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Radioimmunotherapy (RIT) represents a selective internal radiation therapy, that is, the use of radionuclides conjugated to
tumor-directed monoclonal antibodies (including those fragments) or peptides. In a clinical field, two successful examples of this
treatment protocol are currently extended by 90Y-ibritumomab tiuxetan (Zevalin) and 131I-tositumomab (Bexxar), both of which
are anti-CD20 monoclonal antibodies coupled to cytotoxic radioisotopes and are approved for the treatment of non-Hodgkin
lymphoma patients. In addition, some beneficial observations are obtained in preclinical studies targeting solid tumors. To date,
in order to reduce the unnecessary exposure and to enhance the therapeutic efficacy, various biological, chemical, and treatment
procedural improvements have been investigated in RIT. This review outlines the fundamentals of RIT and current knowledge of
the preclinical/clinical trials for cancer treatment.

1. What Is Radioimmunotherapy (RIT)?

Antibodies (Abs) are glycoproteins secreted from plasma B
cell and are used by immune system to identify and remove
foreign pathogens such as bacteria and viruses. Because it
is considered that Abs also have cytotoxic potency against
somemalignant tumor cells, the therapeutic efficacy in cancer
has been examined. However, intact Abs are insufficient to
improve patient survival rate dramatically. As a one approach
to enhance the therapeutic response by using immunological
technique, cytotoxic radioisotopes (𝛼- or 𝛽-particle emitters)
are conjugated to Abs or the fragments. This strategy is
employed to deliver radioisotopes to the targeting tissue by
appropriate vehicle. After the radiolabeled Abs bind to recep-
tors/tumor antigens expressed on the surface of cancerous
tissue, cells within an anatomic region of the 𝛼- or 𝛽-range
will be killed.

In a clinical field, systemic radiotherapy using naked
radioisotope (iodine-131: 131I) was first performed by Hertz
to patient of Graves’ disease in 1941 [1]. Then, investigations
on the use of Abs coupled with adequate radioisotopes
subsequently emerged in the early 1950s [2, 3].Though direct

radioiodinated Abs were mainly used in the initial clinical
studies, progress in chelation chemistry has enabled the uti-
lization of many therapeutic metal radioisotopes that possess
inherent radiation properties. Various combinations of Abs
and radioisotopes have been examined, which results in the
adaptation in different clinical situations [4, 5]. RIT involves
the application of radiolabeled monoclonal Abs (mAbs) to
molecular targeted therapy [6]. Both the use of directly
labeled mAbs and in vivo label of tumor-binding mAbs by
conjugation-pretargeting method have been developed.

Irradiated cells absorb high amounts of energy in the
form of photons or charged particles, which promote the
direct macromolecular damage as well as the generation
of reactive oxygen and/or nitrogen species [7]. Both free
radicals and molecular oxygen damage DNA strand [8, 9],
and the damage induces not only apoptosis [10] but also
programmed necrosis [11]. Because the ranges in tissue of
ionizing radiations are rather large compared with a typical
cell size, uniform binding of the radioimmunoconjugates is
not a prerequisite for its efficacy. In other words, adjacent cells
not expressing the receptors/tumor antigens can also be killed
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Table 1: Radioisotopes used in RIT.

Radioisotope Energymax (MeV) Range Half-life
𝛽-Particle emitter

67Cu 0.58 2.1mm 2.6 d
90Y 2.28 12.0mm 2.7 d
131I 0.61 2.0mm 8.0 d
177Lu 0.50 1.5mm 6.7 d
186Re 1.07 4.5mm 3.7 d
188Re 2.12 10.4mm 16.9 hr

𝛼-Particle emitter
211At 6.8 80 𝜇m 7.2 hr
213Bi 8.3 84 𝜇m 46min
225Ac 6.0∼8.0 60∼90 𝜇m 10.0 d

Auger-electron emitter
125I 2∼500 nm 60.5 d

by the physical cross-fire effect. This means continuous low-
dose irradiation from radiolabeled Abs cause lethal effects
on nearby normal cells. Moreover, it is reported that RITs
also evoke the normalization of tumor vasculature [12],
presumably owing to facilitation of immune cell migration
towards the malignant lesions [13].

For therapy, therefore,𝛼- or𝛽-particle emitters are prefer-
able. Vehicles coupled with radioisotopes emitting Auger
electrons are also available; however, they need to be localized
close to DNA due to the very short range of these radiations
[14–16]. Simultaneous emission of 𝛾 (X) rays, which are
suitable for imaging, will help measure pharmacokinetic
parameters and calculate dosimetry of the radioimmunocon-
jugates. Table 1 shows radioisotopes commonly used for RIT.

Among them, relatively well-studied and practical
radioisotopes are the 𝛽-emitters 131I, yttrium-90 (90Y), and
lutetium-177 (177Lu). Radioisotope to use is selected by
consideration of those radiophysical properties (energy and
half-life) as well as the labeling chemistry. For example, 90Y
possesses a higher 𝛽-particle 𝐸max and a shorter half-life
when compared with 131I. On the other hand, metal 90Y
should be conjugated to Ab via chelating agent, whereas 131I
can form a carbon-iodine bond directly. Lutetium-177 has
radiophysical properties similar to 131I and radiolabeling
chemistry similar to 90Y.

Investigations of RIT using 𝛼-particle emitters also have
been developed. Because 𝛼-particle gives its energy to the
surrounding molecules within a narrow range (<100𝜇m,
equivalent to a few cell diameters), it leads to high lin-
ear energy transfer (high LET) within the target and less
bystander effect to nontarget tissues compared to Abs labeled
with 𝛽-emitters. In addition to the high LET, which leads to
the high relative biological effectiveness (RBE) [17], recent
studies have shown that cytotoxic efficacy of 𝛼-particle is
independent of the local oxygen concentration and cell
cycle state [18]. Bismuth-213 (213Bi), astatine-211 (211At),
and actinium-225 (225Ac) are well investigated in 𝛼-particle
RIT [19–22].

Compared to external beam radiation therapy, one of
the most potent advantages of RIT is the ability to attack
not only the primary tumor but also lesions systemically
metastasizing. In addition, targeted radiotherapy using spe-
cific vehicle agents is extremely valuable in cases of (1)
residual micrometastatic lesions, (2) residual tumor margins
after surgical resection, (3) tumors in the circulating blood
including hematologicmalignancy, and (4)malignancies that
present as free-floating cells [23].

Brief data on current RITs provided in this review paper
is summarized in Table 2.

2. Direct Method

The success of RIT depends on the selective accumulation of
cytotoxic radioisotopes at affected areas. Fundamental prop-
erties required for vehicles against a particular biomarker
are (1) high binding affinity to the intended target, (2) high
specificity, (3) high tumor to background ratio, (4) high
metabolic stability, and (5) low immunogenicity [24, 25].
From the viewpoint of those molecular characteristics, Abs
have been considered as suitable agent for the delivery of
therapeutic radioisotopes. Moreover, the development of
hybridoma technology in 1975 allowed taking advantage of
mAbs in RIT [26].

“Direct method” requires direct conjugation of cytotoxic
radioisotopes to various antitumormAbs (or their fragments)
via an appropriate chelator and the single-step administra-
tion to patients. Consequently, many antigenic determinants
(mostly on the cell surface) have been targeted byAbs. On the
other hand, one of the most critical obstacles to achieve high
background ratio in this application is the slow clearance of
Abs from the blood and nontarget tissues due to their high
molecular weight [27, 28]. Abs will disappear from plasma
very slowly, which encourages higher tumor uptake; however,
a longer duration is needed to reach the maximum tumor to
normal radioactivity ratio. Radiation dose for treating patient
increases time-dependently, which results in the exposure
of radioactive bone marrow leading to the hematologic
toxicity. Therefore, structural diversification of Abs has been
attempted to improve the pharmacokinetic properties. Lower
molecular weight fragments of conventional Abs including
F(ab)

2
, Fab or its multivalent conjugate, minibody, diabody,

and single chain variable fragments (scFv) could be utilized,
which retain the essential antigen binding properties and
obtain more rapid clearance rates than intact mAbs. Those
smaller types of constructs can traverse the vascular channels,
resulting in a more rapid tumor uptake and a faster blood
clearance than parental Abs [29, 30], possessing potencies
to achieve superior tumor to background ratios. In general,
however, affinities of small Ab forms to tumor antigen are
lower than those of Abs, and, moreover, too fast blood
clearance of peptides yields less time to interact with the
target. Therefore, absolute tumor uptake for these constructs
is lower than those of Abs. Further development of the
engineered forms holding both favorable pharmacokinetics
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and tumor uptake is desired. Radiolabeled peptides target-
ing intended tumor can be available due to the preferable
pharmacokinetics and low antigenicity. In this approach,
control of the affinity (specific accumulation) of radiolabeled
conjugates to tumor tissue is also important.

2.1. Hematological Cancers. It is reported that anticancer
responses occur at relatively low radiation-absorbed doses
(i.e., less than 10Gy) in non-Hodgkin lymphoma (NHL)
[31, 32]. 90Y-ibritumomab tiuxetan (Zevalin) and 131I-
tositumomab (Bexxar) are the two FDA-approved radiola-
beled anti-CD20 murine Abs that have been administered
to patients with NHL [33, 34]. However, neither treatment
is applied to patients with more than 25% bone marrow
involvement because these patients might suffer from more
severe hematologic toxicity. Several other radiolabeled Abs
have been tested in hematological cancers. A 131I-labeled
anti-CD20 mAb (131I-rituximab) [35–37] and an 90Y-labeled
anti-CD22mAb (90Y-epratuzumab tetraxetan) [32, 38, 39] are
in advanced clinical trials.

Shorter-range radioisotopes (𝛼-particle emitters) can be a
better option for the treatment of patients with hematological
cancer. In previous investigations, RIT using 213Bi-labeled
anti-CD33 IgG was performed in myeloid leukemia [40, 41];
however, short physical half-life of 213Bi poses a problem
for conjugate preparation. Thus, longer-lived emitters, such
as 211At or 225Ac, which can emit four daughter 𝛼-particles
during its decay, might be available. RITs using Auger-
emitters, such as iodine-125 (125I), gallium-67 (67Ga), and
indium-111 (111In), could be suitable for micrometastatic
disease. Potential cytotoxicity of 67Ga-labeled anti-CD74 Ab
was observed in a study using Raji B-lymphoma cells [42].

Due to the expression of these targeting antigens, normal
B cells also have potencies to bind to the radiolabeled
Abs. Thus, at low protein doses, the radioimmunoconjugates
would be trapped to spleen rapidly, where a considerable
number of B cells exist. To avoid this issue, unconjugatedAb is
sometimes added to the system,which blocks the unfavorable
distribution [43–45]. In addition, these Abs can enhance a
tumor cell’s sensitivity to radiation and chemotherapy [46–
48], and thus, therapeutic responses would be achieved by a
combination of the unconjugated Ab and targeted radiation.

2.2. Solid Cancers. RIT as a treatment protocol could be
useful in the therapy for nonhematological cancers as well;
however, convincing therapeutic outcomes have not been
obtained yet in patients with solid cancer. One of the most
obvious issues with RITs in solid cancers is that, unlike
lymphoma, most of the Abs used are unable to affect
tumor growth. To elicit clinical benefits for patients with
advanced and/or disseminated solid cancers, several designs
of the treatment are being undertaken: improvement of
Ab uptake and enhancement of radiosensitization of cancer
cells [49–51].

Here, some examples of RITs targeting solid cancer are
shown.

2.2.1. Colorectal Cancer. Owing to the early characterization
and ubiquitous expression in colorectal cancer, carcinoem-
bryonic antigen (CEA) [52] has been the most common
target for RIT in this disease. cT84.66, a chimeric IgG against
the A3 epitope of CEA, possesses highly selective affinity to
cancer cells expressing CEA [53]. RIT using 90Y-cT84.66 was
performed by Wong et al. [54, 55], with minor responses in
tumor regression. Several other murine anti-CEA RIT agents
have been evaluated, including 131I-NP-4 F(ab)

2
, 131I-F6

F(ab)
2
, 131I-A5B7, 131I-COL-1, and 186Re-NR-CO-02 F(ab)

2

[50, 56–60].
A33, one of the glycoproteins, is expressed homoge-

neously in more than 95% of all colorectal cancers [61]
and thus the humanized Ab (huA33) has been developed.
Preclinical studies using 211At-labeled huA33 indicate that the
uptake in tumor was found to be specific to the presence of
A33 antigen [62].

In a trial study performed by Liersch et al., patients having
undergone liver resection for metastatic colorectal cancer
were treated with 131I-labeled humanized anti-CEACAM5
IgG [63].Median survival of patients having received RITwas
significantly longer than that of control subjects [64].

2.2.2. Breast Cancer/Ovarian Cancer. Trastuzumab is a
humanized IgG mAb directed against the extracellular
domain of the human epidermal growth factor receptor
2 (HER-2)/neu that is commonly overexpressed in breast,
ovarian, and gastrointestinal tumors [65]. This Ab has been
labeled with several radioisotopes such as 90Y [66] and 111In
[67], for clinical study of breast cancer. Phase I study of
intraperitoneal 212Pb-trastuzumab for patientswith advanced
ovarian cancer is also ongoing [68].

MUC-1, a mucin epitope, is commonly expressed on the
surface of breast cancer cells. Schrier et al. reported on a
phase I study using the murine Ab labeled with 90Y (90Y-
MX-DTPA-BrE-3) and autologous stemcell rescue in patients
with breast cancer [69]. One-half of the patients exhibited
objective partial response to the therapy. To overcome the
limitation of repeated dosing, an 90Y-labeled humanized Ab
has also been evaluated for use with stem cell support [70].

Cell-surface sodium-dependent phosphate transport
protein 2b, which is highly expressed on ovarian cancer
cells, is recognized by the murine IgG MX35 [71, 72]. The
potential usefulness of this Ab has been established in
preclinical models, and then intraperitoneal administration
of 211At-MX35 F(ab)

2
was undertaken to a phase I

trial to determine the pharmacokinetics, dosimetry, and
toxicity [73].

2.2.3. Prostate Cancer. MUC-1, described above for its use
in breast cancer, has also been shown to be upregulated
in androgen-independent prostate cancer cells, making it a
good target for RIT [74]. m170, a murine mAb, was labeled
with 90Y, which was examined in patients with metastatic,
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androgen-independent prostate cancer [75]. Many patients
who complain of pain at the entry of study reported a signif-
icant reduction in pain following therapy. A phase I study of
90Y-2IT-BAD-m170 combined with low-dose paclitaxel was
also performed by the same group [76].

J591 is an IgG mAb against the extracellular domain of
prostate-specific membrane antigen (PSMA). Several J591
constructs labeled with 90Y [77], 177Lu [78], and 213Bi [79]
have also been evaluated in patients with prostate cancer.

3. Indirect Method

In “indirect method,” directly radiolabeled mAbs are not
used; that is, mAbs and radioactive effector molecules are
administered separately and they will be conjugated in vivo.
This technique can improve target to nontarget ratio to
achieve high imaging contrast and/or therapeutic efficacy.
In a field of RIT, this strategy is referred to as pretargeted
radioimmunotherapy (PRIT) and was developed to avoid
the issues associated with the prolonged residence times of
radiolabeled Ab in 1980s [80, 81].

PRIT is a technique that enables the Ab localization phase
to be temporally separated from the radioisotope administra-
tion in the form of a small molecular hapten. This approach
involves the sequential administration of (1) a bispecific mAb
derivative (bs-mAb) capable of binding a tumor antigen and a
chelate and (2) a small molecular weight radiolabeled effector
species. The radiolabeled species is administered following
a scheduled lag period to allow the bs-mAbs to accumulate
to the target site and any residual bs-mAbs are cleared from
the circulation. The bs-mAb is not radiolabeled directly,
and thus no exposure would occur during “unlabeled” bs-
mAbs localize to the tumor by themselves. In some cases,
an additional “clearing molecule,” which removes unbound
bs-mAb from the circulation, is administered prior to the
radiolabeled effector. Consequently, improvement of tumor
to background ratios has been achieved [82, 83]. Summarized
scheme is shown in Figure 1.

A key to successful implementation of the pretargeting
method consists of the high target specificity and affinity
offered by bs-mAb and the superior pharmacokinetic char-
acteristics of a low molecular weight compound. The small
size and inert properties of the radiolabeled effector allow
it to distribute easily in the fluidic volume and then to be
eliminated rapidly, thereby decreasing the overall radiation
burden to nontarget organs and tissues such as bone marrow
[84]. Also, PRIT increases the dose rate to the cancer as
compared with a RIT by using directly radiolabeled IgG that
takes 1-2 days to reach maximum distribution.

To ensure the two parts (bs-mAb and radiolabeled effec-
tor) bind to each other strongly upon interaction at cancerous
region, each must be suitably modified with complementary
reactive species. One of the approaches is based on avidin
or streptavidin in conjunction with biotin in a variety of
configurations [85]. Avidins could bind as many as four
biotin molecules with very high binding constant (10−15M),
and, thus, some avidin/biotin-based PRIT were examined
clinically [86–88]. In this protocol, clearing agentwas injected

to remove residual streptavidinated Abs from the blood. The
primary issue with PRIT depending on avidin (streptavidin)
is the immunogenicity of these foreign proteins [89, 90].

Conjugation of radioisotopes to bs-mAb is controlled by
another constituent. The approach has been utilized with
a bs-mAb to histamine-succinyl-glycine (HSG) [91, 92]. By
joining two haptens via a short peptide, uptake and retention
of the radiolabeled effector (divalent hapten-peptide) would
be enhanced locally within the cancer compared with those
of the monovalent form [93–95]. Di-HSG-peptide struc-
tures have been developed for binding several radioisotopes,
including 90Y and 99mTc [96, 97]. Other methods employ
complementary synthetic low immunogenic DNA analogs,
morpholinos, as bridging agents [98, 99].

3.1. PRIT for Hematological Cancers. In preclinical studies,
pretargeting method showed better responses with much
less hematologic toxicity and thus represents a significant
improvement over the RIA using anti-CD20 IgG agents
radiolabeled directly [100].

Among the hematological cancers, NHL therapy has
been examined in detail by pretargeting. In conventional
NHL model mice, PRIT with a tri-Fab fragment followed
by 90Y-labeled effector led to dramatic cure rates compared
to RIT with direct 90Y-veltuzumab, which is a radiolabeled
anti-CD20 Ab [101]. Similar therapeutic responses were
also achieved using the streptavidin-biotin format of PRIT
in the Ramos lymphoma model, using a combination of
anti-CD20 Ab-streptavidin fusion protein 1F5(scFv)

4
SA and

90Y-DOTA-biotin [102]. Pagel et al. compared therapeutic
efficacy between direct RIT and PRIT in xenograft models of
lymphoma using CD20, CD22, and MHC class II cell surface
receptor (HLA-DR) as the targets. In this study, PRIT by the
streptavidin-biotin conjugation showed higher therapeutic
indices and superior tumor regression [103].

3.2. PRIT for Solid Cancers. A phase II trial was exam-
ined with 90Y-DOTA-biotin pretargeted with a NR-LU-10,
an anti-Ep-CAM (epithelial glycoprotein-2) IgG-streptavidin
conjugate in advanced colorectal cancer [87]; however, no
significant responses were observed. More recently, a recom-
binant protein of streptavidin with four CC49 (anti-tumor-
associated glycoprotein 72: anti-TAG-72) single chains and
90Y-labeled biotin pair has been tested in patients with
gastrointestinal malignancy [104].

In a field of brain tumor, patients with grade III glioma
and glioblastoma were pretargeted with 90Y-labeled biotin,
resulting in a significant extension of survival in the PRIT
subjects [105].

4. Concluding Remarks

Because Ab-based targeted radiation is considered tomediate
direct cytotoxic effects, RIT (PRIT) could provide us with
opportunities for safer and more efficient cancer treatment.
Indeed, these techniques have been extensively used as
conventional anticancer strategies. Especially, RIT (PRIT)
has been effective in hematological cancers. There are also
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Blood vessel

Step 1 Step 2

(Clearing agent)

Time

Tumor tissue

Tumor cell

Slow clearance Rapid clearance

Cell death

Figure 1: Schematic diagram of pretargeting approach.

developments of new immunostimulant for lymphoma that
is combined with RIT (PRIT), which can enhance the overall
therapeutic response.

On the contrary, responses to RIT (PRIT) are generally
low in solid cancer and it might be due to the unconventional
microenvironments. Oxygen concentrations less than 0.02%
decrease the vulnerability of cancer cells to ionizing radiation
[106], and even milder hypoxia produces a substantial level
of resistance to irradiation [107]. Strategies to radiosensitize
the lesions by means of an increased supply of oxygen or
treatment of nitroimidazole analog [108] would help enhance
the efficacy of RIT (PRIT).

RIT (PRIT) is a valuable treatment modality which can
detect and quantify the accumulation of therapeutic agents
readily. Thus, molecular imaging approach can be adapted
to select patients, to decide the treatment strategy, and to
assess the therapeutic benefit. Developments of novel Ab-
based targeted therapeutics and the combination with other
interventions should support cancer therapy in future.
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