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The most effective way of preventing motor vehicle accidents caused by drowsy driving
is through a better understanding of drowsiness itself. Prior research on the detection
of symptoms of drowsy driving has offered insights on providing drivers with advance
warning of an elevated risk of crash. The present study measured back and sitting
pressures during a simulated driving task under both high and low arousal conditions.
Fluctuation of time series of center of pressure (COP) movement of back and sitting
pressure was observed to possess a fractal property. The fractal dimensions were
calculated to compare the high and low arousal conditions. The results showed that
under low arousal (the drowsiness state) the fractal dimension was significantly lower
than what was calculated with high arousal. Accumulated drowsiness thus contributed
to the loss of self-similarity and unpredictability of time series of back and sitting pressure
measurement. Drowsiness further reduces the complexity of the posture control system
as viewed from back and sitting pressure. Thus, fractal dimension is a necessary and
sufficient condition of a decreased arousal level. It further is a necessary condition for
detecting the interval or point in time with high risk of crash.

Keywords: drowsiness, crash, back pressure, sitting pressure, fractal dimension, nonlinear dynamics, self-
similarity, unpredictability

INTRODUCTION

Three types of measures are used to assess driver drowsiness: Bio-signal-based, vehicle-based
and behavioral measures. Bio-signal-based measures include electroencephalography (EEG), heart
rate variability (HRV) and certain ocular measures, such as pupil diameter, blink frequency
and percentage eye closure (PERCLOS) (Skipper and Wierwillie, 1986; Brookhuis and Waard,
1993; Galley, 1993; Wright and McGown, 2001; Hanowski et al., 2008; Murata and Hiramatsu,
2008; Murata and Nishijima, 2008; Chen and Jin, 2012). Among vehicle-based measures are lane
position, line crossing and steering wheel inputs. Back, foot and sitting pressure are classified as
behavioral measures (Murata et al., 2013; Murata, 2016; Murata and Fukuda, 2016). Behavioral
and vehicle-based measures possess the practical advantage of noninvasive measurement relative
to physiological measurement.

Prior studies have found a correlation between driver-based measures and subjective ratings of
drowsiness. Kurian and Rishikesh (2013) examined changes in electrocardiography (ECG), EEG
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and eye closure with increasing drowsiness. Mehler et al. (2012)
attempted to differentiate multiple levels of cognitive work
demand changes using heart rate and skin conductance. Both
measures were higher as cognitive demand increased. Reimer
et al. (2012) applied eye-gaze concentration to assess a driver’s
cognitive workload. Their study demonstrated greater eye-gaze
concentration as task difficulty increased. Reimer and Mehler
(2011) used heart rate and skin conductance levels to characterize
cognitive workload during actual highway driving. In so doing
they observed a consistent pattern of change in heart rate with
a higher measure of cognitive workload. Murata (2018) applied
Bayesian theory to EEG, heart rate variability (HRV) and tracking
error during a simulated driving task. A proposed method of
evaluating drowsiness revealed increased posterior probability of
drowsiness states toward the end of the experiment.

Other studies have assessed, classified and predicted
drowsiness states (Ji et al., 2004, 2006; Sayed et al., 2012;
Singh and Banga, 2013; Kusuma and Sunitha, 2014; Samiee et al.,
2014). However, no definite or effective methods emerged from
this research for determining when a warning signal should be
presented to the driver. The psychological rating of drowsiness
may be predicted using behavioral and physiological measures
(Murata et al., 2013; Samiee et al., 2014). However, these methods
cannot automatically detect the point in time when high risk of
crash is triggered using a criteria that is based on the decreased
arousal level from a variety of bio-signals and behavioral-signals
that is sensitive to drowsiness.

Murata (2016), Murata and Fukuda (2016), Murata et al.
(2017), and Murata (2018) employed an X-bar control chart or
Bayesian theory in a simulated driving task. In doing so they
succeeded to some extent in identifying the point in time of high
risk of crash before a virtual crash actually occurred. However,
traditional time series analysis techniques such as an X-bar
control chart and a renewal of Bayesian posterior probability have
limitations. For one, they do not consider the nonlinear dynamics
of a complicated biological system. They also fail to provide a
perfect model for identifying the state of high risk of crash.

The approaches taken in Murata (2016), Murata and Fukuda
(2016), Murata et al. (2017), and Murata (2018) require careful
and continuing tracking of changes to identify the high risk point
in time. This aspect of these studies makes it more difficult to
assess accumulated drowsiness. The studies also do not reflect
drowsiness induced over a long period of time, nor can they
globally and simply represent the current state. Lastly, they do
not account for variability in the assessment indices or decrease
in the complexity of the posture control system. The variability
of different behavioral measures makes it difficult to assess
drowsiness and thereby determine the state of high risk of crash.
However, this variability may be expressed appropriately using a
single measure.

The process of falling asleep has been extensively characterized
by stages of sleep (I-IV) (Andreassi, 1980; Grandjean, 1990).
However, its complexity makes it difficult to predict with
complete certainty the onset of drowsy driving. Because
sleep-awakening regulation is among the more complicated
biological systems, it must be directed by nonlinear dynamics
of unpredictability and self-similarity. Until now, nonlinear

dynamics of behavioral measures such as sitting and back
pressure accompanied by accumulated drowsiness had not been
explored. Yet they may provide the insights necessary for
identifying a state of high risk of crash. If used with existing
detection techniques, nonlinear dynamics that change over long
time intervals may enhance the detection technique of point in
time or interval with high risk of crash.

Since its introduction, fractal dimension has been used to
investigate nonlinear dynamics of a variety of biological and
medical phenomena. In particular, fractal dimension was used
to quantify the complexity of dynamic fluctuation of biological
systems. It is well known that nonlinear chaotic dynamics are
ubiquitous in many biological systems, such as EEG, pulsation
in capillary vessels, body sway and HRV (Murata and Iwase,
1998, 2001; Iwase and Murata, 2002, 2004). Rapp et al. (1989),
Arle and Simon (1990), Glenny et al. (1991), Lutzenberger
et al. (1992, 1995), and Murata and Iwase (2001) used fractal
dimension to evaluate cerebral brain activity associated with
changes in cognitive workload. These studies showed that
the unpredictability and self-similarity of the time series of
EEG activities increased with higher mental workload. When
mental workload is higher, EEG activities are directed by a
more complex mechanism. Fractal dimension is one of these
mechanisms. Although a mental task was not used, Liu et al.
(2005) identified the relationship between fractal dimension of
EEG and %MVC (Maximum Voluntary Contraction) (handgrip
force). These findings suggested that fractal dimension is part
of the central nervous system that controls activities such
as mental arithmetic or manual lifting. Fractal dimension is
effective in extracting the information necessary to explore the
central nervous system functions that direct certain mental and
physical activities. Therefore, fractal dimensions should increase
when the brain works more actively except for slept state
(during not stages of sleep but arousal or decreased arousal
state).

Fractal dimension (Mandelbrot and Hudson, 2004) and
self-similarity measure and quantify the complex dynamic
fluctuations in time series signals (West, 2013). The complexity
found in chaos is different. Chaos-related complexity is
determined by a simple equation with only a few dynamic
variables. Chaos, therefore, can be predicted to some extent over
short time intervals. It also can express randomness, including
irregularity and disorder, but only in part. Randomness, in turn,
may be expressed by an infinite number of elements, though only
in an unknown way, not a deterministic one. Fractal dimension
more appropriately reflects the complexity caused by randomness
of time series. Randomness caused by a dynamic system is
uncontrollable and unpredictable. Ordinarily, a dynamic system
having an infinite number of unknown elements disrupts the
system in a random and unknown way. This is what makes
the system’s behavior unpredictable and uncontrollable. But a
dynamic system with a few elements exhibits a deterministic
and simple behavior. This system provides limited predictability
and controllability peculiar to chaos. It is possible that fractal
dimension alone can be used to assess the complexity of
the time series data of COP movement of back or sitting
pressure. Moreover, there are few studies that attempted to assess
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drowsiness using a nonlinear analysis method of postural control
system accompanied by increased drowsiness.

This study hypothesized that nonlinear dynamics, specifically
fractal properties, can be observed in the back and from
sitting pressure while driving. More specifically, different fractal
properties of the back and of sitting pressure are detected between
the low and high arousal conditions. Understanding fractal
dimensions that change over a long period of time may shed light
on the detection of drowsiness while driving.

MATERIALS AND METHODS

Participants
Nineteen healthy male undergraduate students, ages 21–24,
took part in the experiment. The visual acuity of all
participants exceeded 20/20. None reported any orthopedic
or neurological diseases over the last 3 years. Each participant
signed an informed consent for their participation in the
experiment.

Participants were selected after it was confirmed that they
had received no medical treatment, nor experienced any serious
medical conditions over the previous 3 years. They also
were required not to be on a medically-necessary food diet.
The experiment was checked on standard bio-security and
institutional safety procedures and approved by the Ethical
Committee of the Department of Intelligent Mechanical Systems,
Okayama University.

Apparatus
The experimental system consisted of a display of a simulated
driving task and a steering wheel used for the task. The

detailed display of the inside lane was the same as that used
by Murata et al. (2013, 2017). It consisted of three lanes, each
of which was 3.6 m wide. Measurement systems were common
to both sitting and back pressure. Two pressure measurement
sheets (Nitta, SR Soft Vision), each 450 mm × 450 mm, were
attached to both the sitting surface and the back surface of
a seat to measure sitting and back pressure, respectively. The
same apparatus was used to measure the center of pressure
(COP) with a sampling frequency of 5 Hz (The measurement
system sampled COP every 0.2 s). The movement of COP
(movement from n-th COP to (n+1)-th COP) was calculated
every 0.2 s for both back and sitting pressure. Examples of COP
movement for both back and sitting pressure are depicted in
Figure 1. The larger values in the figure show that great body
movement occurred. Time series of COP movement was used
for the fractal dimensional analysis, because chaotic property
of COP fluctuations was pointed out in Murata and Iwase
(1998).

Task
Each participant sat on an automobile seat to perform the
simulated driving task (For more detail, refer to Murata et al.,
2013, 2017). The task required participants to follow a preceding
car while maintaining a moderate distance between the preceding
car and their own car. So long as the participant held the
moderate distance between the two cars, the preceding car would
be surrounded by a green rectangle. However, if the distance
between the two vehicles became too short or too long, the color
of the rectangle would change to a different color (red if the
distance became too short, or blue if the distance grew too long).
Participants also were required to steer their vehicle with the
steering wheel and keep the center of their vehicle to a center line

FIGURE 1 | Samples of COP movement of back (upper) and sitting (lower) pressure during 200 s from the start and during 200 s before the virtual crash (Participant
B).
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(displayed in purple color in the actual experiment) as much as
possible.

Procedure
Participants appeared at the laboratory at 8:00 p.m. They were
required to remain awake there the entire night. The experiment
began at 6:00 a.m. During the sleep deprivation, no one was
permitted to consume caffeinated drinks or exercise excessively.
In addition, screen time – such as interacting with a personal
computer or a smart phone – was limited to less than an hour.
The sleep-wake history of participants was controlled so that they
spent their usual life of sleeping and eating, although actigraph
was not used. The reported sleep duration of participants
ranged from 7 to 9 h (mean: 7.34 h and standard deviation:
0.65 h). They also were required to finish their dinner until they
appear at the laboratory, and were not allowed to eat until the
experiment was over. These conditions were intended to induce
and promote drowsiness or a low state of arousal during the
experiment.

Back pressure was used because it has been observed that
drowsy drivers tend to move forward or backward according to
their accumulated drowsiness. Forward movements produce less
pressure on the backrest of a driver’s seat. Backward movements
exert greater pressure. Although it has been suggested that there
are differences of COP movement of back and sitting pressure
between high and low (sleep-deprived) state (Murata et al., 2013),
it also is pointed out that it is difficult to differentiate the degree
of drowsiness using such measures. As demonstrated in Figure 1,
it is difficult to detect the difference of COP movement between
the first and the second half of measurement of COP movement.
Therefore, the motivation of this study was to further analyze
time series of COP movement of back and sitting pressure using
fractal dimensional analysis to get further insights into how
nonlinear dynamics of postural control system changes with the
change in degree of drowsiness.

The behavioral measures discussed above were recorded
while participants performed the simulated driving task under
a low arousal condition for no more than 60 min. When
60 min had passed, the experimenter terminated the experiment.
As the experiment progressed, the experimenter observed the
degree of drowsiness and the declined behavior. Symptoms of
these conditions included extreme tracking error, suspension of
steering operation and the like. When the experimenter judged
that the participant was nearly falling asleep and unable to
continue the task any further, the experimenter decided on
whether or not to continue the experiment. This decision was
made in accordance with the criterion discussed below for
identifying the point in time of a virtual crash.

The degree of drowsiness varied among the participants. As a
result, the process of drowsiness development and the duration
of the experimental task varied as well. Moreover, for 15 out of
the 19 participants, the experiment terminated before the 60 min
period had passed.

The same procedure was followed, and data recorded, on
a separate day. This second experimental task was carried out
under high arousal and without sleep deprivation. The duration
limit for this task was 20 min.

The point in time of virtual crash was identified on the basis of
the tracking error in the main driving task and the observation of
behavior of participant according to the criteria in Murata et al.
(2017). Two experimenters monitored the participants’ state to
ensure objectivity and consistency in the judgment process. Both
applied two conditions to determine whether a participant would
have encountered a crash with certainty in the real world if he
or she had continued driving. In that event the corresponding
point in time was identified as that of the virtual crash. The two
triggering conditions were: (i) The participant had dozed off for
more than 1 min, and (ii) The mean tracking error per minute
was sustained at more than 1.8 m (half of the lane width) for
30 s. The implication of the second condition was that the virtual
vehicle had substantially deviated from the lane and could not
be judged to be driving normally. If condition (i) was satisfied,
condition (ii) was checked.

Throughout the experiment, the two experimenters observed
the participant using consistent criteria to confirm whether or
not condition (i) was satisfied. The criteria included change in
posture, such as bending forward or backward tilting; steering
wheel movement; and eye closure. The point in time of virtual
crash was certified only when the two experimenters’ judgments
agreed on conditions (i) and (ii). The participant also was
required to agree with the experimenters’ judgment after the
experiment was over. The reason why physiological measures
were not used to identify the point in time of virtual crash is as
follows. The attachment of EEG measurement cap is troublesome
for participants and it is possible enough to identify the point in
time of virtual crash on the basis of the deviation of participant’s
vehicle from the center of the simulated lane and the behavioral
observation of participants by two experimenters.

The fractal dimension of time series of COP movement of
back and sitting pressure was calculated according to the method
described in the next section. The calculation was made for a
1200 s-high arousal period and for the duration of the sleep
deprivation experiment. That meant calculating from the start of
the experiment to the point in time of virtual crash or the end of
the experiment. The duration differed among participants. The
fractal dimension also was calculated 200 s from the start of the
experiment and for 200 s before the virtual crash or end of the
experiment.

FRACTAL DIMENSION

The GP (Grassberger – Procaccia) method (Grassberger and
Procaccia, 1983a,b) was used to calculate fractal dimension of
the time series of back and sitting pressure. The correlation
integral defined by Equation (1) was calculated according to the
procedure below:

Cm(r) = lim
N→∞

1
N2

N∑
i,j=1
i6=j

H(r −
∣∣v(i)− v(j)

∣∣)) (1)

where H is the Heaviside function, and r is the radius of the
m-dimensional sphere, the center of which corresponds to v(i)
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(see Figure 2). The calculation was checked, and then counted
whether (N-1) points v(j) (j = 1,2,. . ...,N, i6=j) other than v(i) is
within the sphere. Ulimately, the correlation integral in Equation
(1) was calculated. If the correlation integral was expressed by the
following equation, then the correlation dimension equaled v(m):

Cm(r) ∝ rv(m) (2)

log10Cm(r) = log10 k0 + v(m) log10 r (3)

If Equation (3) held, then self-similarity held. In that case
the correlation dimension v(m) could be calculated as shown in
Figure 3. Because the genuine correlation dimension is unknown,
the correlation dimension v(m) was calculated as a function of m.
If the time series of the system had self-similarity property, v(m)
saturated with the increase in m. This corresponded to fractal
dimension d. Fractal dimension d must satisfy the following
inequality according to Ruelle (1990):

d ≤ log10 N2 (4)

The value of time lagτ was empirically determined as 0.6 s.

RESULTS

Examples of the relationship between the dimension of phase
space m and the correlation dimension v(m) are plotted in
Figures 4–7. Figures 4–7 correspond to the fractal dimension of
COP movement of back and sitting pressure, respectively. Fractal
dimension was obtained for both back and sitting pressure among
all nineteen participants. As shown in the previous section, v(m)
saturated with the increase in m and satisfied the condition of
Equation (4). Fractal dimension was calculated as a mean of
saturated 5–6 correlation dimensions at higher values of m as
shown in Figures 4–7.

The points in time of virtual crash identified in the experiment
are summarized in Table 1. Table 1 also shows the comparison
of fractal dimension for COP movement of both back and
sitting pressure between high and low (sleep deprivation) arousal

FIGURE 2 | Calculation procedure of correlation integral.

FIGURE 3 | Calculation of correlation dimension.

FIGURE 4 | Relationship between m and correlation dimension v(m) for COP
movement of back pressure (Participant K).

between 200 s after the start of the experiment and 200 s before
the point in time of virtual crash or end of the experiment. For all
of 19 participants, fractal dimension of back and sitting pressure
under the high arousal state was higher than that under the low
arousal (sleep-deprivation) state. The duration of measurement
under the low arousal state differed among participants. The
fractal dimensions also were calculated for the low and high
arousal states during the 20 min task.

The mean fractal dimensions of both sitting and back pressure
are plotted as a function of arousal level in Figure 8. The fractal
dimensions of four participants (A, F, O, and Q in Table 1) for
whom the point in time of virtual crash was not detected also
were included in the data set out in Figure 8. As a result of
the paired t-test, significant differences were detected between
the high and low arousal states for both sitting (t = 8.077,
p < 0.01) and back pressure (t = 6.441, p < 0.01). Fractal
dimension was higher during the high arousal state than during
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FIGURE 5 | Relationship between m and correlation dimension v(m) for COP
movement of back pressure (Participant L).

FIGURE 6 | Relationship between m and correlation dimension v(m) for COP
movement of sitting pressure (Participant M).

FIGURE 7 | Relationship between m and correlation dimension v(m) for COP
movement of sitting pressure (Participant N).

low arousal. Fractal dimension also was calculated during the
sleep deprivation experiment. That calculation included the data
gathered for the periods 200 s after the start of measurements and

200 s before the virtual crash or end of the experiment. The results
are plotted in Figure 9. As for the four participants with a virtual
crash not detected, the data for 200 s immediately before the
end of the experiment were used to calculate fractal dimension.
A paired t-test revealed significant differences between the 200 s
duration after the start of measurements and the 200 s duration
before the virtual crash or the end of the experiment for both
sitting (t = 7.357, p < 0.01) and back pressure (t = 4.105, p < 0.05).
The fractal dimension during 200 s immediately after the start of
measurements was significantly larger than it was during 200 s
before the virtual crash or the end of the experiment.

DISCUSSION

The fluctuation of time series of COP movement of back
and sitting pressure showed a fractal property represented by
self-similarity and unpredictability, because the correlation
dimension saturated at higher values of m as shown in
Figures 3–6. The fractal dimension under low arousal
(drowsiness state) was significantly less than that found
under high arousal (see Figures 8, 9). This strongly suggests
that accumulated drowsiness eliminates self-similarity and
unpredictability of time series of back and sitting pressure.
Moreover, the complexity of the posture control system
decreased when the subject was drowsy.

As shown in Table 1, the point in time of virtual crash
was not identified for four participants (Participant A, F, O,
and Q). Application of an algorithm (Murata et al., 2017) also
prevented detection of the point in time with high risk of crash
for these four participants. These findings do not necessarily
mean that the four participants maintained a high arousal level
during the measurement. For all participants, fractal dimension
of COP movement of back and sitting pressure under the
high arousal state was higher than that under the low arousal
(sleep-deprivation) state (see Figures 8, 9). In fact, their arousal
levels decreased to some extent. These participants simply did
not encounter a virtual crash during the simulated driving
task. As shown in Figure 9, the fractal dimension for these
four participants tended to be significantly lower before the
experiment ended. This suggests that fractal dimension can be a
precursor of a forthcoming high risk of crash, and can be used to
detect decreased arousal level even if the point in time of virtual
crash is not detected. As shown in Figure 1, simply measuring
COP movement does not enable us to detect the decreased state
of arousal level. Thus, as hypothesized, it might be concluded
that the fractal dimensional analysis of COP movement of back
and sitting pressure is promising for the detection of decreased
arousal level. This would be true even for the four participants
who did not encounter a virtual crash during the measurement.

The present study suggests that decreasing fractal dimension
may be a necessary and sufficient condition of a state of
drowsiness. Thus, if a driver is feeling drowsy, the fractal
dimension decreases. Conversely, observing a decrease in fractal
dimension suggests that the driver is experiencing some degree of
drowsiness. Decreasing fractal dimension also may be a necessary
condition for detecting the point in time of virtual crash or high
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TABLE 1 | Results of identification of point in time of virtual crash.

Participant Point of time of virtual crash FD(High arousal) vs. FD(Low arousal) FD(200 s from start) vs. FD(200 s before vc or end)

A No FD(High arousal) > FD(Low arousal) FD(200 s from start) > FD(200 s before end)

B 735 s FD(High arousal) > FD(Low arousal) FD(200 s from start) > FD(200 s before vc)

C 775 s FD(High arousal) > FD(Low arousal) FD(200 s from start) > FD(200 s before vc)

D 1290 s FD(High arousal) > FD(Low arousal) FD(200 s from start) > FD(200 s before vc)

E 807 s FD(High arousal) > FD(Low arousal) FD(200 s from start) > FD(200 s before vc)

F No FD(High arousal) > FD(Low arousal) FD(200 s from start) > FD(200 s before end)

G 817 s FD(High arousal) > FD(Low arousal) FD(200 s from start) > FD(200 s before vc)

H 1987 s FD(High arousal) > FD(Low arousal) FD(200 s from start) > FD(200 s before vc)

I 728 s FD(High arousal) > FD(Low arousal) FD(200 s from start) > FD(200 s before vc)

J 1078 s FD(High arousal) > FD(Low arousal) FD(200 s from start) > FD(200 s before vc)

K 1222 s FD(High arousal) > FD(Low arousal) FD(200 s from start) > FD(200 s before vc)

L 629 s FD(High arousal) > FD(Low arousal) FD(200 s from start) > FD(200 s before vc)

M 978 s FD(High arousal) > FD(Low arousal) FD(200 s from start) > FD(200 s before vc)

N 2076 s FD(High arousal) > FD(Low arousal) FD(200 s from start) > FD(200 s before vc)

O No FD(High arousal) > FD(Low arousal) FD(200 s from start) > FD(200 s before end)

P 525 s FD(High arousal) > FD(Low arousal) FD(200 s from start) > FD(200 s before vc)

Q No FD(High arousal) > FD(Low arousal) FD(200 s from start) > FD(200 s before end)

R 719 s FD(High arousal) > FD(Low arousal) FD(200 s from start) > FD(200 s before vc)

S 312 s FD(High arousal) > FD(Low arousal) FD(200 s from start) > FD(200 s before vc)

FD, fractal dimension (back and sitting pressure); vc, virtual crash.

FIGURE 8 | Fractal dimension of COP movement of sitting and back pressure
compared between high arousal and low arousal (drowsy) state.

risk of virtual crash. However, decreasing fractal dimension does
not necessarily lead to an actual virtual crash; nor is it a sufficient
condition of a virtual crash or high risk of virtual crash. If a virtual
crash occurs or a high risk of virtual crash is detected, then fractal
dimension decreases. Fractal dimension also decreases as arousal
level decreases.

The tendency of fractal dimension to change correspondingly
to arousal level was consistent regardless of the duration of
analysis interval. As shown in Figures 8, 9, similar tendencies
(decrease of fractal dimension under low arousal and drowsiness
states) were observed for the 20 min high arousal and low arousal
intervals. The same findings were made for the interval between
200 s after measurements were started and 200 s before the
virtual crash. Decreased fractal dimension also was consistently
observed during the 200 s immediately before the virtual crash

FIGURE 9 | Fractal dimension of COP movement of sitting and back pressure
compared between high arousal and low arousal (drowsy) state.

and the end of the experiment. Table 1 further validates these
results. These results are indicative of the decreased complexity of
the postural control system under a low arousal state. Although
the decrease of fractal dimension is a necessary condition, it does
not necessarily induce a virtual crash or drowsiness state with a
high risk of crash. It may be that the decrease is attributable to
drowsiness and reflects to some extent the risk of inducing a low
arousal state leading to a crash.

Many studies have verified that fractal dimension increases
when the brain works actively to compensate for high mental or
physical workload (Rapp et al., 1989; Lutzenberger et al., 1992,
1995; Murata and Iwase, 2001; Liu et al., 2005). It therefore
follows that drowsiness occurs when the brain is not working
actively, thus further demonstrating this study’s consistency with
past findings.
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As discussed earlier, fractal dimension (self-similarity and
unpredictability) decreased for four of the participants even
without a detection of virtual crash. However, detecting at least
the appearance of drowsiness still may be a first step toward
detecting the interval or point in time with high risk of crash.
If fractal dimension significantly decreases, we proceed to the
second step for detecting the interval or point in time with high
risk of crash using the method by Murata (2016), Murata and
Fukuda (2016), Murata et al. (2017), and Murata (2018).

The results further verified the hypothesis that nonlinear
dynamics in the time series of back and sitting pressure have a
fractal property. This property is weakened while driving under
a low arousal state. In particular, different nonlinear dynamics of
back and sitting pressure were observed between the low and the
high arousal conditions. The low fractal dimension consistently
manifested itself for time series of both back and sitting pressure.
Fractal dimension’s changes over long time intervals may shed
light on the detection of drowsy driving. It also may enhance our
ability to identify a state with high risk of crash if used together
with the techniques already developed by Murata (2016), Murata
and Fukuda (2016), Murata et al. (2017), and Murata (2018).
Furthermore, a detection of a decrease in fractal dimension over
a fixed interval may reveal the point in time or interval with
high risk of crash using the methods proposed by Murata (2016),
Murata and Fukuda (2016), Murata et al. (2017), and Murata
(2018). The overall result will be increased reliability of detection.

One limitation of this study was the calculation of fractal
dimension using data for at least 200 s. Using a shorter period,
possibly 30 s, would allow both the first step of checking for
drowsiness and the second step of detecting the point in time
of interval with high risk of crash to proceed with greater
frequency. Checking with greater frequency also would enhance
the detection accuracy of the point in time or interval with high
risk of crash.

Future research should combine fractal dimensional analysis
of sitting and back pressure with the detection method for point
in time with high risk of crash. This also should improve the
reliability of the detection method. Future research also should

increase the number of participants and include a variety of
samples other than 21–24 male participants.

CONCLUSION

This study measured sitting and back pressures in a simulated
driving task under high and low arousal conditions. It further
attempted to assess drowsiness on the basis of fractal dimensional
analysis. The results suggested that fluctuations of time series
of COP movement of back and sitting pressure have a fractal
property. The fractal dimension is significantly lower under
a low arousal or drowsy state than it is under high arousal.
Thus, accumulated drowsiness eliminates self-similarity of time
series of back and sitting pressure. Drowsiness also reduces the
complexity of the posture control system. Finally, decreased
fractal dimension is a necessary and sufficient condition of a
decreased arousal level. It further is a necessary condition for
detecting the interval or point in time with high risk of crash.

AUTHOR CONTRIBUTIONS

AM formed a hypothesis and designed this study, planned and
carried out an experiment, analyzed the data and discussed this
with co-authors. IK conducted an experiment, and calculated
fractal dimension, and discussed the results with co-authors. WK
checked the validity of research hypothesis and research plan
with co-authors, and discussed the data from the viewpoints of
safety management. All authors wrote the manuscript and jointly
approved the final manuscript for submission.

FUNDING

This work was partly supported by Grant-in Aids for Scientific
Research (B) (grant number 26282095), Japan Society for the
Promotion of Science (JSPS).

REFERENCES
Andreassi, J. L. (1980). Psychophysiology-Human Behavior and Physiological

Response-. Oxford: Oxford University Press.
Arle, E. J., and Simon, R. H. (1990). An application of fractal dimension to the

detection of transients in the electroencephalogram. Electroencephalogram Clin.
Neurophysiol. 75, 296–305. doi: 10.1016/0013-4694(90)90108-V

Brookhuis, K. A., and Waard, D. (1993). The use of psychophysiology to
assess driver status. Ergonomics 36, 1099–1110. doi: 10.1080/0014013930896
7981

Chen, Q., and Jin, Q. (2012). “Drowsy driver posture, facial, and eye monitoring
methods,” in Handbook of Intelligent Vehicles, Vol. 2, ed. A. Eskandarian
(London: Springer), 915–934.

Galley, N. (1993). The evaluation of the electrooculogram as a psychophysiological
measuring instrument in the driver study of driver behavior. Ergonomics 36,
1063–1070. doi: 10.1080/00140139308967978

Glenny, R. W., Robertson, H. T., Yamashiro, S., and Bassingthwaighte, B. J. (1991).
Application of fractal analysis to physiology. J. Appl. Physiol. 70, 2351–2367.
doi: 10.1152/jappl.1991.70.6.2351

Grandjean, E. (1990). Fitting the Task to the Man. Abingdon: Taylor & Francis.

Grassberger, P., and Procaccia, I. (1983a). Characterization of strange attractors.
Phys. Rev. Lett. 50, 346–349. doi: 10.1103/PhysRevLett.50.346

Grassberger, P., and Procaccia, I. (1983b). Measuring the strangeness of strange
attractors. Physica 9D, 189–208. doi: 10.1016/0167-2789(83)90298-1

Hanowski, R. J., Bowman, D., Alden, A., Wierwille, W. W., and Carroll, R.
(2008). “PERCLOS+: moving beyond single-metric drowsiness monitors,”
In Proceedings of the 15th World Congress on Intelligent Transport Systems,
New York, NY. doi: 10.4271/2008-01-2692

Iwase, H., and Murata, A. (2002). Chaotic Features of Rhythmic Joint Movement.
IEICE Trans. Inform. Syst. E85-D, 1175–1179.

Iwase, H., and Murata, A. (2004). “Chaotic analysis of focal accommodation and
pupil area during the VDT work,” in IEICE Transactions on Information and
Systems, Vol. E87-D, (Tokyo: IEICE), 2258–2261. doi: 10.1109/ICSMC.1999.
825271

Ji, Q., Zhu, Z., and Lan, P. (2004). Real-time nonintrusive monitoring and
prediction of driver fatigue. IEEE Trans. Veh. Technol. 53, 1052–1068.
doi: 10.1109/TVT.2004.830974

Ji, Q., Lan, P., and Looney, C. (2006). A probabilistic framework for modeling
and real-time monitoring human fatigue. IEEE Trans. Sys. Man. Cybern. A Sys.
Hum. 36, 862–875. doi: 10.1109/TSMCA.2005.855922

Frontiers in Psychology | www.frontiersin.org 8 November 2018 | Volume 9 | Article 2362

https://doi.org/10.1016/0013-4694(90)90108-V
https://doi.org/10.1080/00140139308967981
https://doi.org/10.1080/00140139308967981
https://doi.org/10.1080/00140139308967978
https://doi.org/10.1152/jappl.1991.70.6.2351
https://doi.org/10.1103/PhysRevLett.50.346
https://doi.org/10.1016/0167-2789(83)90298-1
https://doi.org/10.4271/2008-01-2692
https://doi.org/10.1109/ICSMC.1999.825271
https://doi.org/10.1109/ICSMC.1999.825271
https://doi.org/10.1109/TVT.2004.830974
https://doi.org/10.1109/TSMCA.2005.855922
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles


fpsyg-09-02362 November 28, 2018 Time: 17:58 # 9

Murata et al. Assessment of Driver’s Drowsiness

Kurian, N. K., and Rishikesh, D. (2013). Real based driver’s safeguard system
by analyzing human physiological signals. Int. J. Eng. Trends Technol.
4, 41–45.

Kusuma, K. B. M., and Sunitha, K. M. (2014). Non intrusive drowsy driver
detection. Int. J. Adv. Trends Comput. Sci. Eng. 3, 32–35.

Liu, J. Z., Yang, Q., Yao, B., Brown, R. W., and Yue, G. H. (2005). Linear correlation
between fractal dimension of EEG signal and handgrip force. Biol. Cybernet. 93,
131–140. doi: 10.1007/s00422-005-0561-3

Lutzenberger, W., Elbert, T., Birbaumer, N., Ray, W. J., and Schupp, H. (1992). The
scalp distribution of the fractal dimension of the EEG and its variation with
mental tasks. Brain Topogr. 5, 27–34. doi: 10.1007/BF01129967

Lutzenberger, W., Preissl, H., and Pulvermuller, F. (1995). Fractal dimension
of electroencepahalographic time series and underlying brain process. Biol.
Cybernet. 73, 477–482. doi: 10.1007/BF00201482

Mandelbrot, B., and Hudson, R. L. (2004). The (mis)Behavior of Market-A Fractal
View of Risk, Ruin, & Reward. New York, NY: Basic Books.

Mehler, B., Reimer, B., and Coughlin, J. F. (2012). Sensitivity of physiological
measures for detecting systematic variations in cognitive demand from a
working memory task: an on road study across three age groups. Hum Factors
54, 396–412. doi: 10.1177/0018720812442086

Murata, A. (2016). Proposal of a method to predict subjective drowsiness using
physiological and behavioral measures. IIEE Trans. Occup. Ergon. Hum. Factors
3, 128–140. doi: 10.1080/21577323.2016.1164765

Murata, A. (2018). Prediction of point in time with high crash risk by integration
of Bayesian estimation of drowsiness, tracking error, and subjective drowsiness.
J. Traffic Transp. Eng. 6, 1–15. doi: 10.17265/2328-2142/2018.01.001

Murata, A., and Fukuda, K. (2016). Development of a method to predict crash risk
using trend analysis of driver behavior changes over time. Traffic Injury Prev.
17, 114–121. doi: 10.1080/15389588.2015.1050720

Murata, A., and Hiramatsu, Y. (2008). “Evaluation of drowsiness by HRV
measures -Basic study for drowsy driver detection,” in Proceedings of IWCIA
(International Workshop on Computer Intelligence & Applications) 2008,
Hiroshima, 99–102.

Murata, A., and Iwase, H. (1998). “Chaotic analysis of body sway,” in Proceedings
of 20th Annual International Conference -IEEE/EMBS, Hong Kong, 1557–1560.
doi: 10.1109/IEMBS.1998.747186

Murata, A., and Iwase, H. (2001). Application of chaotic dynamics in EEG to
assessment of mental workload. IEICE Trans. Inf. Sys. 84-D, 1112–1119.

Murata, A., Koriyama, T., Ohkubo, Y., and Moriwaka, M. (2013). “Verification
of physiological or behavioral evaluation measures suitable for predicting
drivers’ drowsiness,” in Proceedings of SICE(Society of Instrument and Control
Engineers) Annual Conference 2013, Nagoya, 1766–1771.

Murata, A., Naitoh, K., and Karwowski, W. (2017). A Method for predicting the
risk of virtual crashes in a simulated driving task using behavioral and subjective
drowsiness measures. Ergonomics 60, 714–730. doi: 10.1080/00140139.2016.
1223885

Murata, A., and Nishijima, K. (2008). “Evaluation of drowsiness by EEG analysis
-Basic Study on ITS development for the prevention of drowsy driving,” in
Proceedings of IWCIA (International Workshop on Computer Intelligence &
Applications)2008, Hiroshima, 95–98.

Rapp, E. P., Bashore, T. R., Martinerie, J. M., Albano, A. M., Zimmerman, I. D., and
Mees, A. I. (1989). Dynamics of brain electrical activity. Brain Topol. 2, 99–118.
doi: 10.1007/BF01128848

Reimer, B., and Mehler, B. (2011). The impact of cognitive workload on
physiological arousal in young adult drivers: a field study and simulation
validation. Ergonomics 54, 932–942. doi: 10.1080/00140139.2011.604431

Reimer, B., Mehler, B., Wang, Y., and Coughlin, J. F. (2012). A Field study on the
impact of variations in short-term memory demands on driver’s visual attention
and driving performance across three age groups. Hum. Factors 54, 454–468.
doi: 10.1177/0018720812437274

Ruelle, D. (1990). Deterministic chaos: the science and fiction. Proc. R. Soc. Lond.
A 427, 241–248. doi: 10.1098/rspa.1990.0010

Samiee, S., Azadi, S., Kazemi, R., Nahvi, A., and Eichberger, A. (2014). Data fusion
to develop a driver drowsiness detection system with robustness to signal loss.
Sensors 14, 17832–17847. doi: 10.3390/s140917832

Sayed, R. A., Eskandarian, A., and Mortazavi, A. (2012). “Drowsy and fatigued
driver warning, counter measures, and assistance,” in Handbook of Intelligent
Vehicles, Vol. 2, ed. A. Eskandarian (London: Springer), 977–990.

Singh, I., and Banga, V. K. (2013). Development of a drowsiness warning system
using neural network. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2,
3614–3623.

Skipper, J. H., and Wierwillie, W. (1986). Drowsy driver detection using
discrimination analysis. Hum. Factors 28, 527–540. doi: 10.1177/
001872088602800503

West, B. J. (2013). Fractal Physiology and Chaos in Medicine. Hackensack: NJ:
World Scientific. doi: 10.1142/8577

Wright, N., and McGown, A. (2001). Vigilance on the civil flight deck:
incidence of sleepiness and sleep during long-haul flights and associated
changes in physiological parameters. Ergonomics 44, 82–106. doi: 10.1080/
00140130150203893

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Murata, Kita and Karwowski. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with these
terms.

Frontiers in Psychology | www.frontiersin.org 9 November 2018 | Volume 9 | Article 2362

https://doi.org/10.1007/s00422-005-0561-3
https://doi.org/10.1007/BF01129967
https://doi.org/10.1007/BF00201482
https://doi.org/10.1177/0018720812442086
https://doi.org/10.1080/21577323.2016.1164765
https://doi.org/10.17265/2328-2142/2018.01.001
https://doi.org/10.1080/15389588.2015.1050720
https://doi.org/10.1109/IEMBS.1998.747186
https://doi.org/10.1080/00140139.2016.1223885
https://doi.org/10.1080/00140139.2016.1223885
https://doi.org/10.1007/BF01128848
https://doi.org/10.1080/00140139.2011.604431
https://doi.org/10.1177/0018720812437274
https://doi.org/10.1098/rspa.1990.0010
https://doi.org/10.3390/s140917832
https://doi.org/10.1177/001872088602800503
https://doi.org/10.1177/001872088602800503
https://doi.org/10.1142/8577
https://doi.org/10.1080/00140130150203893
https://doi.org/10.1080/00140130150203893
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/psychology#articles

	Assessment of Driver's Drowsiness Based on Fractal Dimensional Analysis of Sitting and Back Pressure Measurements
	Introduction
	Materials and Methods
	Participants
	Apparatus
	Task
	Procedure

	Fractal Dimension
	Results
	Discussion
	Conclusion
	Author Contributions
	Funding
	References


