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Early CD8 T-cell memory precursors and terminal effectors
exhibit equipotent in vivo degranulation

Yevgeniy Yuzefpolskiy, Florian M. Baumann, Vandana Kalia and Surojit Sarkar

Early after priming, effector CD8 T cells are distinguished into memory precursor and short-lived effector cell subsets

(MPECs and SLECs). Here, we delineated a distinct in vivo heterogeneity in killer cell lectin-like receptor G1 (KLRG-1)

expression, which was strongly associated with diverse MPEC and SLEC fates. These in vivo MPECs and SLECs expressed

equivalent levels of cytotoxic molecules and effector cytokines. Using a unique in vivo degranulation assay, we found that

the MPECs and SLECs similarly encountered infected target cells and elaborated equivalent levels of cytotoxicity in vivo.

These data provide direct in vivo evidence that memory-fated cells pass through a robust effector phase. Additionally, the

preferential localization of the MPECs in the lymph nodes, where a lesser degree of cytotoxicity was elaborated, suggests

that the MPECs may be protected from excessive stimulation and terminal differentiation by virtue of their differential

tissue localization. These data provide novel mechanistic insights into the linear decreasing potential model of memory

differentiation.
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INTRODUCTION

During viral infections, naive CD8 T cells rapidly proliferate

and differentiate into effector cells upon receiving optimal T

cell receptor, costimulatory and inflammatory signals.1–4 Once

they mediate pathogen clearance, the majority (90%–95%) of

the effector cells die via apoptosis (referred to as short-lived

effector cells, SLECs) and only a small subset survives (referred

to as memory precursor effector cells, MPECs) to form a pool

of long-lived memory cells. It is now well established that the

precursors of memory cells are generated during the effector

expansion phase, and the identification of distinc-

tive surface markers that preferentially associate with SLEC

or MPEC subsets in early effector cells has seen tremendous

advancements during the last decade.5–9 We and others have

shown that ex vivo heterogeneity in the killer cell lectin-like

receptor G1 (KLRG-1) marks the MPEC and SLEC subsets

during the early stages of T-cell expansion (approximately

day 4 post-infection and onwards) following a viral infection:

KLRG-1int cells represent the MPECs and KLRG-1hi cells

represent the SLEC population.6,9 This clear distinction of

terminal effector and memory fates has enabled further insights

into the mechanisms regulating effector and memory lineage

decisions.

There is considerable interest in the field towards under-

standing the cytotoxic history of the MPEC and SLEC sub-

sets.10 Two models of memory differentiation are currently

prevalent: the linear differentiation model, which posits that

memory cells pass through an effector phase and the divergent

model, which proposes that terminal effector and memory

lineages are distinct and are dictated by distinct instructional

cues.11 Effector CD8 T cells (or cytotoxic T lymphocytes, CTLs)

kill infected target cells when they engage with a cognate pep-

tide–MHC-I complex on the surface of the infected cells.

Targeted cell killing is mediated by the release of cytotoxic

granules (containing effector molecules, such as granzyme B

and perforin)12 from lysosomal compartments of effector CD8

T cells, a process known as degranulation.13 During the process

of degranulation, the lysosomal membrane proteins are tran-

siently translocated to the surface of the CTLs. Hence, the CTLs

that have recently degranulated are marked by the cell surface

expression of lysosome associated membrane protein-1

(LAMP-1) and LAMP-2 proteins.14,15 Degranulation has been
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shown to be a direct measure of killing by CTLs16 and is con-

sidered a more sensitive readout of CTL functioning. Several

studies have measured the cytotoxic capabilities of MPECs and

SLECs ex vivo and have contended that the memory cells pass

through a robust effector state.1,11 In fact, activation of the

effector differentiation program has been linked to CD8 T-cell

priming and proliferation. However, whether MPECs and

SLECs elaborate similar levels of cytotoxicity in vivo remains

to be investigated. Based on the differential anatomical local-

ization of MPECs and SLECs, it is believed that specialized

microniches within tissues may deliver differential signals, such

as IL-2, IL-12, antigens, etc.6,8,9,17–19 and thereby, may imprint

different levels of effector differentiation and memory potential

in these subsets. In this study, we sought to directly compare

the in vivo cytotoxic potential of MPECs and SLECs in their

physiologically relevant, native infected environment.

To accomplish this goal, we used in vivo staining of KLRG-1,

LAMP-1 (CD107a) and LAMP-2 (CD107b) proteins to distin-

guish between MPECs and SLECs in vivo while simultaneously

measuring their degranulation potential during murine infec-

tion with lymphocytic choriomeningitis virus (LCMV). Our

studies showed that KLRG-1 heterogeneity is distinguishable

in vivo in both lymphoid and non-lymphoid tissues and clearly

marks the distinct MPEC and SLEC fates. Importantly, in vivo

degranulation assessments have revealed that MPECs and

SLECs possess similar degranulation potencies and mediate

the antigen-specific release of cytotoxic granules only in the

presence of cognate antigens. Interestingly, lesser degranula-

tion occurred in the lymphoid tissues, where the MPECs pref-

erentially localized, compared to the non-lymphoid tissues.

These studies suggest that MPECs and SLECs differentiate into

cytotoxic effectors similarly in vivo and that the extent of their

cytotoxicity is location-dependent. These findings provide

direct in vivo evidence in support of the linear naı̈ve to effector

to memory differentiation model, with increased stimulation

leading to decreased memory potential.

MATERIALS AND METHODS

Mice

C57BL/6 mice (Thy1.21) were purchased from the Jackson

Laboratory (Bar Harbor, ME, USA). Thy1.11 P14 mice bearing

the DbGP33-specific T cell receptor were fully backcrossed to

the C57BL/6 mice and were maintained in our animal colony.

All of the animals were used in accordance with the University

Institutional Animal Care and Use Committee guidelines.

Virus and infections

The Armstrong strain of LCMV was propagated, titered and

used as previously described.8 The mice were directly infected

with 23105 pfu of LCMV intraperitoneally, and the viral loads

were determined at the indicated times as described previously.8

Antibodies, in vivo KLRG-1 staining and flow cytometry

All of the antibodies were purchased from Biolegend

(San Diego, CA, USA) with the exception of CD107b PE (clone

ABL-93), which was procured from Santa Cruz Biotechnology.

Anti-CD107a PE (clone 1D4B) and CD107b PE antibodies

were used together in the presence of monensin to measure

the in vivo degranulation. For the in vivo staining of KLRG-1

and CD27, 50 mg of each antibody was administered intrave-

nously, and the lymphocytes were isolated from the indicated

tissues 2 h later. The cells were then stained with CD8 and

Thy1.1 antibodies and fixed with paraformaldehyde prior to

the analysis by flow cytometry. For the analysis of the intracel-

lular cytokines, 106 lymphocytes were stimulated with 0.2 mg/

ml of GP33-41 peptide in the presence of brefeldin A for 5 h,

followed by surface staining for CD8 and Ly5.1 and intracel-

lular staining for interferon (IFN)-c, tumor-necrosis factor

(TNF)-a or IL-2. The ex vivo staining of the cells for surface

or intracellular proteins and cytokines was conducted as prev-

iously described.8

For the isolation of day 4.5 MPECs and SLECs, P14 chimeric

mice containing 13105 naı̈ve antigen-specific CD8 T cells were

infected with LCMV. The donor cells were distinguished in the

recipient C57Bl/6 mice by expression of the congenic marker

Thy1.1. The MPECs and SLECs were FACS purified using

KLRG-1 as a distinguishing marker as described previously.9

Following FACS purification, approximately 13106 purified

KLRG-1hi and KLRG-1int CD8 T cells were adoptively trans-

ferred into infection-matched mice and longitudinally fol-

lowed in the blood.

In vivo degranulation assay

To measure the in vivo degranulation of MPECs and SLECs,

C57Bl/6 mice that were infected with LCMV 4.5 or 8 days

previously were injected with 50 mg each of CD107a/b PE (or

the isotype control) and KLRG-1 APC antibodies along with

10 mg of monensin per mouse. One or two hours later, the mice

were killed and stained ex vivo with CD8 and Thy1.1 gating

antibodies. The paraformaldehyde fixed samples were analyzed

with flow cytometry.

Statistical analysis

Paired or unpaired Student’s t-tests (two-tailed) were used as

indicated to evaluate the differences between the sample mean

values. All of the statistical analyses were performed using

Prism 5, and the P values of statistical significance are depicted

by an asterisk according to the Michelin guide scale: *Pf0.05,

**Pf0.01 and ***Pf0.001, and P.0.05 was considered not

significant (ns).

RESULTS

Distinct in vivo heterogeneity in KLRG-1 expression on early

effector CD8 T cells

Effector CD8 T cells exhibit heterogeneity in the expression of

cell surface markers, such as KLRG-1, IL-2Ra and IL-7Ra,

during the activation and expansion phases.5–9 Differential

expression of these proteins has been shown to distinguish

between MPEC and SLEC subsets with divergent memory

and terminal effector fates, respectively. To determine if het-

erogeneity in the expanding effector CD8 T-cell population is

also distinguishable in vivo, we performed an in vivo staining of
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the cell surface markers KLRG-1 (typically associated with ter-

minally differentiated CD8 T cells) and CD27 (typically

expressed at higher levels on activated and memory cells) by

the intravenous administration of fluorescently labeled anti-

bodies (Figure 1) in LCMV-infected mice at 4.75 and 8 days

after infection. Such in vivo delineation of heterogeneity in the

expression of the markers associated with diverse cell fates

would allow for the direct analysis of effector CD8 T-cell sub-

sets in their native environment.

Consistent with previous ex vivo staining data,6,9 we found

that antigen-specific effector CD8 T cells also showed an evid-

ent in vivo heterogeneity in the expression of KLRG-1 during

early (day 4.75) and peak (day 8) expansion in both secondary

lymphoid (spleen and lymph nodes) and non-lymphoid (liver)

tissues. CD27 expression increased after activation and was uni-

formly high on the day 4.75 effectors (Figure 1). However, the

KLRG-1hi effectors expressed lower levels of CD27 at 8 days after

infection. Notably, the balance of KLRG-1int and KLRG-1hi

effectors was distinctive in the lymph nodes, with the majority

of the lymph node-derived effector cells binding lower levels of

anti-KLRG-1 antibodies at both 4.5 and 8 days after infection

(Figure 1). In each tissue analyzed, the proportions of the

KLRG-1int and KLRG-1hi effector subsets were similar using

both in vivo and ex vivo staining methods. Additionally, the

mean fluorescence intensity (MFI) of the KLRG-1 antibody

staining was also largely similar for both subsets in all of the

tissues analyzed (Supplementary Figure 1). These data suggest

that the decreased proportions of KLRG-1hi antigen-specific

CD8 T cells observed in the lymph nodes using in vivo staining

were apparently independent of the confounding issues related

to reduced antibody access in the lymph nodes. Notably, the

KLRG-1int antigen-specific CD8 T cells were enriched in the

lymph nodes at all of the time points analyzed after infection

(Supplementary Figure 2). Together, these data demonstrate an

evident in vivo KLRG-1 heterogeneity in effector CD8 T cells

during the early and late stages of expansion, with the lymph

nodes being distinctly populated with putatively less differen-

tiated KLRG-1int effector cells.

In vivo heterogeneity of KLRG-1 distinguishes memory and

terminal effector fates

A higher KLRG-1 expression level in the direct ex vivo stains

has typically been associated with more terminally differen-

tiated cells, such that the differential expression of KLRG-1

marks the diverse memory and death fates of the effector

CD8 T cells.6,9 We next assessed the fates associated with the

in vivo stained KLRG-1int and KLRG-1hi effector cells. The in

vivo stained effector CD8 T cells were FACS purified at day

4.5 after infection and were adoptively transferred into infec-

tion-matched recipient mice. Infection-matched congeni-

cally distinct mice were employed as recipients to ensure

that the donor cells differentiated in similarly infected envir-

onments from where they were purified. The donor cells

were followed longitudinally in the blood, and the final

numbers were determined at memory. As shown in

Figure 2a, both effector subsets continued to expand to sim-

ilar extents after transfer and increased their numbers by

approximately 10-fold until the peak of the effector res-

ponses. However, following antigen clearance, the KLRG-

1int subset underwent a lesser degree of contraction and

preferentially survived into the memory phase compared to

the KLRG-1hi effectors. Following contraction, the final

numbers of KLRG-1int donor cells were also significantly

higher in all lymphoid and non-lymphoid tissues analyzed

at memory (Figure 2b). At the peak of the donor cell expan-

sion, neither subset of the unstained donor cells had any of

the remaining original KLRG-1 antibody stain that was used

for sorting (data not shown). Thus, the KLRG-1int and

KLRG-1hi donors underwent contraction and began to

exhibit survival differences .5 days after the adoptive

transfer when no detectable cell surface bound antibodies

remained, suggesting that the differences in cell survivability

were likely independent of the differential levels of cell
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surface bound KLRG-1 antibodies used during FACS purifica-

tion. Consistent with ex vivo studies,6,9 these data clearly dem-

onstrate that in vivo effector cell heterogeneity in KLRG-1

expression marks distinct MPEC and SLEC fates.

Similar expression of effector molecules in the in vivo

stained MPECs and SLECs

Having thus devised and validated a method of delineating

MPECs and SLECs in vivo, we next sought to understand the

differentiation paths of MPECs and SLECs in vivo in their

native environment. Memory cells have been proposed to dif-

ferentiate from less differentiated effector cells20,21 or in cases to

even bypass the effector differentiation stage.22,23 To compare

the effector status of the in vivo stained MPECs and SLECs, we

first measured the expression levels of the key effector molecule

granzyme B and the effector cytokines IFN-c and TNF-a. Both

in vivo marked subsets expressed similar levels of the intracel-

lular granzyme B (Figure 2c) directly ex vivo. Notably, MPECs

and SLECs that were purified and stained in vivo also expressed

similar levels of the effector cytokines IFN-c and TNF-a, after
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b

5 10 15 30 35 40 45 50
103

104

105

KLRG-1Int

KLRG-1Hi

***

Days post-adoptive transfer

D
on

or
 C

D
8 

T 
ce

lls
pe

r 1
07  P

B
M

C

Spleen LN Liver
101

102

103

104

105

***

***

**
KLRG-1Int

KLRG-1Hi

Tissues

D
on

or
 c

el
ls

 p
er

 ti
ss

ue

100 101 102 103 104

100 101 102 103 104

100 101 102 103 104

0

50

100

150

0

20

40

60

0

20

40

60

MFI 
16 

MFI 
112 

MFI 
95 

KLRG-1Hi 

KLRG-1Int 

Naive  

Granzyme B  

c 

KLRG-1Int KLRG-1Hi KLRG-1Int KLRG-1Hi0

500

1000

1500

2000

IFN- TNF-

M
FI

 o
f C

yt
ok

in
e

0 102 103 104 105

0
102

103

104

105

8.39

9.11

0
102

103

104

105

0
102

103

104

105

5.45 86.6

4.093.81

0 102 103 104 105

0 102 103 104 105

0.488 0

98.80.732

Day 0 Day 4.75 

LCMVArm 

K
LR

G
-1

 

Isolate  
splenocytes 

CD8 

KLRG-1Hi 

KLRG-1Int 

Analyze survival of adoptively 
transferred sorted cells and ex 

vivo effector properties 

KLRG-1PE 

IV 

2hrs 

Day 4.75 

Adoptively transferred  
106 sorted cells 

100 101 102 103 104
100

101

102

103

104

100 101 102 103 104
100

101

102

103

104

7.31 92.2

0.5020.0186

93.8 5.94

0.0910.215

89.6 4.41

0.3695.63

8.13 82.3

8.830.735IFN
-

KLRG-1 

KLRG-1Hi 

KLRG-1Int 

TN
F-104

3

2

1

0

10

10

10

110 410310210
10

104

3

2

1

0

10

10

10

10

010

110 410310210010

Figure 2 In vivo stained KLRG-1 heterogeneous effectors represent the MPEC and SLEC populations that express similar levels of effector
molecules. At day 4.75 after the LCMV infection, splenocytes were isolated from the P14 chimeric mice that had been stained for KLRG-1 PE in
vivo as described in Figure 1. The CD81 T cells were sorted into KLRG-1int and KLRG-1hi subsets, and approximately 13106 donor cells were
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escence intensity; MPEC, memory precursor effector cell; PBMC, peripheral blood mononuclear cell; SLEC, short-lived effector cell.

Potent in vivo degranulation by MPECs

Y Yuzefpolskiy et al

403

Cellular & Molecular Immunology



5 h of in vitro peptide stimulation, on a per cell basis

(Figure 2d). These data indicate that both MPECs and SLECs

express effector molecules similarly.

MPECs and SLECs degranulate to a similar extent in vivo in

an antigen-dependent manner

To directly assess the in vivo cytotoxic functions of MPECs and

SLECs, we employed a unique in vivo degranulation assay to

measure the extent of cytotoxic granule release by the effector

subsets in their native physiological environment. The assay

involved direct in vivo administration of the KLRG-1 antibody

to distinguish between the MPECs and SLECs, along with

CD107a/b antibodies to determine the extent of degranulation

(Figure 3). Optimal in vivo antibody staining with a good cor-

relation with ex vivo staining required an incubation time of

approximately 1 h for the antibodies to reach dynamic equi-

librium following egress from the vasculature and accessibility

of the target cells. Thus, in vivo degranulation was assessed
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using 1 h and 2 h incubation times. The CD107a/b staining was

only seen when the antibodies were administered in vivo.

Splenocytes isolated without the in vivo staining (isotype con-

trol) of CD107a/b did not exhibit positive staining when

stained for CD107a/b directly ex vivo (Figure 3a). This lack of

CD107a/b staining on the day 4.75 effectors ex vivo in the

absence of restimulation indicated that this assay measures

the degranulation of cells following in vivo antigen stimulation.

Importantly, the level of CD107a/b staining following the in

vivo administration of the antibodies, as assessed by MFI of the

CD107a/b staining, was similar in both the MPECs and SLECs

(Figure 3a). These data demonstrate that there is an equivalent

antigenic encounter and elaboration of cytotoxic function by

MPECs and SLECs in vivo.

To further investigate the role of antigen and to assess the

antigenic encounter history of MPECs and SLECs in our in vivo

degranulation experiments, we compared in vivo CD107a/b

staining on days 4.75 (when the systemic antigen was present)

and 8 after infection (when LCMV was largely cleared from the

system). The extent of the in vivo degranulation was similar in
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Figure 4 Effector CD8 T cells degranulate to a higher extent in non-lymphoid tissues than in lymphoid tissues. The in vivo degranulation of effector
cells was compared at days 4.75 and 8 after LCMV infection in the lymph nodes, PBMCs and the liver. The mice were killed, their tissues were
isolated and antigen-specific CD8 T cells were stained ex vivo for the gating markers CD8 and Thy1.1 at 1 h or 2 h after the in vivo injection of the
CD107a/b and KLRG-1 antibodies. The level of degranulation was assessed using flow cytometry. Representative FACS plots from two independent
experiments are presented. FACS, fluorescence-activated cell sorting; KLRG-1, killer cell lectin-like receptor G1; LCMV, lymphocytic choriome-
ningitis virus; MPEC, memory precursor effector cell; PBMC, peripheral blood mononuclear cell; SLEC, short-lived effector cell.
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the 1 and 2 hour assay times (Figure 3b), indicating the rapid

release of cytotoxic granules following an antigenic encounter

by CTLs so that the maximal level of degranulation was

achieved within 1 h. Notably, the day 4.75 effectors indeed

degranulated more than the day 8 effectors, as determined by

the MFI of the in vivo stained CD107a/b (Figure 3b). These

differences in antigen encounters and CTL function at days

4.75 and 8 post-infection clearly correlated with the differential

viral loads in the spleen (Figure 3c). Thus, the in vivo staining of

CD107a/b in the MPECs and SLECs measures antigen-depen-

dent cytotoxic granule release in the native environment and

reveals evident similarities in their in vivo cytotoxic potential.

CTLs degranulate more in non-lymphoid tissues than in

lymphoid tissues

The data presented in Figures 2 and 3 demonstrate that FACS

purified in vivo stained KLRG-1int and KLRG-1hi antigen-

specific CD8 T cells from the spleen possess diverse fates despite

elaborating similar degranulation in response to antigenic

stimulation in the spleen. Based on (i) the increased preva-

lence of KLRG-1int cells in the lymph nodes (Figure 1 and

Supplementary Figures 1 and 2) at all time-points post-infec-

tion; (ii) the preferential localization of the KLRG-1int donors

in the lymph nodes rather than the KLRG-1hi donor cells

shortly after the adoptive transfer into infection-matched reci-

pients;9 and (iii) previous reports that lymph node-derived

effector CD8 T cells enter the memory pool more readily than

spleen derived effectors,24 we next compared the in vivo degra-

nulation of the MPECs and SLECs in lymph nodes and in

peripheral sites, such as the liver. As observed in splenocytes

(Figure 3), the day 4.75 effectors degranulated more than the

day 8 effectors in all other tissue sites analyzed as well (Figure 4).

Moreover, the degranulation readouts were largely similar at

the 1 and 2 h assay times, as observed previously (Figure 3),

indicating rapid degranulation after stimulation. Surprisingly,

we found an evident difference in the level of effector cell

degranulation in the lymphoid tissues compared to the non-

lymphoid tissues (Figure 4). Both the day 4.75 and 8 effectors

exhibited more degranulation in the liver than in the lymph

nodes. In general, the viral loads in the inguinal lymph nodes

were approximately 10-fold lower than in the liver after intra-

peritoneal acute infection with LCMV at approximately day 4.5

after infection, and all of the tissues were largely cleared of

plaqueable virus at day 8 after infection (Figure 4b). These data

are consistent with the measurable differences in the in vivo

antigenic encounters and degranulation between day 4.5 and

day 8 after infection as well as the lesser degree of degranulation

observed in the inguinal lymph node.

Overall, both MPECs and SLECs exhibited decreased degra-

nulation at day 8 in all of the tissues analyzed. This correlated

with LCMV loads several logs lower at day 8 compared to day

4.75 post-infection (Figure 4c). However, compared to day

4.75, when MPECs and SLECs exhibited similarly potent in

vivo degranulation in all of the tissues analyzed (Figures 3

and 4), MPECs shut down their effector functions more effec-

tively in the inguinal lymph nodes at day 8 post-infection. This

may be related to a more rapid viral clearance from the inguinal

lymph nodes compared to the liver or spleen. Indeed, as shown

in Figure 4b, lower LCMV loads were observed in the inguinal

lymph nodes compared to the liver at day 4.75 after infection.

Nevertheless, measurable degranulation was still observed at day

8 in the liver and in PBMCs (Figure 4c), and MPECs had mod-

estly more degranulation than SLECs. While these differences are

subtle, they are indicative of the continued differentiation of the

KLRG-1int effector cells into more terminally differentiated

KLRG-1hi cells in peripheral sites due to residual antigenic stimu-

lation. Slightly lower levels of degranulation of SLECs may be

related to a possible functional exhaustion of SLECs due to pro-

longed antigenic stimulation in the peripheral sites. Collectively,

these data demonstrate an increased antigenic stimulation in the

peripheral sites, thereby resulting in greater terminal effector

differentiation.

DISCUSSION

Collectively, these data provide strong in vivo evidence of

MPEC and SLEC heterogeneity and direct in vivo proof that

memory cells pass through a potent effector phase in the pres-

ence of antigens. Whether differentiation through an effector

phase is obligatory for the development of memory cells

remains to be determined. Indeed, it has been proposed that

differentiation through an effector phase may result in epige-

netic changes at critical effector gene loci that allow memory

cells to remain in a ‘poised’ state to react swiftly following a

secondary antigenic encounter.

Effector differentiation is closely tied to CD8 T-cell prolif-

eration after priming. Using a unique in vivo degranulation

assay, we showed that MPECs and SLECs encounter antigens

similarly in the spleen and are capable of exerting cytotoxicity

similarly in vivo. Using an in vitro degranulation assay, Wolint

et al.13 have previously reported a progressive increase in

effector CTL degranulation with increasing duration of stimu-

lation with a cognate peptide antigen so that the frequency of

the degranulating cells doubled when the stimulation times

were increased from 1 h to 2 h and reached maximal levels at

approximately 5–6 h. In contrast, we observed rapid in vivo

degranulation with maximal levels within 1 h after stimulation

and with no significant increase in the extent of degranulation

when the assay time was increased to 2 h. This may be related to

a more efficient antigen presentation in vivo, potentially due to

distinct inflammatory stimulation milieu. Moreover, these

data indicate that a 1 h incubation time is sufficient for the

antibodies to egress from the vasculature and to stain the cells

in their microenvironmental niche in the non-lymphoid and

secondary lymphoid tissues. Based on a recent report by

Anderson et al.25,26 stating that perfusion is inefficient at

removing blood-borne lymphocytes from non-lymphoid peri-

pheral organs, such as the lungs, it is possible that in the case of

the liver, our in vivo staining readouts are reflective of both

intravascular and tissue-resident lymphocytes.

Together with tissue localization data, these studies indicate

that despite possessing similar cytotoxic potentials, MPECs exert

less cytotoxicity in vivo by virtue of preferential localization to
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the secondary lymphoid tissues with relatively lower antigen

levels. It is conceivable that memory-fated cells manage to

escape rapid and recurring degranulation in vivo during an

infection and hence emerge as a metabolically fit population

that has conserved its resources to survive long-term. These

conclusions are supported by previous studies proposing that

MPECs shut down their effector functions more rapidly17 and

that lymph node-derived effector cells preferentially enter the

memory pool compared to spleen-derived effector cells.24

Several studies have shown that CD8 T cells that are activated

relatively later during an immune response are less stimulated

and preferentially differentiate into memory cells.1,27–29 In con-

trast, we have shown that a prolonged antigenic stimulation

leads to the generation of KLRG-1hi SLECs.9 Our current find-

ings of the preferential localization of SLECs in non-lymphoid

sites suggest that SLECs putatively mount increased rounds of

killing after continually encountering antigens in peripheral

sites, thereby undergoing terminal differentiation. These find-

ings lend support to the decreasing potential model of memory

differentiation, which posits that the potential of effector cells to

differentiate into memory cells decreases progressively with

increasing antigenic stimulation. Our data suggest that the

increased antigenic stimulation of effector cells in peripheral

sites may be a means of driving terminal effector differentiation:

KLRG-1int effectors may be driven towards a KLRG-1hi termin-

ally differentiated state due to repetitive antigenic encounters in

peripheral sites, such as the liver and lungs, and KLRG-1hi cells

may be driven towards functional exhaustion. These findings

lay the groundwork for more detailed functional, phenotypic

and microarray investigations into the putative functional

exhaustion of KLRG-1hi cells, possibly due to increased anti-

genic encounters and related proliferation during the late stages

of infection. The rapid shutdown of effector functions by

MPECs in the lymph nodes, but the prolonged degranulation

of the KLRG-1int cells at day 8 in the liver further suggests that

the KLRG-1int effector subsets in the liver may be compromised

in their ability to contribute to the long-lived pool of memory

cells compared to the KLRG-1int effector cells in the inguinal

lymph nodes. Thus, by using a unique assay to measure the in

vivo cytotoxicity of MPECs and SLECs, the current study pro-

vides insight into the mechanisms of CD8 T-cell memory dif-

ferentiation. A clear understanding of the in vivo events

regulating effector and memory lineages has a direct bearing

on vaccine-induced immunological memory.
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