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Bioinspired genotype – phenotype
linkages: mimicking cellular
compartmentalization for the engineering
of functional proteins

Liisa D. van Vliet, Pierre-Yves Colin and Florian Hollfelder

Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK

The idea of compartmentalization of genotype and phenotype in cells is key for

enabling Darwinian evolution. This contribution describes bioinspired systems

that use in vitro compartments—water-in-oil droplets and gel-shell beads—for

the directed evolution of functional proteins. Technologies based on these

principles promise to provide easier access to protein-based therapeutics,

reagents for processes involving enzyme catalysis, parts for synthetic biology

and materials with biological components.
1. Introduction
The cell membrane separates molecules belonging to a cell from those that are

part of the environment. A key role of this compartmentalization is to link the

genotype (‘the genetic constitution of an individual’) with its corresponding

phenotype (‘a set of observable characteristics of an individual’). This linkage

is important for Darwinian evolution, as selection is exerted at the level of

the phenotype, but survival and propagation of a selected trait are dependent

on the relevant gene being carried forward to subsequent rounds of evolution.

Both have to be linked to ensure that a selective advantage conferred by a gene

leads to the emergence of improved species.

It can thus be argued that compartmentalization is the organizing principle

that enables Darwinian evolution—and that a cell-like compartment is the most

basic ‘evolutionary unit’. This contribution describes experimental approaches

towards artificial evolution that employ mimics of cellular compartments

(figure 1): water-in-oil emulsions, droplets or gel beads that keep together an iden-

tifier (i.e. a gene), the functional molecule encoded by the gene (i.e. a protein) and

a readout (e.g. an optical signal that distinguishes ‘winners’ from ‘losers’ in an

evolutionary selection round). Such compartments can be made completely

in vitro, so that—despite being inspired by cells—they are reducing the complex-

ity of the cell-like compartment to just one purpose: linking genotype and

phenotype and allowing an assay for the one function of interest. This type of bio-

logical reductionism differs from that originally proposed by Crick (‘to explain all

biology in terms of physics and chemistry’) [4]: instead of a molecular under-

standing of the end products of evolution as the basis for future rational design

of equally perfect or even improved constructs, the features of the engine of evol-

ution are to be controlled, understood and ultimately mimicked: constituting a

system that provides a route towards functional molecules.

The ability to evolve functional proteins is assuming an increasingly central

role, because rational design of protein binders or catalysts often does not pro-

vide efficient solutions, notwithstanding the enormous progress in protein

design over the last two decades. For example, antibodies used in therapy are

routinely generated by ‘directed evolution’ (i.e. combinatorial selections from

large libraries of candidates) and not by design despite a wealth of molecular

insight into protein structure. Although we know so much, for example,

about the regularity of the antibody structure and its target-binding region
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Figure 1. An in vitro compartment (a droplet [1,2] or a bead [3]) combines
(a) the function of a molecule (e.g. the catalytic or binding activity of a
protein or nucleic acid). (b) The information on its identity (e.g. its sequence
encoded by DNA) and (c) a readout to assess the molecule’s ability to carry
out its function via a miniaturized assay (e.g. based on product fluorescence).
Droplet diameters vary between 1 and 200 mm (corresponding to volumes
between 0.5 fl and 4 nl).
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from comprehensive databases of primary sequences and

structures, antibody binders are made by combinatorial

methods (rather than by design in silico). Likewise, compu-

tational designs of catalytic proteins [5,6] often require

further improvement by directed evolution [7,8] and the con-

tribution of directed evolution can exceed the contribution of

design [9]. Of course both approaches—design and selec-

tion—are complementary, and each directed evolution

experiment will provide rational explanations and contribute

in turn to the body of design rules for biological molecules.

However, Crick’s optimism about the supremacy of molecu-

lar design has to be mixed with a dose of realism about its

limits and a realistic strategy for the creation of functional

biomolecules will have to involve library methods and

directed evolution.

Important criteria for a good evolution system are

(i) simple to set up, (ii) allowing high throughput (more

than 106 experiments within a reasonable experimental time-

scale, i.e. hours or days) and, as far as possible, (iii) that

evolution should be preferably conducted in vitro, because

carrying out this process under non-natural conditions can

overcome the following constraints:

— the requirement of having to comply with a working bio-

logical system (e.g. compatibility with a host organism)—

proteins that are toxic to the host cannot be evolved;

— the narrow dynamic range of in vivo selections and

the limit that only proteins directly relevant for survi-

val of the host are amenable to in vivo evolution (e.g. in

auxotrophic selections); and

— in vivo selections cannot be carried out under non-natural con-

ditions, for example, involving the use of non-natural amino

acids, operating at extremes of pH or temperature, or under

other desired non-physiological conditions.

To free directed evolution from these constraints and drive it

by arbitrarily chosen selection criteria (instead of host cell

survival), attention has therefore turned to in vitro
compartments for directed evolution that replace the cell

compartment with a man-made entity that is equally suited

to combine genotype and phenotype.

Joshua Lederberg anticipated the potential of such com-

partments in classical experiments designed to probe the

clonal selection theory [10,11]: by isolating single lymph-

node cells in emulsion droplet compartments, the secreted

antibody was kept together with the cell producing it, thus

providing genotype–phenotype linkage by compartmentali-

zation and permitting assays to test the characteristics of

each secreted protein. These groundbreaking studies pro-

vided evidence for the ‘one cell-one antibody’ rule [12].

Already at the time, Lederberg suggested that such compart-

ments would ‘find routine applications in any laboratory’,

which now, half a century later, is starting to become reality.

The potential of emulsion compartments for molecular

evolution was first explored by Tawfik & Griffiths [13]. To

obtain ‘monoclonal’ compartments (in which one gene and

the corresponding protein encoded by it are unambiguously

linked), a gene library is diluted so that each droplet contains

no more than one member. Encapsulation of particles and

molecules into droplets follows a Poisson distribution. In

order to obtain mainly monoclonal compartments, most of

the droplets are left empty. For example, a suspension con-

taining on average 0.3 entities (DNA molecules or cells) per

droplet results in 74%, 22% and 3% of the droplets containing

none, one or two entities, respectively. The compartmentali-

zation makes very large numbers of experiments possible in

highly parallelized fashion, and also reduces the cost per

assay dramatically (by approx. 106-fold [14]), as the assay

volume is reduced to the femto- to picolitre scale through

use of microdroplets.

Such water-in-oil emulsion compartments can be made in

a number of ways:

— by dispersing an aqueous solution in an oil phase,

which produces approximately 109 polydisperse droplets

(diameter 1–4 mm) in one experiment—which is simply

accomplished with an emulsifier or stirrer—taking only

a few minutes [15–18], or

— in a microfluidic droplet generator by break-off from an

aqueous stream, in which approximately 107 monodisperse

compartments with identical size (typically 10–200 mm,

adjustable as a function of the device design and flow

rates) are produced per hour [15,19,20].

2. Protein display systems generated
in compartments

High-affinity protein binders with defined specificity have

become indispensable reagents in basic research, large-scale

proteomic studies, and also in therapy, where they represent

the fastest growing segment of the pharmaceutical market.

The need for protein binders is addressed by display technol-

ogies [21,22]. For example, in phage display the protein

of interest (POI) is fused to a coat protein, e.g. via the

N-terminus of the minor (pIII) or major (pVIII) capsid pro-

teins (figure 2) [24–26]. Protein expression occurs in vivo,

but subsequent selections are carried out in vitro. It would

be desirable to carry out the entire expression and selection

process under in vitro conditions and generate a robust and

stable display construct. The benefits of a cell-free format
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Figure 2. Comparison of natural and artificial display systems distinguished
by the method of selection [23]. (a) A functional molecule (i.e. a protein of
interest, POI) is connected to a gene encoding it. Selection from a library is
based on binding to an immobilized target molecule: if binding molecules
can be pulled out from a library based on their affinity by such ‘panning’,
the attachment of the coding gene means that the selected clones can be
sequenced. In this process, quantitative and direct control of ligand-binding
parameters are not possible. Further, labour-intensive measurements are
often necessary to assess the strength and specificity of affinity-selected bin-
ders. The natural phage display system is contrasted to in vitro SNAP display.
(b) Yeast display provides multiple copies of the POI, as does its in vitro
equivalent BeSD. Flow cytometry (FACS) measures the number of fluorescently
labelled target molecules bound to the display construct and thus screens
every mutant in the library, allowing a quantitative threshold to be set as
the basis for a considered choice during selection.
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have been demonstrated by comparisons of affinity and

diversity of binders generated in display formats that involve

a host versus in vitro systems [27,28].

In the SNAP display [13,29,30], a display construct

is assembled with the help of an in vitro compartment

(figure 3a). A link between the POI and DNA is brought

about by compartmentalizing a single DNA molecule in

each water-in-oil emulsion microdroplet, expressing the POI

in vitro and retaining both together by the microdroplet

boundary. The corresponding protein is expressed as a

fusion with a protein tag that reacts covalently with a label

on its coding DNA (a benzylguanine (BG) [34] coupled to

DNA) and the droplet compartment keeps gene and cognate

protein together (assuring monoclonality). Inspired by the

linkage of DNA and POI on a phage, the bare-bones

SNAP-display is a reductionist model of the natural phage

display system.

Selections are performed by ‘panning’ under in vitro con-

ditions: the display construct is passed over immobilized

target molecules and the binders stick (with their DNA

attached—and can thus be decoded). These selections are

based on off-rates (koff ) and highly dependent on the con-

ditions employed (e.g. the duration and number of washes in

the panning procedure). Variants are recovered if their affinity

is above a pre-set threshold, but this threshold is not necessarily
precisely defined (i.e. a function of the experimental protocol

and the operator’s handling).

In a further variation of SNAP display, the ‘panning’ step

is replaced with more quantitative, direct readouts of a

binding constant (KD). When display constructs contain

a larger number of proteins—e.g. approximately 104 copies

displayed on bacteria [35–40] or 30 000 copies on yeast [41]—

selections can be based on the measurement of the number of

bound target molecules (counted by quantification of an optical

label for every clone): flow cytometry is employed to rank and

sort binders. Variation of the concentration of a fluorescent

ligand incubated with the display construct and measurement

of the extent to which it sticks, determines selection pressure

akin to Kd titrations. This ranking gives access to populations

of weaker and stronger binders depending on the chosen fluor-

escence threshold in flow cytometry (figures 2b and 3b).

Inspired by yeast and bacterial display, a megavalent vari-

ation of SNAP display (dubbed BeSD, bead surface display)

provides an in vitro equivalent to the multivalent natural display

systems (figure 2b) [23]. Again, single genes are compartmenta-

lized in emulsion droplets—but now amplification is performed

in the droplet compartment and up to a million copies of DNA

and protein are assembled on a bead in a multi-step procedure.

The compartment is responsible for keeping the cognate gene

and POI together and the resulting construct reminding us of

yeast display, but bears more protein copies and is completely

generated in vitro. Libraries of such constructs can now be ana-

lysed by flow cytometry and binders identified at a throughput

of approximately 107 per hour.

Both SNAP methods avoid shortcomings of in vivo display

systems, e.g. low transformation efficiency, toxicity of the dis-

played protein to the host or lack of display construct stability.
3. Selections for enzyme catalysts in
compartments

Instead of providing a template for the genotype–phenotype

linkage that is later used for selection, the droplet compart-

ment can also be maintained until selection, which makes it

eminently suitable for selections of enzyme catalysts. Figure 4

shows how a substrate is co-compartmentalized with the

protein catalyst in a droplet, multiple turnovers occur: now

selections can be carried out based on product detection. To

make product detection as precise as possible, microdroplets

are prepared in monodisperse form in microfluidic devices

(made, for example, conveniently by soft lithography from

polydimethylsiloxane [15,58,59]) and interfaced with analytical

systems. Figure 5 shows building blocks of integrated microflui-

dic devices that have recently been built. Many steps that are

normally carried out in manual laboratory routines by pipetting

are now automated in ‘lab-on-a-chip’ devices that process the

bioinspired cell-like droplets on-chip on an assembly line at

ultra-high throughput. In addition to droplet formation, the

microfluidic format allows a number of other unit operations

that are summarized in figure 4. Droplets are formed at rates

well above 1 kHz [52,60] and can then be divided [44], fused

[45–50], incubated [48,51], analysed [52–55], sorted [14,56,57]

and broken up. An attractive feature of the microfluidic

droplet platform is its modularity, where individual elements

of a workflow correspond to experimental steps that are rep-

resented as jigsaw pieces [43]. Each piece of the jigsaw

represents a unit operation and their integration translates a
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Figure 3. Formats for artificial covalent genotype – phenotype linkages based on droplet compartmentalization. The key initial step of both display methods is that a
DNA library (coding for SNAP-tag-fused variants of the POI) is compartmentalized in water-in-oil emulsion droplets, so that each compartment contains no more
than one DNA template (Poisson distribution). (a) In SNAP display [29 – 33], the POI is in vitro expressed from a single gene in fusion to the SNAP-tag (1). The
SNAP-tag of the expressed fusion protein then reacts with its substrate, BG, that has been covalently linked to the DNA template. As a result, the SNAP-tag connects
genotype and the displayed protein (responsible for the phenotype). (2) SNAP-tagged proteins are de-emulsified and challenged for binding against an antigen by
affinity panning. (3) After non-binders are washed away, binders are eluted together with their encoding genes that can feed the next round of selection. (b) In
BeSD display [23], the DNA is amplified by ePCR (using appropriate labelled primers), captured on the beads via a biotin – streptavidin linkage and the POI is in vitro
expressed. After the emulsion is broken, beads are incubated with the labelled target and the affinity for the target is measured via fluorescence-activated sorting
(FACS). The binding affinity of each recovered variant can be measured by subsequent FACS analysis on the bead display construct. The bead connects genotype and
the megavalently displayed protein (responsible for the phenotype).
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macroscopic workflow to the miniaturized scale within a micro-

fluidic device. Integration of these steps with control over

timing can potentially create a versatile system for directed

evolution in which complex selection schemes can be realized.

Much recent work has been devoted to meeting the chal-

lenge of integration of the physical droplet processing steps
with standard biological operations that may later be part

of an integrated workflow for directed evolution. First, com-

partmentalization of cells is possible: single bacteria or yeast

cells can be cultivated in droplets and recovered alive [61].

Second, in vitro protein expression from a single template

(with up to 30 000 protein molecules expressed per DNA
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Figure 4. A workflow for directed evolution of a hydrolase by lysate screening in droplets [42]. (a) Unit operations from the ‘toolbox’ ( figure 5) are assembled to
miniaturize the steps necessary for single-cell assays of library members for directed evolution. (b) Workflow: (1) the protein of interest (POI), in this case an
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electric field; (5) plasmid DNA from selected droplets is electroporated into E. coli. Repetition of such cycles increases the stringency of selection and enriches hits
gradually to identify improved enzyme variants.
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molecule in a droplet) has been demonstrated [51]. Kinetic

parameters for several enzymes were also determined in

microfluidic droplets, providing the facility to evaluate

individual mutants kinetically [53,54].

An entire workflow to miniaturize rounds of directed

evolution is shown in figure 6: in a single-cell lysate protocol

[42], single cells (each cell representing one library member)

were compartmentalized with lysis reagents and substrate,

so that after cell rupture compartmentalized enzymatic reac-

tions catalysed by the protein produced by a single cell can be

monitored, and subsequently sorted. Catalysts can be incubated

in a delay line (with several point measurements) [42] or—for

slow reactions—after offline storage for several days [62]. This

procedure was exemplified by the successful evolution of a

promiscuous hydrolase [42] in two rounds of genetic diversifica-

tion and selection, which led to improved expression and activity

by an order of magnitude each. The genotype–phenotype link-

age provided by the droplet boundary was maintained until

de-emulsification after selection.
4. Compartments turned to gel-shell beads:
materials with evolvable components

Natural cells can be considered as incredible examples of

functional materials, because their architecture equips them
with functions of everyday survival, such as converting

foodstuffs to energy, sensing or movement. In addition,

they are vehicles for Darwinian evolution, providing for

long-term development of an organism (or its components)

by selection. By contrast, materials or devices are typically

designed as such, but no mechanism for adaptation is built

in. While future generations of cells will invariably evolve

(e.g. in response to an environmental challenge), man-made

materials will be limited to the original design: improvements

are possible, but the designer has to intervene to specifically

improve its properties.

In an attempt to turn droplet compartments into composite

materials, we devised gel-shell beads (GSBs) that resemble

minimalist versions of a natural cell [3]: a shell surrounds its

interior, where functional molecules and their code (DNA)

are lodged. To this end, microfluidic devices were used to pro-

duce large numbers of cell-sized droplets, which contain agarose

that forms a stable structure (similar to the cytoskeleton): upon

lowering the temperature, additional ingredients—agarose and

alginate—solidify creating agarose microspheres (Ø � 25 mm)

in droplets and ‘immortalize’ the monoclonal nature of the

original droplet. Addition of a functional polyelectrolyte

shell with selective permeability (like the semipermeable

cell membrane) completes the synthesis of biomimetic com-

partments. The shell—created by layer-by-layer technology

[63–65]—is capable of selective retention (with permeability
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only for molecules less than 2 kDa) that co-compartmentalizes

genotype and phenotype, thereby keeping the coding DNA,

the enzyme and its (fluorescent) reaction product together.

Most importantly, the beads are robust and can be easily

screened/sorted using standard flow cytometry, a feature

that sets GSBs apart from any existing high-throughput

screening system currently available.

As above, single bacteria were encapsulated with substrate

in microdroplets and lysed to liberate the POI and successful

selections of a bioremediation catalyst, a phosphotriesterase,

were carried out [3].

GSBs can be seen as containers for biocatalysts for cost-

effective and sustainable applications that require easy

recovery and repeated use of enzymes [66]. The stable cata-

lyst cage of a GSB can contain single proteins, but may also

encapsulate multiple components, e.g. sequential enzyme

cascades or tandem reactions [67–71], enzymatic pathways

[72–74] or synthetic gene circuits [75], that can be evolved

directly in this format.

As the GSBs maintain the elements necessary for the

directed evolution of an encapsulated protein, evolvability is

programmed into these constructs (GSBs). The evolved catalyst

is caged in GSBs, where it remains catalytically active and able

to turn over multiple substrate molecules that enter the cage

from the outside. After it has done its job, the caged catalyst

can be removed, stored (e.g. by freezing) and used again.

In the composite GSBs, the functional components are

DNA encoded, so by evolving a caged enzyme, evolvability of
a ‘composite material’ (¼ a functional enzyme in a scaffold)

is demonstrated: each composite carries the functional com-

ponent (the enzyme) together with information that defines

the identity of its functional component (DNA). This type of

evolvability is key to diving further into ‘functional diversity

space’. Where combinatorial approaches exist in materials

science, libraries are usually smaller than screened here

(almost a million members). The combination of the ability to

decode a single species, extreme miniaturization (to pl dro-

plets) and extremely straightforward screening/sorting in a

commercial flow cytometer, provides the basis for easy access

to molecular diversity, increasing the chances of success

and setting the scene for more ambitious searches for novel

functional materials.
5. Conclusion
The idea of cell compartmentalization is inspiring a range of

practical approaches aimed at making new, functional mol-

ecules by Darwinian evolution. The extension of evolutionary

principles that are enabled by the compartmentalization in its

various guises has the potential to shape our material world

as much as evolution has shaped Nature, with the only differ-

ence that it is up to us to decide for which purpose bioinspired

parts and devices should be used.

Funding statement. This research described in this perspective was
funded by the Biological and Biotechnological Research Council
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