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Simple Summary: To explore some of the low-degree but topologically important nodes in the
Metabolic disease (MD) network, we propose a background-corrected betweenness centrality (BC)
and identify 16 novel candidates likely to play a role in MD. MD specific protein–protein interaction
networks (PPINs) were constructed using two known databasesHuman Protein Reference Database
(HPRD) and BioGRID. The identified candidates have been found to play a role in diverse conditions
including co-morbidities of MD, neurological and immune system-related conditions.

Abstract: A large percentage of the global population is currently afflicted by metabolic diseases
(MD), and the incidence is likely to double in the next decades. MD associated co-morbidities such as
non-alcoholic fatty liver disease (NAFLD) and cardiomyopathy contribute significantly to impaired
health. MD are complex, polygenic, with many genes involved in its aetiology. A popular approach
to investigate genetic contributions to disease aetiology is biological network analysis. However, data
dependence introduces a bias (noise, false positives, over-publication) in the outcome. While several
approaches have been proposed to overcome these biases, many of them have constraints, including
data integration issues, dependence on arbitrary parameters, database dependent outcomes, and
computational complexity. Network topology is also a critical factor affecting the outcomes. Here, we
propose a simple, parameter-free method, that takes into account database dependence and network
topology, to identify central genes in the MD network. Among them, we infer novel candidates that
have not yet been annotated as MD genes and show their relevance by highlighting their differential
expression in public datasets and carefully examining the literature. The method contributes to
uncovering connections in the MD mechanisms and highlights several candidates for in-depth study
of their contribution to MD and its co-morbidities.

Keywords: metabolic diseases; co-morbidities; metabolic disease genes; networks; topology

1. Introduction

Metabolism occurs in every cell of the body. It powers all the functions of the body, and
disruption in the normal functioning of metabolism has systemic effects. Metabolic diseases
(MD) consist of a cluster of disturbances—insulin resistance, hypertension, dyslipidemia,
obesity, etc. [1,2], type 2 diabetes (T2D) [3] and are a risk factor for cardiovascular diseases
(CVD) [4]—a leading cause of mortality. MD affect a large population currently and
their incidence is projected to increase. It is a complex condition influenced by several
factors such as genetics, diet, and environment [5]. MD are associated with several co-
morbidities, such as non-alcoholic fatty liver disease (NAFLD), reproductive issues, and
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have been linked to cancer [6,7]. Co-occurrence of co-morbidities brings in the risk of
increased medical complications, increased medicinal and health care costs, and has serious
consequences on life expectancy. Hence, identifying genes particularly involved in such
co-morbidities is of particular interest. While experimental data-driven methods such
as genome-wide association studies (GWAS) have contributed to uncovering the genetic
landscape of MD, these studies are expensive, require a large sample size, and often do not
detect low-frequency mutations [8]. Neither do these allow for any mechanistic insights.

Computational analysis of networks offers another approach to understand the mech-
anism of diseases, highlighting potential candidates that could be prioritized for wet-lab
validation. This work has been put forward as a promising way to study metabolic diseases
from a system-level point of view [9–17]. The MD network has been explored in several
previous studies. Among these, Li et al. investigated the relationships between human
diseases and specific sub-groups of metabolic pathways to discover disease-metabolic
sub-pathway [10]. Lee et al. and Goh et al. took advantage of network medicine to study
both—the network of MD-related molecules, as well as the network of MD [9,15]. Recently,
Lotta et al. carried out a two-stage meta-analysis to study metabolic health and then
predicted its relevance to T2D [18]. Though previous works have successfully paved the
way to the study of specific metabolic diseases, a comprehensive analysis of MD and their
interactions remains challenging.

Several approaches for prioritization of gene candidates have been described in the
literature to narrow down likely candidate genes. In general, these methods used the
topology of protein–protein interaction networks (PPINs) together with various other data
types to retrieve a measure of the importance of different genes or gene products in the
regulation of the disease of interest [19]. Several methods are cancer-specific, often require
quantitative patient data as inputs [20], while other methods require manual setting of
parameters [21]. Data integration is a challenge since disparate sources have variations in
gene names, data quality, etc. A recent review [19] has summarised the approaches and
tools developed in the field.

To uncover novel disease-related genes, proximity to known disease genes is the
basis for several methods [22]. One family of measures used to identify pivotal nodes
in networks are centrality measures [23]. Betweenness centrality (BC) has been used to
identify the nodes that are crucial for the flow of communication in the network [24], linking
different parts of the network together. It is one of the most frequently applied measures
in the literature [25]. Since networks have modules that tend to contribute towards a
specific function [26] and nodes with high BC act as facilitators of interactions between
such clusters, these central nodes could explain disease-associated co-morbidities. MD
are particularly suited for analysis using this metric since several co-morbidities are seen,
which, from a PPIN perspective, indicate nodes (proteins) that are likely to participate in
multiple conditions, connecting different functional modules.

However, relying on centrality measures induces two types of bias. Firstly, biological
data is noisy, incomplete, and includes false positives [27]. Secondly, some of the genes
have been extensively studied, resulting in a literature bias towards them. The specific
contribution of these heavily studied nodes to the disease in question needs to be de-
termined. While the products of these genes play pivotal roles in many processes, their
importance in specific mechanisms is often unclear. In other words, highly-connected
genes will appear as important (high BC) for most subnetworks they are part of. The
combination of these two biases attributes inflated importance to a small number of nodes
and neglects low-degree, understudied genes that may be central to specific biological
processes. The present study is interested in highlighting such nodes that may offer novel
insights into disease mechanisms of co-morbid conditions of MD. Several methods have
been proposed to address literature bias that results in degree dependence in such analyses.
Erten et al. [21] propose several statistical approaches for addressing this bias. While this
may increase the reliability of the outcomes, the method requires several inputs, and its
applicability and usability may be restricted. Some of the prioritization methods integrate
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a host of data and require only gene-seed list input, such as ToppGene [28]. This method is
restricted, for the gene prioritization method, to three options, and has limited applicability
to investigate other topological metrics. While Biran et.al [29] propose a similar method as
does this work, the reference networks generated by switching the edges from the original
PPIN may not be biologically relevant.

The proposed method herein uses background-corrected BC as a measure, to analyze
two PPINs. We used frequency of appearance in random networks, as well as the difference
between centralities in MD and random networks as a two-pronged approach, identifying
several significant genes that may be involved in MD associated co-morbidities. In this
way, we ensure that the analysis draws attention to topologically crucial but lower-degree
nodes involved in MD. Without this background correction, higher-degree nodes dominate
the list of genes based on the raw BC centrality score. These are invariably genes that have
been most frequently studied, and thus a literature bias has been introduced. The low-
degree, topologically strategic genes identified would be good candidates for expanding
the MD genes repertoire. We identified 16 novel genes shared by the two PPINs that
show strong potential as MD genes. Pathway analysis and differential gene analysis of the
identified significant genes highlights their pleiotropic roles in metabolic, immune, and
central nervous systems.

2. Results
2.1. Identification of Novel Putative MD Genes

The increasing incidence of MD and its related co-morbidities have become a pub-
lic health hazard worldwide. We developed a pipeline to identify genes that show a
distinct contribution to the MD network and its co-morbidities, using BC as a metric
to analyze the MD network (Figure 1), to correct for biases inherent in the data. We
constructed an MD specific network, using the disease genes data from Comparative
Toxicogenomics Database [30] (CTD), and mapping it to the two PPINs—Human Protein
Reference Database [31] (HPRD), and BioGRID [32]. We chose to include four categories of
metabolism-related disease areas—metabolic diseases, liver diseases, overnutrition, and un-
dernutrition, bearing in mind the systemic nature of metabolism (Supplementary Table S1).
The BC values in the MD network constructed using these seed genes were compared
to those in degree-distribution adjusted and topologically comparable random networks.
Statistical significance was assigned to each node based on this relative BC value. Degree
bias is clearly seen in the correlation of the raw BC with the degree of the gene results
(Figure 2a,b). While some of the high-degree genes may be involved in MD, their high
connectivity indicates their interactions with different molecules, and thus, perhaps, di-
verse physiological roles. For their MD-specific contribution, we compared the centrality
of the gene in the MD network to its centrality in random networks. Background-corrected
BC-based ranking (Figure 2c,d) shows a more uniform degree distribution. A gene with
a low p-value indicates a higher centrality in the MD network as compared to random
networks. Thus, a gene with a low degree but strategically positioned in the MD network
is likely to be identified by this approach (Supplementary Table S2).
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Figure 1. Graphical outline of the method; (a) outline of the proposed method; Comparative Toxi-
cogenomics Database (CTD) and two protein–protein interaction (PPI) networks (Human Protein 
Reference Database (HPRD) and BioGRID) were used to build an metabolic diseases (MD)-specific 
network. To correct for degree bias, random networks were constructed using similar degree dis-
tribution as in the original MD network. On obtaining the centrality scores in the MD network and 
random networks, significance testing was carried out to assign p-values to the nodes. Nodes that 
showed significantly different centralities between the MD and random networks were subjected 
to a Pathway analysis. The novel genes identified were subjected to differential gene expression 
analysis. (b) MD specific network construction: 1. PPI giant component, 2. map-known MD genes 
onto PPI, 3.sselect first neighbors, 4. select interactions between first neighbors (if exist), 5. Remove 
single degree peripheral nodes (except MD), 6. centrality analysis of the network. Random net-
works for comparison were built using the same procedure, except, instead of the MD nodes from 
CTD, nodes were selected randomly from the PPI networks. The degree distribution of MD nodes 
in the MD-specific network was mimicked in the random networks. 

Figure 1. Graphical outline of the method; (a) outline of the proposed method; Comparative Toxi-
cogenomics Database (CTD) and two protein–protein interaction (PPI) networks (Human Protein
Reference Database (HPRD) and BioGRID) were used to build an metabolic diseases (MD)-specific
network. To correct for degree bias, random networks were constructed using similar degree distri-
bution as in the original MD network. On obtaining the centrality scores in the MD network and
random networks, significance testing was carried out to assign p-values to the nodes. Nodes that
showed significantly different centralities between the MD and random networks were subjected
to a Pathway analysis. The novel genes identified were subjected to differential gene expression
analysis. (b) MD specific network construction: 1. PPI giant component, 2. map-known MD genes
onto PPI, 3.sselect first neighbors, 4. select interactions between first neighbors (if exist), 5. Remove
single degree peripheral nodes (except MD), 6. centrality analysis of the network. Random networks
for comparison were built using the same procedure, except, instead of the MD nodes from CTD,
nodes were selected randomly from the PPI networks. The degree distribution of MD nodes in the
MD-specific network was mimicked in the random networks.
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and (b), the highest-ranking nodes in the MD network are some of the highest degree nodes in the 
PPI network. In the background-corrected networks (c,d), we find a more uniform distribution of 
the ranking vis-à-vis the corresponding degree of the node. Some of the highly ranked nodes have 
degrees lower than 50. However, highly connected genes are also seen to be present in the top-
ranking genes, which indicates that their contribution to the MD network is significant. Thus, the 
method allows for highlighting both low-degree and high-degree nodes in the top-ranking genes, 
which was not the case when only uncorrected betweenness centrality was used. 

To retrieve the most promising hits, we focused on the genes predicted by analyzing 
two different PPINs. Our method identified 602 and 288 genes with a corrected p-value < 
0.05 for HPRD (Supplementary Table S3) and BioGRID (Supplementary Table S4), respec-
tively, of which 39 genes were common. The genes found to be significant show a variety 
of centrality distributions (Figure 3), justifying the need to use non-parametric testing. 
These distinct distributions are most likely due to the scale-free nature of biological net-
works. In the case of highly connected genes such as EGFR, a variety of network configu-
rations are possible, resulting in a normal distribution of centrality values. For smaller 
degree nodes, centrality values tend to be within specific intervals.  

Figure 2. Correction of degree bias; Rank of top 1000 genes in HPRD (top) and BioGRID (bottom)
based on (a,b): Betweenness centrality with no background correction and (c,d): p values. In (a)
and (b), the highest-ranking nodes in the MD network are some of the highest degree nodes in
the PPI network. In the background-corrected networks (c,d), we find a more uniform distribution
of the ranking vis-à-vis the corresponding degree of the node. Some of the highly ranked nodes
have degrees lower than 50. However, highly connected genes are also seen to be present in the
top-ranking genes, which indicates that their contribution to the MD network is significant. Thus,
the method allows for highlighting both low-degree and high-degree nodes in the top-ranking genes,
which was not the case when only uncorrected betweenness centrality was used.

To retrieve the most promising hits, we focused on the genes predicted by analyz-
ing two different PPINs. Our method identified 602 and 288 genes with a corrected
p-value < 0.05 for HPRD (Supplementary Table S3) and BioGRID (Supplementary Table S4),
respectively, of which 39 genes were common. The genes found to be significant show
a variety of centrality distributions (Figure 3), justifying the need to use non-parametric
testing. These distinct distributions are most likely due to the scale-free nature of biological
networks. In the case of highly connected genes such as EGFR, a variety of network config-
urations are possible, resulting in a normal distribution of centrality values. For smaller
degree nodes, centrality values tend to be within specific intervals.
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ALOX5; (G,H): PTPN11. MD centrality scores are the betweenness centrality values of these genes in the MD network. 
The black arrows indicate the MD centralities for the genes. All of the genes are significant in both the PPI networks (based 
on raw p values). For these genes, their centrality scores in random networks are rarely higher than their corresponding 
centrality in the MD network and hence have low p values. 

Because our method is designed to retrieve those genes that have a discrepancy be-
tween their expected centrality and their MD-specific centrality, highly connected genes 
may be penalized. For example, TP53 is a known MD gene and has very high connectivity. 
However, its MD-specific centrality is comparable to its centrality in random networks (p-
value 0.512 in HPRD, 0.407 in BioGRID), and thus assigned low priority by this method. 
This does not prevent high-degree nodes with high MD specific centrality from being 
highlighted, such as EGFR. EGFR is a highly connected gene in both PPINs, which also 
has significant MD-specific centrality in both (p-value: 0.0465 in HPRD, 0.0002 in Bi-
oGRID). 

Out of the 602 significant genes in HPRD, 286 genes were part of the original seed 
list. Similarly, for BioGRID, 125 ones had been previously identified. Thus, 316 novel 
genes were identified in HPRD and 163 novel genes in BioGRID. The overlap yielded 16 
novel candidates that are likely to be MD genes (Table 1). Some of the genes show extreme 
differences in their centrality values in the two networks. Prima facie, based on the num-
ber of interactions, the difference between HPRD (38,651 interactions) and BioGRID 
(42,666 interactions) is not notable. However, the two PPINs have only 11,047 interactions 
common between them. Therefore, given the low overlap, and thus, distinct interactions 
in the two networks, the overlapping 16 nodes—flagged as significant in both the net-
works—are likely to be robust candidates (See Supplementary Table S5 for details on 
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Symbol Name 
ALOX5 arachidonate 5-lipoxygenase 

Figure 3. Centrality distributions of some genes in HPRD (top) and BioGRID (bottom); (A,B): EGFR; (C,D); BATF; (E,F):
ALOX5; (G,H): PTPN11. MD centrality scores are the betweenness centrality values of these genes in the MD network. The
black arrows indicate the MD centralities for the genes. All of the genes are significant in both the PPI networks (based
on raw p values). For these genes, their centrality scores in random networks are rarely higher than their corresponding
centrality in the MD network and hence have low p values.

Because our method is designed to retrieve those genes that have a discrepancy
between their expected centrality and their MD-specific centrality, highly connected genes
may be penalized. For example, TP53 is a known MD gene and has very high connectivity.
However, its MD-specific centrality is comparable to its centrality in random networks
(p-value 0.512 in HPRD, 0.407 in BioGRID), and thus assigned low priority by this method.
This does not prevent high-degree nodes with high MD specific centrality from being
highlighted, such as EGFR. EGFR is a highly connected gene in both PPINs, which also has
significant MD-specific centrality in both (p-value: 0.0465 in HPRD, 0.0002 in BioGRID).

Out of the 602 significant genes in HPRD, 286 genes were part of the original seed
list. Similarly, for BioGRID, 125 ones had been previously identified. Thus, 316 novel
genes were identified in HPRD and 163 novel genes in BioGRID. The overlap yielded
16 novel candidates that are likely to be MD genes (Table 1). Some of the genes show
extreme differences in their centrality values in the two networks. Prima facie, based on the
number of interactions, the difference between HPRD (38,651 interactions) and BioGRID
(42,666 interactions) is not notable. However, the two PPINs have only 11,047 interactions
common between them. Therefore, given the low overlap, and thus, distinct interactions in
the two networks, the overlapping 16 nodes—flagged as significant in both the networks—
are likely to be robust candidates (See Supplementary Table S5 for details on PPIN size,
hypergeometric test).
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Table 1. Novel candidates identified in the study; list of 16 novel genes found to be significant in
both HPRD and BioGRID PPINs.

Symbol Name

ALOX5 arachidonate 5-lipoxygenase
BATF basic leucine zipper transcription factor, ATF-like

BNIPL BCL2/adenovirus E1B 19kD interacting protein-like
DUSP22 dual specificity phosphatase 22
FBLN5 fibulin 5
GPC1 glypican 1
IL5RA interleukin 5 receptor, alpha
OPRK1 opioid receptor, kappa 1
PLSCR3 phospholipid scramblase 3
PMPCB peptidase (mitochondrial processing) beta
PTPN11 protein tyrosine phosphatase, non-receptor type 11
RNF128 ring finger protein 128, E3 ubiquitin protein ligase
S100A7 S100 calcium-binding protein A7
SNCG synuclein, gamma (breast cancer-specific protein 1)
STIM2 stromal interaction molecule 2
TFE3 transcription factor binding to IGHM enhancer 3

2.2. Pathway Analysis

To examine the physiological context of the genes found to be significant in both the
networks, the gene sets were analyzed to highlight the significant pathways these genes
contributed towards. Pathway analysis for the two PPINs, performed using the two tools
(Enrichr [33] and ConsensusPathDB [34]), shows convergence in some key pathways such
as PI3K/Akt, JAK/STAT, and AGE-RAGE signaling pathway in diabetic complications.
Some others of particular interest are the neurotrophic signaling pathway, FoxO signaling
pathway. Despite the differences in the number of significant genes for the two PPINs,
several of the pathways they were implicated in belong to the same broad category, such as
hormone signalling, or pathways related to the immune system (Supplementary Table S6).
The complete set of pathway analysis results can be found in the supplementary data
(Supplementary Tables S7 and S8).

2.3. Differential Expression Analysis

To examine the disease context/contribution of the 16 novel candidates, we looked
at the differential expression of these candidates using Harmonizome [35]. This resource
lists and provides links to, among others, the Gene Expression Omnibus (GEO) datasets
that show, for the gene of interest, if it is found to be differentially expressed in different
disease conditions. All of the 16 candidates were found to be differentially expressed
across diverse conditions (Table 2, Supplementary Table S9). ALOX5 has been seen to
be up-regulated in Down Syndrome, severe combined immunodeficiency (SCID), among
others, and down-regulated in atherosclerosis. BATF is differentially expressed in MS
(Multiple Sclerosis), diabetic nephropathy, cardiac hypertrophy, etc. PLSCR3 is seen to be
associated with, among others, atherosclerosis, cardiomyopathy, myocardial Infarction,
and bipolar disorder. Similarly, the other genes also showed differential expression in
a host of other diseases. These genes are involved in diseases that can be grouped into
three general categories: MD and co-morbidities, immune system conditions, and neuro-
logical disorders. For example, IL5RA is involved in cardiac failure, familial combined
hyperlipidemia, and juvenile arthritis, and also Down Syndrome. While primary, familial
hyperlipidemia is a hereditary condition, secondary hyperlipidemia has been linked to
diabetes, among its causes. Arthritis is an autoimmune disorder. Down Syndrome is
caused by chromosomal aberrations (inheriting an extra chromosome 21). Hampered
neurological development along with other physical manifestations seen in such patients.
The pathway analysis highlighting neurological developmental pathways, along with
other neurodegenerative disease-related pathways, combined with changed expression of
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these genes in such conditions, indicate that these genes are involved in the functioning of
neurodevelopmental/neurodegenerative conditions, along with the immune system and
the metabolic system.

Table 2. Differential gene expression analysis; some of the significant genes and their differential expression in different
conditions based on Gene Expression Omnibus (GEO) datasets. The complete table is available in supplementary files.

Gene Upregulation Downregulation

ALOX5
Senescence, Rotavirus infection of children, Down Syndrome,
Neurological pain disorder, Severe combined
immunodeficiency (SCID)

Macular degeneration, Human
immunodeficiency virus infection (HIV),
Atherosclerosis

BATF
Glaucoma, Human immunodeficiency virus infection (HIV),
Appendicitis, Oligodendroglioma, Multiple Sclerosis (MS), Severe
acute respiratory syndrome (SARS), Diabetic Nephropathy

Chronic obstructive pulmonary disease (COPD),
Cardiac Hypertrophy, Scleroderma, Retinoschisis

IL5RA Cardiac Failure, Pauciarticular juvenile arthritis Down Syndrome, Lung Injury, Familial
combined hyperlipidaemia

PLSCR3 Erectile dysfunction, Breast Cancer, Bipolar Disorder, Appendicitis,
Papillary Carcinoma of the Thyroid, Bipolar Disorder

Atherosclerosis, Cardiomyopathy,
Myocardial Infarction

S100A7 Type 2 diabetes mellitus, Post-traumatic stress disorder
(PTSD), Eczema -

We believe these genes to be potential candidates for further study for their roles in
MD and related co-morbidities.

3. Discussion

In the present study, we investigated to what extent the topological connectivity of MD
associated gene networks is related to specific biological pathways and the co-occurrence of
human MD. The genes with high BC likely play a crucial role in MD and its co-morbidities.
MD has been linked to numerous co-morbidities such as cancers, psychiatric disturbances,
psoriasis, auto-immune diseases such as lupus, mental disorders such as depression and
schizophrenia, and several others [6,36–39]. Thus, a study of such genes is likely to yield
better insights into the development and progress of MD related conditions.

Literature references for the 16 novel genes identified in this study were used to
ascertain the validity of these genes as potential MD genes. Several of these genes are
involved in multiple physiological processes, as envisioned by the use of BC. ALOX5
(Figures S1 and S2) shows a significant relative change in BC for both HPRD (Relative
betweenness (MD centrality/Random network centrality) 3.95) and BioGRID (Relative
betweenness 3.71). ALOX5 (Arachidonate 5-Lipoxygenase) encodes a member of the
lipoxygenase gene family. ALOX5 is involved in the synthesis of leukotrienes from arachi-
donic acid, which are important immune mediators, and participate in several allergic and
inflammatory responses. ALOX5 also plays a role in several cancers [40,41]. CTD associa-
tions of ALOX5 include asthma, atherosclerosis, insulin resistance, Alzheimer’s disease
(AD), neurodegenerative diseases, dyslipidemias. Genetic Associations Database (GAD)
associates ALOX5 with blood pressure, T2D, atherosclerosis, and AD. Gene Ontology (GO)
biological processes associated include lipid metabolism and arachidonic acid metabolite
production involved in an inflammatory response. Among ALOX5′s interacting partners,
ALOX5AP, COTL1, and LCT4S have been identified as MD genes. Thus, ALOX5 has a
strong potential as an MD candidate, and further investigation can be illuminating.

S100 Calcium Binding Protein A7 (S100A7, Figure 4), a member of the S100 family
of proteins, has been found to be involved in various immune-system activities such as
IL-17 signaling pathway, neutrophil degranulation, and chemotaxis [42]. This family plays
a role in several processes, e.g., differentiation, cell cycle progression, cytoskeleton mem-
brane interactions, intracellular calcium signaling, and cytoskeletal membrane interactions.
Associated GO biological processes are immune response, response to stress and reactive
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oxygen species, regulation of cellular metabolites, and regulation of metabolism. CTD
associates S100A7 with psoriasis, drug-induced liver injury, nervous system malformation,
inflammation, and congenital heart defects. Increased expression of this gene, in the context
of cancer, is associated with angiogenesis, increased tumor growth, and an increase in
metastasis. Its interacting partners, FABP5, COPS5, and TGM2 are known MD genes.Biology 2021, 10, x FOR PEER REVIEW 10 of 17 
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Figure 4. Example of significant gene S100A7 in: (a) HPRD and (b) BioGRID; In both the networks,
S100A7 is connected to known MD genes. In HPRD, it connects some high-degree nodes such as
EGFR. In BioGRID, it connects two clusters that have some important, known MD genes. The presence
of APP here is notable since pathway analysis for these significant genes highlights Alzheimer’s
disease. (Visualization: Gephi).
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Some of the common pathways highlighted by significant genes from the two PPINs
show that these genes are involved in several important pathways crucial to metabolism.
Dysregulation of the PI3K/Akt pathway is implicated in several diseases and accumulating
evidence indicates that deregulation of the phosphatidylinositol 3-kinase (PI3K)/AKT path-
way in hepatocytes is a common molecular event associated with metabolic dysfunctions
including obesity, MD, and the non-alcoholic fatty liver disease (NAFLD) [43]. Our study
also points to the role of inflammation and immune response in metabolic disorders, with
the involvement of several interleukin and cytokine signaling pathways. Immune response
and regulation of metabolism are highly integrated processes; dysfunction of which can
lead to a cluster of chronic metabolic disorders [44]. Several studies point to the activation
of the immune system due to a low-grade inflammation as a player in the pathogenesis
of obesity-related insulin resistance and T2D [44–47]. An innate immune response can
be activated during the development of the disease by dietary factors and endogenous
damage-associated signals [48,49].

The FOXO family of transcription factors(TFs) have been linked to aging, cancer, and
neurological diseases [50]. Some of the first identified targets of FOXO were metabolism
and stress-resistance genes. FOXO is phosphorylated due to the activation of the PI3K-
AKT pathway, due to the presence of insulin and insulin-like growth factor (IGF). These
inhibit its activity, while conversely, in the absence of these factors, FOXO play their role of
transcription.

Several pathways associated with neurodegenerative disorders (AD, Parkinson’s
disease, and Huntington’s) were highlighted by the two different gene-sets from the two
PPINs. Of particular interest is the AD pathway. For HPRD, the pathway is highlighted due
to the presence of the genes APP, APAF1, LRP1, ITPR2, ATP2A2, ITPR3, ERN1, ATP5F1B,
IL1B, UQCRC1, MAPK1, NDUFV2, and MAPK3, while for BioGRID, the presence of
ATP5F1A, NDUFS6, COX4I1, NDUFS5, UQCRC2, APOE, PLCB1, ATP5F1C are responsible
for highlighting Alzheimer’s. It is worth noting that the two different datasets yield
different genes, but converge onto the same significant pathway. There is a significant
correlation between the pathway analysis results yielded by the two PPINs (Figure 5).
Research efforts have shown that factors like dyslipidemia, hyperglycemia, hypertension
and obesity are parameters of the metabolic syndrome, but are at the same time, also risk
factors for cognitive decline, i.e., represent a risk constellation for AD. Both AD and T2D
share certain signs of dysfunctional mitochondria, which may lead to increased oxidative
stress in the cells [51]. Insulin signaling has shown to be involved in protein tau processing,
and human amylin, a beta cell peptide, has similarities to amyloid present in plaques
in AD [46,52]. In particular, insulin resistance and T2D are major risk factors for the
development of AD. Another line of similarities between AD and MD has been attributed
to low-grade chronic inflammation in these conditions. Subclinical inflammation in the
adipose tissue might provide an inflammatory stimulus towards central inflammatory
regulation leading to neurodegeneration [53]. As several efforts to find effective therapies
for AD have failed in the previous years, an alternate therapeutic strategy involving
metabolic disease genes could be investigated. Recent studies have proposed repurposing
T2D drugs for Alzheimer’s [54,55].

The pleiotropic nature of the 16 significant genes can be seen to be reflected in the
analysis of their differential expression results. All of these genes show involvement
in 3 types of disorders: ones related to CVD, immune system affecting disorders, and
disorders related to the nervous system. For example, the gene TFE3 is implicated in HIV
encephalitis. HIV is caused by an infection and is jointly classified under Infections and
Immune System Diseases in MeSH. HIV encephalitis is the cognitive impairment due to
HIV—a neurocognitive disorder. This gene is also implicated in polycystic ovary syndrome
(PCOS), which is characterized, among others, by insulin resistance [56]. Thus, these
genes are interesting candidates for investigating their causal link to such commonalities
in different disease conditions, and more specifically, their role in MD co-morbidities, in
the hope that some of them may be effective drug targets.
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here is for a different number of significant genes for the two datasets (602 for HPRD, 288 for
BioGRID), resulting in different orders of magnitudes for the associated p values, the strength of the
correlation is high.

The main advantage is that this method incorporates a single data-type. While several
methods may include data from different sources, data integration can be a challenge
and is generally a labor-intensive, error-prone task. Several methods require tuning of
parameters or user inputs for the application of their algorithms. The proposed method is
parameter-free, independent of the user input, and can be used as a first approach towards
gene-prioritization. Its sole dependence on PPI data also enlarges its scope of application to
other complex diseases for which quantitative data might not be available. Non-parametric
significance testing allows for greater flexibility in the scope of distributions of centralities
across different kinds of topologies. Hence, this method is robust to changes in underlying
PPINs, and offers a solid background correction to avoid false positives.

By definition of BC, single-degree genes have a centrality of 0. Although some MD
genes may be single-degree genes, this method would be unable to identify those. Some
low-degree genes, which may be connected in the MD network, may end up being at
the edges of a random network, and hence cannot be assigned a centrality value. As
Erten et al. [21] also observed, this type of method does penalize the highly connected
genes. However, it is not designed to highlight all the MD related genes, only the genes
with crucial topologies.

A key component of this analysis is the topology dependence of BC. Hence, results
are best interpreted in the light of the topology of the starting PPIN. By using two different
PPINs, we aim to correct for PPIN-specific artifacts stemming from the methods that were
used to construct them. From the low overlap of interactions between HPRD and BioGRID,
despite having a high overlap of the number of nodes, it is apparent that the two PPIs
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can be thought of as two independent networks. HPRD data were manually curated from
literature, with most of the interactions included being backed by experimental systems,
such as yeast two-hybrid methods. However, it was last updated in 2010. The BioGRID
MV dataset contains interactions that have been validated by multiple resources. While the
database is updated every month, the experimental pieces of evidence are considered to
cover a much wider range, such as affinity capture, co-localization, co-purification, etc. It
is likely that some interactions may occur under experimental conditions, but not in vivo.
As more data gets added to these databases, the network structure is likely to change. In
such a case, common candidates from different network topologies are likely to be the
genes that remain central to the core network of interactions. BC is highly sensitive to the
network structure, which is evident from the results. Hence, an overlap of the results from
several different databases (and thus different networks) will increase the confidence level
of the predictions. On the analysis of the MD network presented here, the major limitation
stems from the limited overlap between datasets. Since not all of the known MD genes are
present in the PPIN, the analysis is based on incomplete MD network reconstruction. As
more reliable data become available, these findings can be reviewed in the light of the new
information. However, the novel candidates identified in the study are strong candidates
for expansion of the known MD genes network, based on the pathway and differential
gene expression analysis results, and should be investigated further for their roles in the
pathogenesis of MD and its co-morbidities.

4. Methods

For identification of genes with high relative BC, the pipeline consisted of:

(1) Data curation (a) Extraction of metabolic diseases from the MESH database, (b) Ex-
traction of MD genes from the Comparative Toxicogenomics Database [30] (CTD),
(c) PPI data curation, (d) HGNC [57] conversion of symbols.

(2) Reconstruction and analysis of the protein interaction network for MD genes.
(3) Construction and analysis of random networks for significance testing (Figure 1).

Data curation: The MeSH database (Medical Subject Headings 2019, accessed in
October 2019) was used to retrieve the MeSH IDs for four categories of MD. Curated
lists of disease-associated genes for four MeSH IDs were obtained from CTD for liver
diseases (2069), metabolic diseases (1576), over-nutrition (220), and malnutrition (57).
The non-redundant gene-list contained 3229 MD genes. These four categories include
disease genes involved in metabolism. The complete table of MeSH IDs is available as
Supplementary data (Supplementary Table S5). This list constituted our ‘seed’ MD genes.
Furthermore, two PPI datasets were used: The Human Protein Reference Database [31]
(HPRD, version 9, 2010) and BioGRID [32] multi-validated data set (Release 3.5.178, down-
loaded November 2019). HPRD and the multi-validated BioGRID database contain in-
teractions based on experimental evidence such as yeast two-hybrid data, or multiple
sources for validation. After removing incomplete entries, non-human interactions, and
conversion of the gene names to the HGNC symbols, the largest component of each PPIN
was retrieved and used for downside analyses.

Reconstruction and analysis of the protein interaction network for MD genes: For
each PPIN, disease-specific networks were extracted by including interactions between
MD genes and their first neighbor. Interactions between first neighbors, if present, were
also included. The giant component of this MD-specific network was used for further
analysis (99% and 65% for HPRD and BioGRID, respectively). Single-degree nodes were
removed unless they were a part of the seed gene list. Using the resulting topologies
(‘MD networks’), the BC of each node was then computed using the parallelized version
of the algorithm, available on the Networkx (https://networkx.github.io/ (accessed on
15 January 2021), version 2.3) platform (Python 3.7).

Construction and analysis of random networks for significance testing: To assess the
significance of the centrality values in the MD network, they were compared with the
values obtained by repeating the analysis and replacing the seed gene list with a set of

https://networkx.github.io/


Biology 2021, 10, 107 13 of 17

randomly selected genes. For the comparisons to be fair, we used the same number of
genes and degree-stratified sampling to obtain background networks of the same sizes
and densities as the MD networks. For degree stratification, the code was designed
to stratify the PPI networks such that each interval contained three degrees. The MD
network was stratified and the number of genes in each interval was noted, and the same
number of genes was chosen randomly from each corresponding interval for the entire PPI
network. Because high-degree nodes are expected to display a higher BC, we sought to
retrieve topologically influential nodes and correct for local effects by constructing random
networks for comparison. We used the same number of genes and degree-stratified
sampling to obtain background networks of the same sizes and densities as the MD
networks. We then computed the BC for each node in 5000 such random networks. Under
the assumption that no node has a particular topological effect in the MD network, the
BCs for each node should be similar in MD-specific and random networks. Nodes with
high connectivity will display a high BC whichever seed list is used to construct them,
on average. In contrast, if a particular node is topologically interesting, for example by
linking two subsystems that are relevant for MD, its BC might be higher in the MD network
than is expected by chance, based on its degree. We calculated for each node the empirical
p-value as:

Pg =
(rg + 1)
(ng + 1)

, (1)

where ng is the total number of background networks that have been reconstructed where
gene g is present, and rg is the number of times the BC of node g was greater in randomly
constructed networks than in the MD network. (Supplementary File S1, Additional details
on data analysis)

Multiple testing correction was applied using the Benjamini-Hochberg [58] method,
and a list of significant genes (corrected p-value < 0.05) was obtained for each network. Over-
lap significance was calculated using the Hypergeometric test (Supplementary Table S5).

Pathway analysis: ConsensusPathDB [34] (CPDB) and Enrichr [33] were used to ana-
lyze the significant gene sets, highlighting significant pathways they were associated with.
CPDB offers an over-representation tool that allows for a user-defined background gene
list. All the nodes in the PPIN were used as background for CPDB. Enrichr offers results
from several different pathway analysis databases, however, it generates its background
data for comparison and significance testing. We also ran the pathway analysis and GO
analysis for the 16 novel candidates, but no statistically significant results were found.

Differential expression analysis of novel significant genes: The online tool Harmo-
nizome [35] was used to examine differential expression of the 16 novel genes found to
be significant from the two PPIN. It uses transcriptomic (microarray) data from 233 Gene
Expression Omnibus (GEO) datasets to identify disease-associated gene expression pat-
terns. Strength of differential expression was the standardized score (Abs (standardized
score)) = −log10 (p-value).

GWAS analysis was carried out for HPRD, however, for BioGRID, no results were
obtained, perhaps, because the number of significant genes was lower. Results of path-
way analysis using several resources such as Panther, Reactome, etc. were also pro-
vided by Enrichr. The complete set of results is available in the supplementary material
(Supplementary Table S9).

Software and computational processing: All the data processing and analysis pipelines
were scripted in Python. Data visualization for graphs was done in Gephi. All the scripts for
this pipeline are available on GitHub (https://github.com/sysbiolux/MD_network_map
(accessed on 15 January 2021)).

5. Conclusions

Literature bias affords very high degrees to some genes while leaving several others
understudied. These high-degree genes dominate analyses of networks created using
literature curated databases. To highlight some of the topologically important nodes that

https://github.com/sysbiolux/MD_network_map
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may be central to a disease condition, we propose a simple, parameter-free method to obtain
background-corrected BC scores. The method is applied to MD networks constructed using
HPRD and BioGRID, and out of the top-scoring nodes in both the networks, 16 overlapping
novel candidates were identified that are likely to contribute to the development and/or
progression of MD and its co-morbidities. These candidates need to be further investigated
to ascertain their role in MD. This is important from the perspective of developing effective
therapies for MD and associated co-morbidities.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-773
7/10/2/107/s1, Figure S1: Network view of one of the novel candidates identified, ALOX5, in HPRD.
ALOX5 is highly central to some of the known MD genes—ACTB, ALOX5AP, and COTL1, and forms
an important link between dense clusters of MD gene COTL1, and other non-MD first neighbors,
Figure S2: Network view of one of the novel candidates identified, ALOX5, in BioGRID. Similar to its
network in HPRD, ALOX5 here is connected to a single degree, but known MD genes ALOX5AP,
COTL1, and LTC4S. It also links to clusters of non-MD first neighbors DICER1 and GRB2. Notice
that ALOX5 by itself has a low degree, but is a crucial link to the single degree, known MD genes in
the network. Thus, ALOX5 becomes a topologically important node, Table S1: List of Seed genes
(Initial and Processed), Table S2: Common genes among Top 1000 genes (based on p values) from
HPRD and Bi-oGRID, Table S3: List of Significant genes in HPRD, Table S4: List of Significant genes
in BioGRID, Table S5: Miscellaneous data, Table S6: List of common pathways, Table S7: Pathway
analysis for significant genes in HPRD, Table S8: Pathway analysis for significant genes in BioGRID,
Table S9: Differential Gene Expression analysis for 16 common novel significant genes.
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