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Simple Summary: The multidrug resistance of EAC is one of the major obstacles to chemotherapeutic
efficiency. Our study aims to explore the molecular mechanism of AKR1C3 as a novel therapeutic
target to overcome chemotherapy resistance for EAC patients. We demonstrate that AKR1C3 renders
chemotherapy resistance through controlling cellular ROS levels via AKT signaling in EAC cells.
Modulation of intracellular GSH levels by AKR1C3 could scavenge the intracellular ROS, thus
regulating apoptosis. Targeting AKR1C3 may represent a novel strategy to sensitize EAC cells
to conventional chemotherapy treatment and benefit the overall survival of patients diagnosed
with EAC.

Abstract: Esophageal adenocarcinoma (EAC) is one of the most lethal malignancies, and limits
promising treatments. AKR1C3 represents a therapeutic target to combat the resistance in many
cancers. However, the molecular mechanism of AKR1C3 in the chemotherapy resistance of EAC is
still unclear. We found that the mRNA level of AKR1C3 was higher in EAC tumor tissues, and that
high AKR1C3 expression might be associated with poor overall survival of EAC patients. AKR1C3
overexpression decreased cell death induced by chemotherapeutics, while knockdown of AKR1C3
attenuated the effect. Furthermore, we found AKR1C3 was inversely correlated with ROS production.
Antioxidant NAC rescued chemotherapy-induced apoptosis in AKR1C3 knockdown cells, while the
GSH biosynthesis inhibitor BSO reversed a protective effect of AKR1C3 against chemotherapy. AKT
phosphorylation was regulated by AKR1C3 and might be responsible for eliminating over-produced
ROS in EAC cells. Intracellular GSH levels were modulated by AKR1C3 and the inhibition of AKT
could reduce GSH level in EAC cells. Here, we reported for the first time that AKR1C3 renders
chemotherapy resistance through controlling ROS levels via AKT signaling in EAC cells. Targeting
AKR1C3 may represent a novel strategy to sensitize EAC cells to conventional chemotherapy.

Keywords: esophageal adenocarcinoma; AKR1C3; chemotherapy resistance; AKT signaling; ROS
regulation; prognosis
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1. Introduction

Esophageal cancer (EC) is the 7th most commonly diagnosed cancer and the 6th
leading cause of cancer-related death worldwide [1]. Esophageal adenocarcinoma (EAC)
and squamous cell carcinoma (ESCC) are two major histological subtypes of esophageal
cancer. ESCC is the predominant subtype globally, while EAC is the most common in
Europe and other Western industrialized nations. It is well recognized that the clinical
characteristics and molecular profiles of EAC and ESCC are quite different, despite some
shared characteristics, which leads to differential response to clinical treatments [2,3]. Thus,
EAC and ESCC should not be considered as one disease but investigated separately. The
incidence of EAC has increased sharply in many Western populations during the last four
decades [4,5]. Although the treatments for EAC have been improved due to the implemen-
tation of modern multimodal treatment concepts such as neoadjuvant chemoradiation or
perioperative chemotherapy [6,7], the outcome of EAC is still unfavorable, with a 5-year
overall survival rate of about 18% [8].

Aldo-keto reductases (AKRs) are a superfamily of NAD(P)(H)-dependent oxidore-
ductases that primarily reduce aldehydes and ketones to primary and secondary alcohols,
respectively [9]. AKRs play a central role in the metabolism of reactive aldehydes, car-
cinogens and chemotherapeutic drugs, which could lead to either their bioactivation or
detoxication [10]. AKR1C1, AKR1C2, AKR1C3 and AKR1C4 are the members of the aldo-
keto reductase 1C (AKR1C) subfamily, which are responsible for the clearance of different
xenobiotics, and thus result in resistance to drug treatment [11]. Aldo-keto-reductase 1C3
(AKR1C3), as a member of the AKR superfamily, possesses NADPH-dependent 3-keto-,
17-keto- and 20-ketosteroid reductase activities [12]. In recent years, AKR1C3 has been
implicated in the progression of prostate cancer, breast cancer, colon cancer and oropharyn-
geal squamous cell carcinoma, and contributes to therapeutic resistance in these types of
cancers [13–15]. However, the functional role of AKR1C3 in EAC remains largely unknown.

One central malignant phenotype of cancer cells is their ability to resist chemother-
apy, which is also the main obstacle to effective cancer therapy. A growing number of
studies have indicated that the activation of the AKT signaling pathway was implicated
in chemotherapeutic resistance in several types of cancers [16–18]. AKT, also known as
protein kinase B (PKB), is a serine/threonine-specific protein kinase and was initially dis-
covered as a proto-oncogene [19]. Indeed, numerous in vivo and in vitro studies pointed
out that AKT kinase is involved in several critical cellular functions of human cancers,
including proliferation, migration, survival and apoptosis [20,21]. The regulation of AKT or
AKT-related signaling pathways has been the subject of multiple research efforts [21]. For
example, the activation of AKT signaling promotes drug resistance such as to cisplatin and
paclitaxel in osteosarcoma and ovarian cancer cells, while the inhibition of AKT signaling
promotes cell sensitivity to chemotherapy drugs [16–18].

Chemotherapeutic agents such as cisplatin, oxaliplatin, 5-fluorouracil and paclitaxel
have been identified to eliminate malignant cells in vitro and in vivo by triggering apopto-
sis [22,23]. However, de-regulated apoptotic signaling allows cancer cells to escape this
program, resulting in tumor survival and therapeutic resistance [24]. The cellular redox
homeostasis is a balance between oxidation and reduction systems. A large variety of
anti-cancer drugs kill cancer cells and overcome drug resistance by disrupting the redox
homeostasis of cancer cells [25]. Anti-cancer drugs can induce apoptosis via direct or indi-
rect intracellular reactive oxygen species (ROS) generation in cancer cells [26]. A moderate
ROS level is essential for tumor initiation, and plays an important role in cellular signaling
pathways that regulate the cell cycle, progression, migration and cell survival [26]. How-
ever, excess intracellular ROS may overwhelm the cell’s antioxidant capacity and induce
apoptosis [27]. The main amounts of cellular ROS are produced by mitochondria and
NADPH oxidases (NOXs) [28]. In order to avoid ROS overproduction, cells use antioxidant
molecules and enzymes such as glutathione (GSH) and catalase to eliminate ROS [29].

AKR1C3 has already been implicated in therapeutic resistance via mediating intracel-
lular ROS levels in several types of cancer, such as prostate cancer, ESCC, choriocarcinoma
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and leukemias [30–33]. AKR1C3 silencing reverses methotrexate (MTX) resistance in chori-
ocarcinoma cells by increasing ROS levels [33]. In this study, we aimed to investigate the
role of AKR1C3 in EAC therapy resistance. Although the interaction between AKR1C3 and
chemotherapy resistance has already been indicated in many cancers, it is still unclear in
EAC. Based on the above, we make an effort to detect whether AKR1C3 and chemotherapy
resistance have a similar interconnection in EAC and whether they might achieve it through
an ROS-dependent regulation.

2. Materials and Methods
2.1. Public Databases

The public database GEO (https://www.ncbi.nlm.nih.gov/geoprofiles/, accessed on
5 December 2020) and TCGA (http://cancergenome.nih.gov/, accessed on 5 December 202)
were used for the analysis of AKR1C3 expression in EAC. Gene set enrichment analysis
was performed via GSEA software (Version: 4.1.0). Survival analysis was performed
using the Kaplan–Meier method and the difference was tested with the log-rank test. A
p-value < 0.05 was considered statistically significant.

2.2. Antibodies and Reagents

Mouse monoclonal anti-α-tubulin (WB, 1:1000, Cell Signaling, 3873, Danvers, Frank-
furt, Germany), mouse monoclonal anti-AKR1C3 (WB, 1:1000, R&D Systems, MAB7678,
Minneapolis, MN, USA), rabbit monoclonal anti-CXCR4 (WB, 1:1000, Abcam, ab124824,
Cambridge, UK), rabbit polyclonal anti-ZEB1(H-102) (WB, 1:500, Santa Cruz, sc-25388, Dal-
las, TX, USA), rabbit polyclonal anti-SNAIL1 (H-130) (WB, 1:500, Santa Cruz, sc-28199), rab-
bit monoclonal anti-NRF2 (WB, 1:1000, Cell Signaling, 12721), HRP-conjugated secondary
antibody (WB, 1:10,000, Invitrogen, 31430 and 31460), rabbit monoclonal anti-phospho-
AKT (Ser473) (WB, 1:1000, Cell Signaling, 4058), rabbit monoclonal anti-phospho-AKT
(T308) (WB, 1:1000, Cell Signaling, 13038), rabbit polyclonal anti-AKT (WB, 1:1000, Cell
Signaling, 9272), AKT inhibitor (MedChemExpress, HY-10355, Princeton, NJ, USA), IgG
control (Cell Signaling, 2729), protein A-Dynabeads (Invitrogen, Carlsbad, CA, USA),
N-acetyl-L-cysteine (NAC, Sigma-Aldrich, A9165, Darmstadt, Germany) and L-buthionine-
(S,R)-sulfoximine (BSO, MedChemExpress, HY-106376A) were purchased from the indi-
cated manufacturers. University Hospital Cologne supplied chemotherapeutic agents
including cisplatin (NeoCorp, Hexal AG, Holzkirchen, Germany), oxaliplatin (Accord
HealthCare, München, Germany), paclitaxel (NeoTaxan, Hexal AG) and 5-fluorouracil
(5-FU) (Accord HealthCare).

2.3. Cell Lines and Clinical Tissues

The human esophageal adenocarcinoma cell lines SKGT-4, FLO-1 and OACP4C were
kindly provided by the Laboratory of Genomic Pathology at the Institute of Pathology of
University of Cologne (Cologne, Germany), while OE33 was obtained from the Sigma Cell
Line Bank (Sigma, 96070808). Cell lines were maintained in RPMI1640 medium (Life tech-
nology, Carlsbad, CA, USA) with 10% fetal bovine serum (FBS) (Invitrogen, Carlsbad, CA,
USA), penicillin and streptomycin (100 U/mL penicillin + 0.1 mg/mL streptomycin) (PAN
Biotech, Aidenbach, Germany) in a humidified atmosphere of 5% CO2 at 37 ◦C. HEK293T
cells (Sigma, 12022001) were maintained in DMEM high-glucose medium (Invitrogen) with
10% FBS (Invitrogen, Carlsbad, CA, USA), 2 mM L-Glutamine (Invitrogen), penicillin and
streptomycin (100 U/mL penicillin + 0.1 mg/mL streptomycin) in a humidified atmosphere
of 5% CO2 at 37 ◦C. All cell lines were checked for mycoplasma-contamination-free culture.
Twelve pairs of EAC tissues and adjacent normal tissues were collected for Western blot
from the Department of General, visceral, tumor, and transplant surgery of University Hos-
pital of Cologne under the approval of BIOMASOTA (approved by the Ethics Committee
of the University of Cologne, ID: 13-091).

https://www.ncbi.nlm.nih.gov/geoprofiles/
http://cancergenome.nih.gov/
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2.4. Cell Proliferation Assay

EAC cells were seeded into 24-well plates overnight at a density of 1–3× 103 cells/well
and then cultured for 0–8 days. Cells were fixed with 4% paraformaldehyde (PFA) at
indicated time points at room temperature (RT) for 10 min, then stained with 0.05% crystal
violet (Sigma-Aldrich) at RT for 10 min. After a wash with distilled tap water five times
and air drying, 10% acetic acid was added to dissolve the stain, which was subsequently
measured with a plate reader (BMG LABTECH, Ortenberg, Germany) by absorbance at
595 nm.

2.5. Colony-Forming Assay

EAC cells (5 × 102–1 × 103 cells/well) were seeded in 6-well plates with full RPMI
1640 medium at 37 ◦C with 5% CO2. After being conventionally cultured for two weeks,
the cells were fixed and stained with freshly prepared 0.5% crystal violet (Sigma-Aldrich)
for 10 min at RT. After a wash with distilled water, the stained colonies with >50 cells were
counted by microscopy using 40×magnification (Leica, DMIL, Wetzlar, Germany).

2.6. Wound Healing and Migration Assay

Cell migration was assessed by the ability of cells to migrate into a cell-free area. Briefly,
1 × 105 SKGT-4 or OE33 cells were plated in growth medium on 24-well plates. When
the cells reached confluence overnight, the monolayers were then artificially wounded by
scratching with a 200 µL plastic pipette tip to get a linearly scratched zone. After carefully
washing with phosphate-buffered saline (PBS), the SKGT-4 and OE33 cells were incubated
in FBS-free medium for 12 h and 24 h, respectively, and observed under a microscope
(Leica, DMIL). Images were captured immediately after scratching as a reference point,
and were captured again at the end point as indicated. The images were captured using
a phase-contrast microscope (Leica, DMIL). The wound closure area measurement was
performed by ImageJ. The wound closure rates were estimated as the ratio of the closed
wound area relative to the initially wounded area.

2.7. Western Blot

Twenty microgram protein samples were electrophoresed on a 7.5–15% gradient
SDS-PAGE gel (Tris-Glycine, self-made) and transferred to PVDF membrane (MACHEREY-
NAGEL, Dueren, Germany) by semi-dry electroblotting (Bio-Rad, Singapore). The mem-
branes were blocked for 1 h in 1× Roti-Block (Carl Roth, Karlsruhe, Germany) at RT and
then incubated with specific primary antibodies at 4 ◦C overnight. Proteins were detected
after incubation with HRP-conjugated secondary antibody (Invitrogen, 31430 and 31460)
for 1 h at RT and visualized with SuperSignal West Pico PLUS Chemiluminescent Substrate
(Thermo Fisher Scientific, Waltham, MA, USA) and detected by ChemoStar ECL Imager
(Intas Science Imaging, Göttingen, Germany).

2.8. Cell Viability Assay

Cells were seeded into 96-well plates, grown overnight and then treated with serial
concentrations of cisplatin, oxaliplatin, 5-FU or paclitaxel for 48–72 h. Cell viability was
detected by MTT assay. Briefly, 50 µL of 5 mM MTT (Biomol, Hamburg, Germany) solution
was added to each well after the medium was discarded. Then, the plates were incubated
at 37 ◦C for 3 h. Afterwards, the solution was discarded, and the MTT dissolving agent
was added. Absorbance at 570 nm was measured with a plate reader. Cells treated
without chemotherapy drugs served as a reference point for standardization. Cell viabilities
were calculated as the ratios of absorbance of the wells with various concentrations of
chemotherapeutic agents relative to the vehicle control. In all cases biological triplicates
were performed.
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2.9. Flow Cytometry Analysis

Cells were treated with cisplatin for 48–72 h. For apoptosis analysis, cells were
harvested and resuspended in annexin V binding buffer, with annexin V (BioLegend, San
Diego, CA, USA) and DAPI staining dye, incubated at RT for 20 min. To detect intracellular
ROS production, cells were stained with 20 µM H2DCFDA (Sigma-Aldrich) at RT for 20 min.
Then samples were subjected to analysis on a CytoFLEX cytometer. Data acquisition and
analysis were performed with FlowJo software (Tree Star, Ashland, QR, USA).

2.10. Quantification of GSH

The GSH level of EAC cells was determined using a GSH/GSSG Ratio Detection Kit II
(Fluorometric-Green, Abcam 205811) according to the manufacturer’s instructions. Before
analysis, cells were harvested and washed with ice-cold PBS. Then, 2 × 105 cells were
resuspended in 100 µL of ice-cold PBS/0.5% NP-40. The clear supernatant was collected
after centrifugation. Then, we added 1 volume ice cold 100% (w/v) TCA into 5 volumes of
sample and vortexed briefly to mix well. Finally, the samples were transferred into a black
96-well plate after the neutralization by NaHCO3. Fluorescence was measured with a plate
reader at Ex/Em = 490/520 nm. In all cases, biological triplicates were performed.

2.11. Plasmid Constructs

For the expression of AKR1C3, the pLenti-CMV-neo vector was purchased from Gen-
Script (Leiden, The Netherlands), and vector with non-coding scrambled insert was used as
control. For RNA interference, shRNA sequences for AKR1C3 and NRF2 were synthesized
(Thermo Fisher Scientific) and inserted via AgeI and EcoRI into the Tet-pLKO-puro vector.
shRNA target sequences were: non-target control, 5′-AGGTAGTGTAATCGCCTTGTT-3′;
shAKR1C3-1, 5′-CTCACTGAAGAAAGCTCAATT-3′; shAKR1C3-2, 5′-CCAGAGGTTCCG-
AGAAGTAAA-3′; shNRF2, 5′-GCTCCTACTGTGATGTGAAAT-3′. All expression vectors
were confirmed by sequencing.

2.12. Generating AKR1C3 Overexpressing and Knockdown Cell Lines

Cells stably expressing AKR1C3 or shRNA sequence were created by lentiviral trans-
duction. Briefly, HEK293T cells were co-transfected with transfer vector and packaging
vectors (Addgene) using PEI (Sigma-Aldrich) in a mass ratio of 1:3 of DNA/PEI. The
medium was changed 24 h later, and the virus was collected and filtered through 0.45 µm
syringe filters (VWR, Darmstadt, Germany) at 48 h and 72 h. Virus-containing filtrate was
mixed 1:1 with fresh medium, supplemented with 8 µg/mL polybrene, and used to trans-
duce cells. Neomycin or puromycin was added 48–72 h later for AKR1C3 overexpressing
or knockdown cells, respectively, and the selective medium was changed every 2 days
and maintained for 1 week. shRNA expression was induced with 1 µg/mL doxycycline
(Sigma-Aldrich). Knockdown and overexpression efficiency was testified by Western blot.

2.13. Chromatin Immunoprecipitation

The procedure for ChIP was performed as previously described [34]. Briefly, chromatin
samples were subjected to rabbit monoclonal anti-NRF2 (Cell Signaling, 12721) or normal
IgG control (Cell Signaling, 2729) at 4 ◦C overnight. Then, protein–antibody complexes
were precipitated with protein A-Dynabeads (Invitrogen). Immunoprecipitated complexes
were washed and eluted with buffer (1% SDS, 0.1 M NaHCO3) and then incubated with
proteinase K for 4 h at 65 ◦C on a thermomixer. DNA was purified using the PCR Clean Up
Kit (MACHEREY-NAGEL) and subjected to quantitative PCR for AKR1C3 promoter detec-
tion. The NRF2 binding site in AKR1C3 was predicted by JASPAR and CiiiDER tools. Then,
primers were designed using the NCBI primer designing tool to flank the predicted binding
site. The used primers were: AKR1C3-ChIP-for, 5′-ACATCTTTACCCCTAGTGTTCAGT-3′;
AKR1C3-ChIP-rev, 5′-AGTTCTTGAGATTTTGACTGGATGC-3′.
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2.14. Quantitative RT-PCR

TRI reagent (Sigma-Aldrich) was used to extract total RNA from cultured cells. After-
ward, the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Thermo
Fisher Scientific) was used for cDNA synthesis according to the manufacturer’s instruction.
Primers are listed in Supplementary Table S1. Relative expression of target mRNAs was de-
termined using Fast SYBR Green Master Mix (Invitrogen) with QuantStudio 7 Flex (Applied
Biosystems, Thermo Fisher Scientific) and analyzed using the delta-delta-CT method.

2.15. Statistical Analysis

Statistical analysis was done by GraphPad Prism 7. The Kaplan–Meier method was
used to calculate the overall survival (OS). Data were presented as mean ± SD. Statistical
significance was determined by two-sided unpaired t-test.

3. Results
3.1. Expression and Characterization of AKR1C3 in EAC

To determine the mRNA expression of AKR1C3 in EAC, several public datasets
were downloaded from GEO and TCGA. Data from GSE26886 showed that AKR1C3
is upregulated in Barrett’s esophagus (a precursor lesion of EAC), EAC and ESCC as
compared to squamous epithelium (Figure 1A). Consistently, GSE92396 showed a similar
result (Figure 1B). Additionally, to demonstrate the protein levels of AKR1C3 in our cohort,
12 pairs of EAC tissues and matched adjacent normal tissues were collected. However, no
clear trend was observed in our cohort comparing the expression of AKR1C3 between EAC
and adjacent normal tissues (Figure 1C). Survival analysis from TCGA revealed that higher
expression of AKR1C3 might be associated with poor overall survival of EAC patients,
although the data were not statistically significant (Figure 1D).

3.2. AKR1C3 Promotes Proliferation, Colony Formation and Migration of EAC Cells

To understand the function of AKR1C3 in EAC cells, we modified AKR1C3 expression
in EAC cells through short-hairpin RNA (shRNA) knockdown and overexpression. Four
EAC cell lines were selected (Figure S1A). AKR1C3 knockdown was established in SKGT-4
and OACP4C cells, which have relatively high endogenous AKR1C3 expression, while
AKR1C3 overexpression was established in OE33 and FLO-1 cells, which have relatively
low endogenous AKR1C3 expression (Figures 2A and S1B). The expression level of AKR1C3
was confirmed by PCR and Western blot. In the knockdown setup, the best overall
silencing efficiency was achieved by shAKR1C3-2, which was chosen for further study.
As compared with the control cells, AKR1C3 knockdown cells showed a lower rate of
cell proliferation and formed fewer colonies in the colony formation assay. In contrast,
AKR1C3 overexpressing cells showed an increased rate of cell proliferation and higher
clonogenic ability (Figures 2B,C andS1C,D). Furthermore, we investigated the potential
role of AKR1C3 in modulating the migration ability of EAC cells using a wound healing
assay. The results showed that AKR1C3 knockdown cells had markedly reduced migratory
ability as compared to the control groups, whereas AKR1C3 overexpressing cells showed
a faster wound closure rate (Figures 2D and S1E). Besides, AKR1C3 knockdown cells
showed a decreased expression of metastatic marker C-X-C motif chemokine receptor 4
(CXCR4) and epithelial–mesenchymal transition (EMT)-associated factors zinc finger E-
box-binding homeobox 1 (ZEB-1) and snail family transcriptional repressor 1 (SNAIL1) at
the protein level. (Figures 2E and S1F). However, the expression level of these markers
did not significantly increase in AKR1C3 overexpressing cells of OE33 (Figure 2E). Instead,
an increase was observed in AKR1C3 overexpressing cells of FLO-1 (Figure S1F). Taken
together, these results suggest that AKR1C3 promotes the proliferation, colony formation
and migration of EAC cells in vitro.
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Figure 1. AKR1C3 expression was upregulated in esophageal adenocarcinoma cancer and indicated
poor prognosis from public databases. (A) Date of GSE26886 showed that AKR1C3 expression
level was significantly higher in Barrett’s esophagus, EAC and ESCC than in the corresponding
squamous epithelium (BE, n = 20; EAC, n = 21; ESCC, n = 9; Squamous epithelia, n = 19). (B) Date
of GSE92396 also showed that AKR1C3 expression level was significantly higher in EAC than in
the corresponding normal esophageal tissue (Normal, n = 10; EAC, n = 12). (C) Western blot results
showed the expression of AKR1C3 in 12 pairs of EAC tissues (T) and matched adjacent normal
tissues (N). (D) Data from TCGA-ESCA was applied for survival analysis and the EAC subgroup
was extracted. Kaplan–Meier survival analysis shows that higher AKR1C3 mRNA expression is
associated with a trend of poor survival. * p < 0.05, *** p < 0.001.

3.3. AKR1C3 Renders Chemotherapy Resistance to EAC Cells

An apoptosis assay analyzed with flow cytometry and MTT assay was carried out
to determine the impact of AKR1C3 on chemotherapy response in EAC cells in vitro.
As compared with the control cells, AKR1C3 knockdown cells showed more apoptosis
upon cisplatin treatment (Figure 3A; Figure S2A), whereas AKR1C3 overexpressing cells
showed less apoptosis as compared with control cells (Figure 3B; Figure S2B). To iden-
tify a more general anti-apoptotic role of AKR1C3 in the context of EAC chemotherapy,
oxaliplatin, 5-FU or paclitaxel were also applied, as those agents are used within the
common chemotherapeutic regimens. Consistent with cisplatin, high levels of AKR1C3
showed protective function against oxaliplatin, 5-FU or paclitaxel induced apoptosis as well
(Figures 3C,D and S2C,D). Additionally, GSEA analysis from the TCGA dataset showed
that drug-metabolism-related enzymes were enriched in the AKR1C3-high group of EAC
(Figure S2E), including alcohol dehydrogenase 4 (ADH4), UDP glucuronosyltransferase
family 1 member A6 (UGT1A6) and alcohol dehydrogenase 6 (ADH6). These results
indicate that AKR1C3 renders chemotherapeutic resistance in EAC cells.
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Figure 2. AKR1C3 promotes proliferation, colony formation and migration of EAC cells. (A) Valida-
tion of stable knockdown of AKR1C3 in SKGT-4 cells and overexpression of AKR1C3 in OE33 cells.
(B) Proliferation rates, (C) colony forming capacity and (D) migration capacity of SKGT-4 shAKR1C3
cells, OE33 AKR1C3 overexpressing cells and their respective control cells were examined. (E) West-
ern blot results showed that the expression levels of CXCR4, ZEB1 and SNAIL1 were downregulated
when AKR1C3 was knocked down in SKGT-4 cells, but these markers did not significantly increase
when AKR1C3 was overexpressed in OE33 cells. Data are presented as mean ± SD (n = 3). ** p < 0.01,
*** p < 0.001.

3.4. AKR1C3 Mediates Chemo-Resistance through Regulating Redox Homeostasis

Cytotoxic drugs kill cancer cells by increasing intracellular ROS, which subsequently
induces apoptosis or necrosis [35]. To further clarify the underlying mechanisms of
AKR1C3-mediated chemo-resistance, intracellular ROS levels were determined by flow
cytometry. ROS levels were significantly higher in AKR1C3 knockdown cells than in
control cells. Consistently, AKR1C3 overexpressing cells showed decreased ROS levels as
compared to control cells (Figure 4A; Figure S3A). To further validate the role of AKR1C3
in the regulation of ROS, hydrogen peroxide (H2O2) was applied to induce ROS genera-
tion. AKR1C3 knockdown cells showed more apoptosis upon H2O2 treatment, whereas
AKR1C3 overexpressing cells showed less apoptosis compared to control cells (Figure 4B;
Figure S3B,C). To confirm that AKR1C3-mediated chemo-resistance is indeed due to its
regulation of redox balance, knockdown cells were exposed to chemotherapeutic drugs
in the presence of the antioxidant NFF-acetyl-l-cysteine (NAC), while overexpressing
cells were treated with chemotherapy in combination with the GSH biosynthesis inhibitor
L-buthionine-S,R-sulfoximine (BSO). The results showed that NAC rescued chemotherapy-
induced apoptosis in AKR1C3 knockdown cells, while BSO reversed the protective effect
of AKR1C3 overexpression against chemotherapy in EAC cells (Figures 4C,D and S3D,E).
To further link AKR1C3 to redox balance maintenance, the regulatory role of NRF2 on
AKR1C3 was determined. ChIP assay showed enrichment of NRF2 in the promoter region
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of AKR1C3 in SKGT-4 (Figure 4E,F). Knockdown of NRF2 in SKGT4 significantly decreased
the expression of AKR1C3 at both mRNA and protein level (Figure 4G–I). In summary,
our data suggest that AKR1C3 alleviates oxidative stress and confers chemo-resistance to
EAC cells.

Figure 3. AKR1C3 renders chemotherapy resistance in EAC cells. (A,B) Cells were treated with cis-
platin (20 µM for SKGT-4 and 10 µM for OE33) for the indicated time, and apoptosis was determined
by flow cytometry analysis with annexin V/DAPI staining. Representative FACS dot plots are shown
on the left. Bar graphs are presented as mean ± SD of three independent experiments. ** p < 0.01.
(C) Cell viability assay was used to determine cell viability after treatment with serial concentrations
of cisplatin (0 to 100 µM), oxaliplatin (0 to 100 µM), 5-FU (0 to 250 µM) or paclitaxel (0 to 200 µM)
treatment in SKGT-4 for 24 h. (D) Cell viability assay was used to determine cell viability after
treatment with serial concentrations (0 to 100 µM) of cisplatin, oxaliplatin, 5-FU or paclitaxel in OE33
cells for 24 h.
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Figure 4. AKR1C3 mediates chemo-resistance through regulating redox homeostasis. (A) Intracellular
ROS production was measured by flow cytometry using H2DCFDA. Representative FACS histograms
are shown on the left. Bar graphs are shown on the right panel. Data are presented as mean ± SD
of three independent experiments. (B) Cell viability assay was used to determine cell viability after
hydrogen peroxide treatment for 24 h in SKGT-4 and OE33 cells. (C) SKGT-4 cells were incubated
with 4 mM NAC and 10 µM cisplatin for 48 h, followed by the measurement of apoptosis (annexin
V/DAPI flow cytometry, bar charts). (D) OE33 cells were incubated with 50 µM BSO and 10 µM
cisplatin for 48 h, followed by measurement of apoptosis (annexin V/DAPI flow cytometry, bar
charts). (E,F) Chromatin immunoprecipitation assay indicates direct binding of NRF2 to the promoter
region of AKR1C3 (around transcription start site (TSS) +1400, indicated by a red bar). (G–I) NRF2
mRNA levels and protein levels were analyzed after NRF2 knockdown in SKGT-4 cells. * p < 0.05,
** p < 0.01, *** p < 0.001, NS: non-significant (p > 0.05).
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3.5. AKT Phosphorylation Is Regulated by AKR1C3 and Is Responsible for ROS Alleviation in
EAC Cells

To explore the mechanism of AKR1C3’s regulation of ROS-mediated apoptosis, the
AKT pathway was evaluated. Our results showed that the phosphorylation level of AKT
was decreased in AKR1C3 knockdown cells and augmented in AKR1C3 overexpressing
cells (Figure 5A; Figure S4A). These data support the reported role of AKT in promoting
cell survival and inhibiting apoptosis [36]. To confirm the essential role of AKT in AKR1C3-
mediated chemo-resistance in EAC cells, AKT inhibitor VIII was applied. The results
showed that AKT inhibitor VIII could increase the level of ROS and diminish the protective
effect of AKR1C3 against chemotherapy in AKR1C3 overexpressing cells (Figure 5B,C;
Figure S4B,C). Importantly, we observed that the level of GSH decreased in AKR1C3
knockdown cells and increased in AKR1C3 overexpressing cells (Figure 5D,E; Figure S4D,E).
In addition, GSEA analysis of several datasets showed that the glutathione metabolism
signature is positively associated with AKR1C3 expression (Figure 5F). To further clarify
whether GSH could be regulated by AKT signaling, EAC cells were treated with AKT
inhibitor VIII, and the result showed that GSH was decreased (Figure 5D; Figure S4D). In
conclusion, these results indicate that AKR1C3/AKT may effectively regulate the synthesis
of GSH, which could directly eliminate the intracellular ROS and decrease cell apoptosis
upon chemotherapy in EAC.

Figure 5. AKT phosphorylation was regulated by AKR1C3 and was responsible for ROS alleviation
in EAC. (A) Western blot showed that the phosphorylation level of AKT was downregulated in
AKR1C3 knockdown cells and upregulated in AKR1C3 overexpressing cells, and the phosphorylation
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of AKT expression levels was lower in cells treated with 20 µM AKT inhibitor VIII than in cells
without inhibitor, but total AKT protein level did not differ among groups. (B) OE33 cells were
incubated with 20 µM AKT inhibitor VIII and 10 µM cisplatin for 48 h followed by measurement of
apoptosis (annexin V/DAPI flow cytometry, bar charts). (C) OE33 cells were incubated with 20 µM
AKT inhibitor VIII for 24 h followed by measurement of ROS (H2DCFDA dye flow cytometry, bar
charts). (D,E) Data indicate glutathione concentrations normalized to total protein content were
decreased in SKGT-4 shAKR1C3-2 cells and increased in OE33 AKR1C3 overexpressing cells, while
glutathione concentration was lower in cells treated with 20 µM AKT inhibitor VIII as compared
to the control. (F) Gene set enrichment analysis shows that glutathione metabolism signature is
positively associated with AKR1C3 expression. Data are shown as mean ± SD of triplicate samples.
* p < 0.05, ** p < 0.01, *** p < 0.001, NS: non-significant (p > 0.05).

4. Discussion

Although advances in combination chemotherapy and/or radiotherapy have pro-
longed the overall survival of EAC patients, the high rate of resistance to conventional
chemotherapy is still the main obstacle to the effective therapy of EAC [37,38]. AKR1C3, as
a key member of the AKR1Cs subfamily, has been identified as a potential novel therapeutic
target in multiple types of cancer [13,39,40]. Recently, AKR1C3 has been reported to be
upregulated in many human tumors and identified as a prognostic marker in various
cancers, including breast cancer, prostate cancer and colon cancer [14,15,41].

The expression of AKR1C3 is elevated in EAC as compared to normal esophagus
according to several public datasets. The inconsistent expression of AKR1C3 in our cohort
might be explained by the possibility that some of the esophageal biopsies are Barrett’s
esophagus in our cohort. Barrett’s esophagus is considered as the main precursor of EAC,
and the expression of AKR1C3 in Barrett’s esophagus is also elevated as compared to
normal esophageal squamous epithelium. We found that AKR1C3 promoted proliferation,
colony formation and migration in our four EAC cell lines, indicating the crucial role of
AKR1C3 in EAC. Here, we report that AKR1C3 positively regulated the phosphorylation of
AKT. AKT is a key component in multiple signaling pathways and participates in multiple
cellular processes [36]. Numerous studies have demonstrated that AKT mediates tumor
progression mainly through inhibiting apoptosis [36,42]. AKT suppresses apoptosis mainly
by regulating many downstream effectors such as GSK and Bcl-2 family proteins [36]. The
phosphorylation of AKT promotes drug resistance by protecting cells from apoptosis [42].
Furthermore, several studies have shown that the overexpression and/or activation of AKT
results in resistance to cisplatin in several types of cancer such as ovarian cancer, cervical
cancer and gynecological carcinoma [18,43,44]. Based on the present work performed in
EAC cells, we demonstrated that AKR1C3 resulted in EAC cells with greater resistance to
chemotherapeutic drugs via the activation of AKT.

Interestingly, we found that an upregulated expression of AKR1C3 in EAC cells could
decrease the intracellular ROS levels. AKR1C3 possesses oxidoreductase activity and
aldo-keto reductase (NADP/H) activity, and participates in the regulation of cell redox
homeostasis [12]. ROS have a dual role in cancer. Moderate ROS are required for essential
cellular functions such as gene expression, while excessive ROS diminish cellular antioxi-
dant capacity, thereby damaging cellular structures and leading to apoptosis directly [45]. It
is widely accepted that most chemotherapeutics elevate intracellular levels of ROS, thereby
altering the redox homeostasis of cancer cells [46]. Several studies have suggested that
cisplatin increases the generation of intracellular ROS, while excessive ROS levels could
cause oxidative DNA damages and accelerate cell death [45,47,48]. Chueca et al. reported
that excessive ROS could induce apoptosis in EAC cells [49]. Under the selective pressure
induced by chemotherapeutic drugs, cancer cells would evolve an antioxidant system to
protect themselves against oxidative stress via neutralizing the over-produced intracellular
ROS [50,51]. Although the connection of AKR1C3 with ROS regulation has already been
indicated in prostate cancer and ESCC, these studies mainly focused on radiation resistance,
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and the underlying molecular mechanism of the regulatory role of AKR1C3 with ROS
is not well investigated [31,32]. Surprisingly, we observed that increased expression of
AKR1C3 protected EAC cells from apoptosis by scavenging the over-produced ROS. By
adding NAC in AKR1C3 knockdown cells and adding BSO in overexpressing cells, we
demonstrated that ROS regulation is the main mechanism of AKR1C3-mediated chemo-
resistance in EAC. We also report that AKR1C3 positively regulates GSH to enhance cellular
antioxidant defense, which appears to contribute significantly to the protection against
chemotherapy-induced toxicity. GSH, a tripeptide composed of glutamate, is an important
antioxidant in cells [52]. As the key antioxidant guardian, it is generally recognized that
GSH could neutralize intracellular ROS and decrease oxidative stress directly [53]. Our
results showed that the ratio of apoptotic cells decreased after the addition of NAC, which
is a precursor of glutathione (GSH). Inhibition of the biosynthesis of GSH reversed the
protective effect of AKR1C3 overexpression against cisplatin by exacerbating oxidative
stress in EAC cells. Taken together, our results indicate that AKR1C3 inhibits apoptotic cell
death by alleviating oxidative stress in EAC through the regulation of GSH.

In the present study, we demonstrated that AKR1C3 scavenges the intracellular ROS
levels in EAC cells via AKT/GSH signaling. Owing to the selective pressure induced
by high ROS levels, a series of concomitant changes will occur in cancer cells [45]. For
example, recent evidence suggests that excessive oxidative stress activates AKT signal-
ing by inhibiting the activity of phosphatase and tensin homolog (PTEN) and regulating
protein tyrosine phosphatases (PTPs) [54]. High ROS levels not only modulate PTEN
oxidation directly but also facilitate PTEN ubiquitylation and degradation by inducing
post-translational modification [55]. PTPs could dephosphorylate insulin receptor substrate
protein 1 (IRS-1) in response to insulin-induced ROS and activate PI3K/AKT pathway
subsequently, which plays a significant role in chemotherapy resistance [56]. Activation
of the PI3K/AKT signaling pathway has been shown to be essential in modulating glu-
tathione metabolism [57]. Besides, the activation of AKT is crucial in the regulation of
GSH synthesis [57–59]. Kim et al. revealed that the AKT/p70S6K pathway was capable of
manipulating the GSH biosynthesis activated by insulin [60]. Wu et al. reported that the
activation of AKT/NRF2 could upregulate the synthesis of GSH in human lung epithelial
cells [61]. Our study found that AKR1C3 is a direct target of NRF2, which is an essential
regulator of redox balance. Besides, both AKR1C3 knockdown and AKT inhibition reduced
GSH levels significantly, which indicates the critical roles of AKT in response to alleviating
oxidative stress by increasing antioxidant responses. At the same time, the overexpression
of AKR1C3 increased GSH levels in EAC cells. Supportively, public data analysis using
the GSEA method reveals that GSH metabolism signature is positively associated with
AKR1C3 expression. Therefore, AKR1C3 activates AKT and increases GSH chronologi-
cally, through which process it scavenges the overproduced ROS; thus, EAC cells may be
protected from apoptosis.

It is also possible that AKR1C3 mediates chemotherapy resistance through the func-
tion of drug metabolism. Li et al. found that inhibiting the 11-ketoprostaglandin reductase
activity of AKR1C3 could enhance the radiation sensitivity in ESCC [32]. In addition,
Matsunaga et al. reported that AKR1C3 showed doxorubicin-reductase activity in gas-
trointestinal cancer cells [62]. Consistently, GSEA analysis from the TCGA dataset shows
drug-metabolism-related enzymes upregulated in the AKR1C3-high group (Figure S2E,F),
which may further support the role of AKR1C3 in chemo-resistance. Further investigation
is needed for a deeper understanding of the role of AKR1C3 in drug metabolism.

5. Conclusions

Our results demonstrate that AKR1C3 might modulate chemotherapy resistance
in EAC. Via the AKT signaling pathway, AKR1C3 could accumulate GSH, which can
neutralize intracellular ROS levels and decrease oxidative stress, thus finally resulting
in the chemo-resistance in EAC (Figure 6). Therefore, we propose that AKR1C3 may
act as a potential molecular marker to predict chemotherapy response in EAC cells. A
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better understanding of the complex interplay between AKR1C3 and redox homeostasis
provides more potent therapeutic combinations for EAC to overcome the conventional
therapy resistance.

Figure 6. Schematic picture of AKR1C3 regulating intracellular ROS levels and protecting EAC cells
from chemotherapy-induced apoptosis.
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Figure S3: AKR1C3 mediates chemo-resistance through regulating redox-homeostasis, Figure S4:
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Primers for qRT-PCR.
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Abbreviations

ADH4 Alcohol dehydrogenase 4
ADH6 Alcohol dehydrogenase 6
AKRs Aldo-keto reductases
AKR1C3 Human aldo-keto reductase family 1 member C3
BE Barrett’s esophagus
BSO L-Buthionine-S,R-sulfoximine
ChIP Chromatin immunoprecipitation
CXCR4 C-X-C motif chemokine receptor 4
EAC Esophageal adenocarcinoma
EC Esophageal cancer
EMT Epithelial–mesenchymal transition
ESCC Esophageal squamous cancer cell
FBS Fetal bovine serum
5-FU 5-Fluorouracil
GEO Gene Expression Omnibus
GSEA Gene set enrichment analysis
GSH Glutathione
H2O2 Hydrogen peroxide
IRS-1 Insulin receptor substrate protein 1
PFA Paraformaldehyde
PKB Protein kinase B
PTEN Phosphatase and tensin homolog
PTPs Protein tyrosine phosphatases
NAC N-acetyl cysteine
NADPH Nicotinamide adenine dinucleotide phosphate
NOXs NADPH oxidases
MTT 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide
ROS Reactive oxygen species
shRNA Short hairpin RNA
SNAIL1 Snail family transcriptional repressor 1
TCGA The Cancer Genome Atlas
TSS Transcription start site
UGT1A6 UDP glucuronosyltransferase family 1 member A6
ZEB-1 Zinc finger E-box-binding homeobox 1
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