrate proteins in living cells growing under fluctuat-

ing conditions [23,27], therefore making sHSP-substrate

interactions complex, and involving multiple sites on

the sHSP. It has been demonstrated that the substrate-

binding residues of IbpB are located predominantly in

the N-terminal arm [23]. Here, we chose a total of five

IbpB Bpa variants with Bpa incorporated in their N-

terminal arm, to investigate the IbpB-substrate interac-

tion. We found decrease in crosslinked cellular proteins

in all tested IbpB Bpa variants when returned for fur-

ther incubation at 30 °C after 50 °C heat stress. Fu

et al. proposed according to their in vivo photo-

crosslinking data that there are three types of sub-

strate-binding residues in IbpB, classified into types I

and II residues activated at low and normal tempera-

tures, respectively, and type III residue mediated

oligomerization at low temperature but switched to

substrate binding at heat shock temperature [23]. In the

N-terminal arm of IbpB, all these three types of sub-

strate-binding residues are distributed. Here, we did

not choose the type I residues, as they are capable of

mediating substrate binding at 30 °C, that would make

it not convenient to characterize the interaction dynam-

ics of IbpB-substrate from 30 °C to 50 °C, and back to

30 °C. In contrast, four type II residues (Phe-4, Leu-6,

Trp-13, and Ala-20) and one type III residue (Phe-32)

which primarily mediate self-oligomerization at 30 °C
and switch to substrate binding at 50 °C were subjected

to in vivo photo-crosslinking analysis. Our results

showed that, unlike F4Bpa, four other Bpa variants

(L6Bpa, W13Bpa, A20Bpa, and F32Bpa) displayed the

similar pattern in the decrease of photo-crosslinked

bound proteins during the recovery stage. That means

the rate of substrate proteins release of these IbpB Bpa

variants does not depend on the type of the residue

with Bpa incorporated, suggesting that the interaction

dynamics between IbpB and its substrates is compli-

cated. We speculate that the positions of Bpa incorpo-

ration and the properties of bound substrates may be

attributed to the difference in the substrate release rate.

It seems that some substrates remain bound longer on

certain residues of the IbpB N-terminal arm. Since all

the Bpa variants have been checked for function (as

shown in Fig. 2), the complexity of the interaction

between IbpB and its substrates is not due to the effect

of Bpa incorporation.

Furthermore, this is the first study to investigate the

substrate release of sHSPs in living cells by using

photo-crosslinking, which is an effective approach to

obtain very dynamic and even short-lived interactions

that happen in vivo. Our study is of interest in

methodology for investigating the interaction dynamics

between molecular chaperones and their substrates in

living cells.
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