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Abstract

Background: Computer Aided Diagnosis (CAD), which can automate the detection process for ocular diseases, has
attracted extensive attention from clinicians and researchers alike. It not only alleviates the burden on the clinicians by
providing objective opinion with valuable insights, but also offers early detection and easy access for patients.

Method: We review ocular CAD methodologies for various data types. For each data type, we investigate the
databases and the algorithms to detect different ocular diseases. Their advantages and shortcomings are analyzed
and discussed.

Result: We have studied three types of data (i.e., clinical, genetic and imaging) that have been commonly used in
existing methods for CAD. The recent developments in methods used in CAD of ocular diseases (such as Diabetic
Retinopathy, Glaucoma, Age-related Macular Degeneration and Pathological Myopia) are investigated and
summarized comprehensively.

Conclusion: While CAD for ocular diseases has shown considerable progress over the past years, the clinical
importance of fully automatic CAD systems which are able to embed clinical knowledge and integrate
heterogeneous data sources still show great potential for future breakthrough.

Keywords: Computer Aided Diagnosis (CAD), Ocular diseases, Review, Clinical data, Ocular imaging, Genetic
information

Background
Patients with ocular diseases are often unaware of the
asymptomatic progression of the said disease [1] until at
a later stage when treatment is less effective in prevent-
ing vision impairment [2]. Though regular eye screen-
ings enable early detection and timely intervention of
such diseases, it would put a significant strain on lim-
ited clinical resources. Computer Aided Diagnosis (CAD)
systems, which automate the process of ocular disease
detection, are urgently needed to alleviate the burden on
the clinicians.

Owing to the fast pace of technological advancements
in both hardware and software, many CAD systems have
been developed for the diagnosis of ocular diseases over
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the past years, though most of them are still undergo-
ing evaluation or clinical validation. For example, Fujita
et al. [3] discussed an emerging CAD system using reti-
nal fundus images for the detection of glaucoma, diabetic
retinopathy (DR) and hypertensive retinopathy. Their
project has entered the final stage of development, and
commercialized CAD systems ought to appear by its
completion.

Though such fully automated systems are not yet on the
market, semi-automated and manual computer systems
incorporating these CAD systems are relatively widely
used, with several clinical publications already reporting
on their usage. Examples of the development of such sys-
tems include IVAN [4] from University of Wisconsin and
more recently SIVA from National University of Singapore
[5] for semi-automated vascular analysis. Software pack-
ages allowing for processing of data garnered from these
systems also exist: ADRES 3.0 by Perumalsamy et al. [6] is
used for the grading of DR and has been commercialised
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and deployed for use in diabetic centres and general physi-
cian clinics in India; the Singapore Eye Research Institute
has also been running clinical trials for the diagnosis of
several ocular diseases (e.g., pathological myopia (PM),
DR and age related macular degeneration (AMD)) using
a uniform set of ophthalmic image reading and analysis
protocols [7].

This survey covers three types of data for CAD sys-
tems: clinical data, image based data and genetic data.
Clinical data refers to a patient’s demographic informa-
tion (e.g., age, race etc.) and data acquired from clini-
cal laboratory tests or exams, e.g. intra-ocular pressure
(IOP), but excludes data acquired from digital imaging or
genomic tests (Section “Result: CAD of ocular diseases
based on clinical data”). Image based data refers to
images captured using an imaging device for observing
the pathology in the affected part of the eye (details are in
Section “Imaging modalities”). Genetic information refers
to any data obtained from an individual’s DNA, genes
or proteins (Section “Result: predicting ocular diseases
based on genetic information”). These definitions are spe-
cific to this paper and may vary depending on context. Of
the three data types, CAD systems using clinical data has
already been widely studied in the clinical field [8-10]. As
far as CAD using genetic information is concerned, recent
advancements in genotyping technology have made indi-
vidual genetic information more commonly available, but
it is still unfeasible to utilise genetic information for
CAD systems on a large scale presently. Perhaps with
time, genetic information will find its rightful place in
medicine by supplementing phenotypic clinical data with
validated genetic interpretations [11]. We cover genetic
data as a possible input to future CAD systems. A con-
siderable amount of the survey is focused on the usage
of image based data in CAD systems as they are by
far the most important type of data in ocular disease
diagnosis.

There have been surveys on retinal imaging in the
area of ocular research [12,13]. However, there lacks a
broader literature survey on using CAD for ocular dis-
ease diagnosis. This has motivated us to write a systematic
review of recently developed methods for CAD in ocular
research.

Methods
In this work, we review research and development on
automatic ocular disease diagnosis in the light of three
data types, viz. clinical, image and genetic. For each
data type, we investigate the algorithms and available
databases developed for different ocular diseases. The
associated publications were retrieved from two liter-
ature databases, PubMed and IEEEXplore. Considering
the works which use images as data, to understand the

major image modalities used for CAD applications and
the trends of research areas, we summarize the statistics
of image-based studies conducted on various ocular dis-
eases. We examine the biomedical databases to extract the
known genetic information regarding ocular diseases.

The results of the review are presented in three sections:
Sections “Result: CAD of ocular diseases based on clinical
data” and “Result: CAD of ocular diseases based on imag-
ing” describe the CAD of ocular diseases based on clini-
cal data and ocular imaging respectively. Section “Result:
predicting ocular diseases based on genetic information”
concerns studies relating genomic informatics to disease
prediction. Furthermore, in Section “Discussion” we dis-
cuss the observed trends in the field and the possibility of
CAD systems based on integrated data sources.

Result: CAD of ocular diseases based on clinical
data
One of the pioneer research works on Clinical Deci-
sion Support Systems (CDSS), CASNET [14] (causal-
associational network), was developed in late 1970s to
assist in the diagnosis of glaucoma. Clinical data used
in CASNET covered symptoms reported by the patient,
e.g., ‘ocular pain’, ‘decreased visual acuity’ and various eye
examination results, e.g. visual acuity, IOP, anterior cham-
ber depth, angle closure, pupil abnormality and corneal
edema [15]. CASNET used a descriptive model of the dis-
ease process for logical interpretations of clinical findings
for glaucoma. The model representing pathophysiolog-
ical mechanisms had the form of a semantic net with
weighted links. It represented early medical expert sys-
tems, providing a framework describing the knowledge of
expert consultants and simulating various aspects of the
cognitive process of clinicians.

In 2002, Chan et al. [16] reported the first imple-
mentation of Support Vector Machines (SVM) in glau-
coma diagnosis. Clinical data used in the research was
the output from Standard Automated Perimetry (SAP),
a common computerized visual field test. The authors
compared the performance of a number of machine learn-
ing algorithms with SAP output. The machine learn-
ing algorithms studied included multilayer perceptron
(MLP), SVM, Linear and Quadratic Discriminant Analy-
sis (LDA and QDA), Parzen window, mixture of Gaussian
(MOG), and mixture of generalized Gaussian (MGG).
It was observed that machine-learning-type classifiers
showed improved performance over the best indexes
from SAP. The authors also discussed the advantage
of using feature selection to further improve the clas-
sification accuracy with a potential to reduce testing
time by diminishing the number of visual field location
measurements.

In 2011, Bizios et al. [17] conducted a study investigat-
ing the data fusion methods and techniques for simple
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combinations of parameters obtained from SAP and mea-
surements of the Retina Nerve Fibre Layer Thickness
(RNFLT) obtained from Optical Coherence Tomography
(OCT) for diagnosis of glaucoma using Artificial Neural
Networks. The results showed that the diagnostic accu-
racy from a combination of fused SAP and OCT data
was higher than using either of the two alone. This was
the first reported study using fused data for glaucoma
diagnosis.

A recent study [18] investigates the relationship
between the central corneal thickness (CCT), Heidelberg
Retina Tomography II (HRTII) structural measurements
and IOP using an innovative non-linear multivariable
regression method, in order to define the risk factors in
future glaucoma development.

Two recent works on ocular disease diagnosis based on
clinical data need to be mentioned here. Liu et al. [19]
developed an automatic glaucoma diagnosis and screen-
ing architecture, automatic glaucoma diagnosis through
medical imaging informatics (AGLAIA-MII), which com-
bined subjects’ personal data, imaging information from
Digital Fundus Photographs (DFPs), and patients’ genome
information for glaucoma diagnosis. Features from each
data source were extracted automatically. Subsequently,
these features were passed to a multiple kernel learning
(MKL) framework to generate a final diagnosis outcome.
In another work, Zhang et al. [20] proposed a computer-
aided diagnosis framework for Pathological Myopia (PM)
based on Biomedical and Image Informatics. These het-
erogeneous data sources contained fundus images, demo-
graphic/clinical and genetic data. Their system combined
these potentially complementary pieces of information
to enhance the understanding of the disease, provid-
ing a holistic appreciation of the multiple risks factors
as well as improving the diagnostic outcomes. A data-
driven approach was proposed to exploit the growth
of heterogeneous data sources to improve assessment
outcomes.

Other less prevalent diseases which are detected using
clinical data are briefly explained in the following:

Trachoma: Most people with trachoma in its initial
stages display no signs or symptoms. Clinically the diag-
nosis of trachoma can be done by using magnifiers and
a flashlight (physical examination) or through a cultural
sample of bacteria from the eye tested in a laboratory [21].

Onchocerciasis: Onchocerciasis is the 2nd leading cause
of infectious blindness worldwide. Also called ‘river
blindness’, it is a skin and eye disease caused by the
parasitic worm and spread by blackflies that breed in fast-
flowing water. The two common diagnostic techniques are
skin biopsies and serological assays [22].

Clinical databases
There are a number of large scale or population-based eye
studies conducted in various countries. For example,

• Blue Mountains Eye Study (Australia) [23]
• Singapore Malay Eye Study [24]
• Singapore Indian Eye Study [25]
• Singapore Chinese Eye Study [26]

Many research works conducted on various ocular dis-
eases have been published based on the data collected
in these eye studies. However, the data is not publicly
available in research community.

Result: CAD of ocular diseases based on imaging
In ophthalmology, ocular imaging has developed rapidly
during the past 100 over years and play an critical role in
clinical care and ocular disease management [27]. Large-
scale systematic research and development of CAD from
radiology and medical images began in the early 1980s.
The first report on retinal image analysis was published
in 1973, focusing on vessel segmentation [28]. In 1984,
Baudoin et al. [29] described an image analysis method for
detecting lesions related to DR.

Over the past 20 years, developments in image process-
ing relevant to ophthalmology have paved the way for the
development of automated diagnostic systems for many
diseases such as DR [30], AMD [31], glaucoma [32] and
cataract [33]. These diagnostic systems offer the potential
to be used in large-scale screening programs, with signif-
icant resource savings, as well as freedom from observer
bias and fatigue. This section briefly mentions such CAD
systems based on ocular imaging. Details are mentioned
in Appendix B. The imaging modalities used by these
systems are first introduced below.

Imaging modalities
Figure 1 shows the anatomy of eye. The visible parts of the
eye include the transparent cornea, the sclera, the iris and
the pupil. A ray of light, passes through the cornea and
anterior chamber, followed by the pupil, the lens and the
vitreous before finally focusing on the retina [12].

Various medical imaging devices have been developed
to capture the different parts of the eye. These imaging
modalities are developed based on various technologies
and the captured images are used to observe various
pathological signs. Table 1 lists the anatomical structure(s)
and the associated disease(s) each imaging modality is
able to observe.

Though the eye fundus has been observed since 1850
with the invention of the ophthalmoscope by the German
physician Hermann Von Helmholtz [34], it was not until
the mid 1920s that the Carl Zeiss Company made available
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Figure 1 Ocular Anatomy and various image modalities. An illustration of the parts of the eye and the imaging modalities associated with them.

the first commercial fundus camera. In the late 1950s
fundus photography became ubiquitous in the practice
of ophthalmology for general fundus examination and
as a means for recording, storing, and indexing images
of a patient with relatively simple and affordable equip-
ment [13]. In recent years, other important imaging
modalities, such as fluorescent angiography, stereo fun-
dus photography and confocal laser ophthalmoscopy have
appeared to enhance diagnostic and observational capa-
bilities in ophthalmology [35].

Major image modalities used for CAD applications and
other research trends are shown in Figure 2. These statis-
tics are obtained by searching the IEEEXplore publication
database and demonstrates the trend of research areas and
major imaging modalities for ocular research. Figure 2(a)
shows the number of publications related to various ocu-
lar imaging modalities, while Figure 2(b) shows the num-
ber of publications on CAD for ocular diseases using

retinal images. The keywords associated with the search
are mentioned in the legend of the corresponding figures.
It is observed from Figure 2(a) that of all the imaging
modalities, DFP has been attracting the most interest.
This observation is further substantiated by a distribu-
tion of the works surveyed in this paper (Table 2) wherein
the works are arranged according to the disease and the
associated imaging modality. Note that imaging modali-
ties or diseases with very few associated works have not
been included.

The possible reasons for this observation are two fold.
First, information extracted from the eye fundus could be
useful in detecting a variety of diseases such as heart disor-
ders, stroke, hypertension, peripheral vascular disease and
DR [13]. Furthermore, the availability of inexpensive fun-
dus imaging cameras makes eye examination simple and
cost effective. Another modality which is gaining inter-
est in the research community is OCT. First proposed

Table 1 Imaging modalities and diseases to observe

Imaging modalities Technology Targets Diseases observed

Retina Fundus 2D; considerably larger areas of the fundus Interior surface of the eye (retina; DR, glaucoma, AMD
than can be seen at one time with handheld optic disc; macular; posterior pole)

ophthalmoscopes

OCT 3D; high resolution cross-sectional imaging Cornea thickness, retinal nerve fibre Glaucoma, macular
layer tissue, macular thickness degeneration and edema

Heidelberg Retina 2D; confocal scanning laser ophthalmoscope Retina Glaucoma
Tomography (HRT)

Slit Lamp 2D; high-intensity light source stereoscopic Eyelid, scelra, conjunctiva, iris, Cataract
magnified view of the eye structures lens, cornea

RetCam 2D; wide angle imaging Anterior segment, anterior chamber Anterior segment lesions,
Retinopathy of Prematurity

Scanning laser High resolution cross-sectional imaging Thickness of RNFL Glaucoma
polarimetry (SLP)
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Figure 2 Publication trends for ocular disease detection. (a) Number of publications each year for different ocular imaging modality (b)
Number of publications each year for different ocular disease detection using retinal image (queries to IEEEXplore are as on May 2013).

in 1991 [163], OCT has been widely applied in medical
imaging especially for imaging the eye. The most impor-
tant advantage of OCT compared with DFP is that it
provides quantifiable depth information enabling a 3D
scan of the target part. Therefore it is possible to detect
pathologies with topological changes in-vivo. Although
a powerful tool [164], in early years, the progress of
OCT-based ocular disease detection has been constrained
by the speed of OCT imaging. Early version of OCT
required lengthy amounts of time to capture an image.
In recent years, with the progress of spectral domain
OCT (SD-OCT), which needs only 6 seconds to take a
high resolution image, OCT-based ocular disease detec-
tion methods are increasing in popularity [165]. A brief
description of image databases using DFP and OCT is pre-
sented in Appendix A. In terms of the diseases, the most

studied disease is DR, followed by glaucoma and AMD
(Figure 2(a)).

The images associated with the above mentioned
modalities often need preprocessing to remove noise and
improve contrast before they can be analyzed further
using CAD methods.

Image preprocessing
Some of the common preprocessing methods are his-
togram equalization [79,87], shade correction [88,89,96],
convolution with a Gaussian mask [97], median filtering
[98] and blood vessel removal [105,106].

Most of the contrast enhancement techniques use his-
togram equalization [79,87]. Shade correction is often
used to normalize illumination [88,89,96]. For noise
reduction, the commonly used techniques are convoluting

Table 2 A distribution of works on CAD of major ocular diseases based on imaging

Modality AMD Cataract DR Glaucoma PM

OCT [31,36] [37] [38-40,44-46,49] [41-43,47,48]

Slit Lamp [33,50-58]

SLP [59-62]

Retina Fundus [63-65,74-76,84-86,93-
95,102-104,111,112,119-
121,127,128,135,136,142-
144,147]

[66-68,77-79,87-89,96-98,105-
107,113-115,122-124,129-
131,137-139,145,146,148-158]

[32,69,70,80-82,90-
92,99-101,108-110,116-
118,125,126,132-134,140,141]

[20,71-73,83]

HRT [159-162]
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with a Gaussian mask [97] or using a median filter [98].
Some of the methods also use blood vessel removal
as a preprocessing step since they can be detected as
false positives while detecting red lesions, especially MAs
[105,106].

The choice of a suitable preprocessing method depends
on the desired effect. Antal and Hajdu [107] experimen-
tally showed that contrast limited adaptive histogram
equalization [113] effectively improves local contrast but
also introduces noise. Similarly, vessel removal is used
to reduce false positives which can be found during red
lesion detection. Considering this subjective nature of the
preprocessing methods [107], proposed to choose the best
pair of preprocessing and segmentation methods through
a fusion algorithm.

The remaining part of this section surveys the works
on detecting the major ocular diseases, focusing mainly
on DR, PM, AMD and glaucoma since these diseases are
investigated more than others. Also, for these diseases,
DFP is still the main stream modality, but OCT is rapidly
gaining widespread adoption. Therefore we focus on these
two modalities. The works on other diseases, such as
cataract and corneal opacity, will be reviewed briefly in the
section Other diseases (Section “Other diseases”).

Diagnostic methods for diseases
This section briefly introduces causes and symptoms for
the major ocular diseases, methods of detecting them
from images and a brief discussion on the state-of-the-
art and possible future directions. More details on the
algorithms are mentioned in Appendix B.

Diabetic retinopathy
Causes and symptoms DR is a side effect of diabetes
which is caused when the blood vessels in the eye start
getting blocked due to high sugar content in the blood
[166]. Reduced blood supply to the retina can even cause
blindness [98]. Symptoms of DR include lesions appear-
ing on the retinal surface. These lesions are visible in a
DFP. Figure 3(a) and (b) show the DFPs of a normal eye
and a DR affected eye, respectively. DR-related lesions can
be categorized into red lesions such as Microaneurysms
(MA) and Haemorrhages and bright lesions such as
Hard Exudates (HE) and cotton-wool spots (Figure 3(c)).
There are a few works which detect other symptoms as
well [146].

Detection Almost all of the work for detecting DR has
been performed using DFPs. Most of these approaches
detect lesions with special focus on detecting red lesions
(Figure 3(d)) especially MAs. MAs receive higher atten-
tion since they indicate DR at an early stage [98]. This is
important considering that one of the goals for CAD is to
provide early detection (Section “Background”). Lesions

are detected using morphological operations [114,167] or
image filters [130,131]. From our study, we could not find
any work on detecting lesions from OCT images.

Brief discussion From the survey of works on DR, it was
observed that most of the works have focused on detect-
ing lesions associated with DR. Few works [156] have gone
further to convert lesion detection to DR detection. Even
for DR detection, most of the works surveyed, have pre-
sented their results as a binary detection, i.e whether DR
is present or not in an eye. It might be useful to provide a
grade to the severity of DR.

In terms of the approach used, only few works [157]
have attempted to bypass the lesion detection and used
non-clinical features for DR detection. Future research
can focus on filling these gaps.

Glaucoma
Causes and symptoms Glaucoma is characterized by the
progressive degeneration of optic nerve fibres, which leads
to structural changes of the optic nerve head, the nerve
fibre layer and a simultaneous functional failure of the
visual field. As the symptoms only occur when the dis-
ease is quite advanced, glaucoma is called the silent thief
of sight. Although glaucoma cannot be cured, its progres-
sion can be slowed down by treatment. Therefore, timely
diagnosis of this disease is important [168,169].

Detection Glaucoma diagnosis is typically based on the
medical history, intra-ocular pressure and visual field loss
tests together with a manual assessment of the Optic Disc
(OD) through ophthalmoscopy. OD or optic nerve head
is the location where ganglion cell axons exit the eye to
form the optic nerve, through which visual information
of the photo-receptors is transmitted to the brain. In 2D
images, the OD can be divided into two distinct zones;
namely, a central bright zone called the optic cup (in short,
cup) and a peripheral region called the neuroretinal rim
[90]. Glaucoma causes an enlargement of cup region with
respect to OD (thinning of neuroretinal rim) called cup-
ping [69]. This is one of the important indicators and
various parameters related to cupping have been used to
detect glaucoma.

These parameters include vertical cup to disc ratio
(CDR) [170], disc diameter [171,172], ISNT rule [173],
peripapillary atrophy (PPA) [174] and notching [175]. The
most popular measurement is CDR, which is computed
as the ratio of the vertical cup diameter (VCD) to vertical
disc diameter (VDD) clinically (Figure 4).

Brief discussion Utilizing DFP and OCT to detect glau-
coma are two popular and active directions with OCT
having a shorter history. Till now, time-domain OCT and
SD-OCT have been widely utilized to perform glaucoma
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Figure 3 How does DR look in a DFP. (a) DFP of a normal eye. (b) DFP of an eye affected with DR. (c) Common lesions associated with DR. (d) A
distribution showing number of works detecting each type of symptom.

detection [38-40,44-46,49]. However, swept-source OCT
(SS-OCT) has not been further exploited for the research
of glaucoma. For DFP, the combined analysis of stereo
DFP and OCT for extracting disc parameters may boost
current performance of state-of-the-art algorithms.

Age-related macular degeneration (AMD)
Causes and symptoms AMD causes vision loss at the
central region and blur and distortion at the peripheral
region (Figure 5). Depending on the presence of exudates,
AMD is classified into dry AMD (non-exudative AMD)

Figure 4 Major structures of the optic disc in DFP. The region enclosed by the blue line is the optic disc; the central bright zone enclosed by the
red line is the optic cup; and the region between the red and blue lines is the neuroretinal rim.



Zhang et al. BMC Medical Informatics and Decision Making 2014, 14:80 Page 8 of 29
http://www.biomedcentral.com/1472-6947/14/80

Figure 5 Vision damage caused by AMD. (a) Image of a normal eye. (b) Image of an eye affected with AMD. (Image taken from Wikipedia
http://en.wikipedia.org/wiki/Macular_degeneration).

and wet AMD (exudative AMD). Dry AMD results from
atrophy of the retinal pigment epithelial layer below the
retina [176]. It causes vision loss through loss of photore-
ceptors (rods and cones) in the central part of the retina.
The major symptom and also the first clinical indicator of
dry AMD is drusen, sub-retinal deposits formed by retinal
waste. Wet AMD causes vision loss due to abnormal blood
vessel growth (choroidal neovascularization) in the chori-
ocapillaris, through Bruch’s membrane, ultimately leading
to blood and protein leakage below the macular. Bleeding,
leaking, and scarring from these blood vessels eventually
cause irreversible damage to the photoreceptors and rapid
vision loss if left untreated. The major symptom of wet
AMD is exudation [177].

Detection AMD can be detected from DFP, OCT, X-ray,
and Magnetic Resonance Imaging (MRI). Among them,
DFP is perhaps the most widely used one for AMD detec-
tion, while OCT is rapidly growing in use. Most of the
approaches detecting AMD from DFPs focus on detect-
ing drusen using local thresholding [63,65], wavelets [63],
background modeling [94] and saliency [102] etc. Some of
the works have also attempted to bypass drusen detection
and directly predict AMD [111,112,119,120,127,128,178].
Considering detecting AMD from OCT, it is easier to
observe exudates and edema in OCT images. OCT can
segment out retinal layers. Texture and thickness of these
layers can help in distinguishing normal region and region
corresponding to exudates [31,36].

Brief discussion From the above works, it was observed
that although OCT imaging is increasingly prevalent, DFP
is still the mainstream image modality for AMD detec-
tion and screening. It is an active research avenue. How-
ever with the progress of SD-OCT, OCT based AMD
detection and screening is emerging as a new area of
focus.

Pathological myopia (PM)
Causes and symptoms As one of the leading causes of
blindness worldwide, Pathological myopia (PM) is a type
of severe and progressive nearsightedness characterized
by changes in the fundus of the eye, due to posterior
staphyloma and deficient corrected acuity. PM is differ-
ent from myopia which is caused by the lengthening of
the eyeball. For myopia both environmental and genetic
factors have been associated with its onset and progres-
sion [179], while PM is primarily a genetic condition
[180]. Unlike myopia, PM is accompanied by degenera-
tive changes in the retina, which if left untreated can lead
to irrecoverable vision loss. The accurate detection of PM
will enable timely intervention and facilitate better disease
management to slow down the progression of the disease.

Detection PM has been detected mostly from DFPs
where retinal degeneration is observed in the form of PPA
[181,182]. PPA is the thinning of retinal layers around
the optic nerve and is characterized by a pigmented ring
like structure around the optic disc. Apart from DFPs,
there have been studies to detect PM from OCT images
[183] however CAD systems for detecting PM from OCT
images have not emerged yet.

Brief discussion Ohno-Matsui et al. [47] analyzed the
relationship between the shape of the sclera and the
myopic retinochoroidal lesions, and concluded that SS-
OCT can provide important information on deformations
of the sclera which are related to myopic fundus lesions.
Such clinical discoveries provide strong evidences for the
use of SS-OCT as a good candidate for future PM-CAD
development.

Other diseases
Other major diseases that may lead to blindness include
cataract and corneal opacity. Cataract is characterized by

http://en.wikipedia.org/wiki/Macular_degeneration
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a cloudiness in the lens while corneal opacity finds cloudi-
ness in the cornea. CAD research has been conducted for
cataract grading rather than detection using on slit lamp
images [33]. Grading of cataract severity is essential for
cataract surgical planning [184] and an automated grading
system offers an objective and efficient solution. Grading
is performed by locating the cloudiness and assessing its
opacity level [33]. For corneal opacity, there have not been
any automatic detection methods reported so far, to the
best of our knowledge.

Discussion
Feature extraction plays an essential role in ocular image
based CAD systems. From the survey, we observe two
broad classes of features used in the ocular CAD systems.
Approaches using each one of these are described below:

Approaches using clinical features
Many of the retinal image based CAD systems employ
clinical domain knowledge during the feature selection
and decision making processes. Such systems focus on
identifying disease associated landmarks from images. A
number of clinically relevant features can be extracted
from the identified landmarks. For example, the follow-
ing image cues are highly related to glaucoma: large optic
CDR [185]; appearance of optic Disc haemorrhage (DH)
[186]; thinning of the neuroretinal rim (NRR) or notch-
ing of the NRR [175] and presence of PPA [174]. These
features based on clinical knowledge can be described as
clinical features.

The early efforts in retinal image analysis were focused
on optic disc localization. Lowell et al. [187] used special-
ized template matching to locate optic disc, followed by
a global elliptical and local deformable contour model for
disc segmentation. Xu et al. [132] presented a deformable-
model-based algorithm for the detection of the optic disc
boundary in fundus images. Later efforts were spent in
optic cup detection. Abramoff et al. [133] analyzed stereo-
based DFPs for rim and cup segmentation via pixel fea-
ture classification. Wong et al. [188] detected the optic
cup using vessel kinking analysis. Joshi et al. [189] pro-
posed a depth discontinuity (in the retinal surface)-based
approach to estimate the cup boundary. Based on cup and
disc detection, CDR can be obtained based on which CAD
systems for automatic glaucoma detection were developed
[32,69,70,80]. Cheng et al. [73,190] developed PPA detec-
tion algorithms for Pathological Myopia (PM) detection.
Liang et al. [104] focused on detecting drusen presented
in retina for automatic AMD detection. Other researchers
worked on CAD systems for DR based on various vascula-
ture segmentation algorithms, e.g., matched filters [66,67],
vessel tracking [68] or morphological processing [77,78].

The advantages of using clinical features in CAD sys-
tems are obvious: the CAD results can be interpreted and

presented with clinical meaning, furthermore, the prior
knowledge allows modeling the disease detection with a
small data set, which is critical when the training data is
insufficient.

However, the detection models built using clinical fea-
tures have a number of limitations as mentioned below:

• The modeling process is localization or segmentation
dependent. For example, [32,69] detect glaucoma
based on optic cup and disc segmentation, a small
error in disc localization may propagate downstream
and finally yield an error in detection.

• The systems are usually threshold-based or
rule-based in the decision making stage thus it, by
nature, does not produce a quantifiable measurement
for the disease detection.

• A model built upon prior knowledge may not evolve
with the growing available data.

• As different diseases may possess different landmark
features, the system developed for one disease may
not be adaptable for other diseases.

• Such systems usually needs to learn from manually
curated ground truth images, which is not only time
consuming but also prone to human error.

• Finally and most importantly, detection of one
particular disease associated landmark may neither
be the necessary nor be the sufficient condition for
disease detection. For example, [71,83] proposed to
recognize PM based on PPA detection, however,
having PPA may or may not imply having PM.

Detecting all the retinal changes in DFPs is much more
difficult compared to detecting a particular landmark. Sta-
tistical learning based on image feature extraction can
be a possible solution to address these challenges. The
following section casts light on this possibility.

Approaches using non-clinical features
With an increasing availability of image databases and
advances in statistical learning, new CAD systems are
shifting to non-clinical features. Non-clinical image fea-
tures relate to the content of the image such as color,
texture and gradient.

Many image feature extraction techniques can be
applied to retinal image based CAD systems. Bock et al.
[81] used an appearance based approach to quantita-
tively generate a glaucomatic risk index from retina
images. Cheng et al. [91] used Focal Biologically Inspired
Feature (FBIF) for glaucoma type classification. Wang
et al. [191] presented a DFP mosaic algorithm based on
Scale-Invariant Feature Transform (SIFT) feature [192] to
overcome low contrast and geometric distortion between
different fields of view of DFPs. Extracted SIFT fea-
tures were described using vectors to determine the
matching feature point pairs between two images. The
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transformation matrix was then computed according to
purified matching point to generate a panoramic picture
with a wide field of view containing more information
which may improve CAD systems. Xu et al. [181] pre-
sented a CAD system for PM detection based on SIFT
features extracted from a DFP. The system achieved a high
AUC value (98.4%) as compared to the earlier approaches
to detect PM using particular image cues [83].

Another example is the use of superpixels [193,194]. A
superpixel is a perceptually consistent unit with all pixels
in a group being similar in color and texture. It reduces the
complexity of images from thousands of pixels to only a
few hundred superpixels. Algorithms such as Simple Lin-
ear Iterative Clustering (SLIC) [195] have been developed
to aggregate nearby pixels into superpixels whose bound-
aries closely match true image boundaries. Many features
can be computed from superpixels such as shape, color,
location and texture, and they can be used for classifi-
cation via learning algorithms. Xu et al. [92] presented
a superpixel based learning framework based on retinal
structure priors for glaucoma detection. The use of super-
pixels leads to a more descriptive and effective repre-
sentation than those employed by pixel-based techniques
while at the same time yielding significant computational
savings over methods based on sliding windows.

Non-clinical features can be considered to be asso-
ciated with a data driven approach, which has shown
many advantages over the approach using clinical fea-
tures. Extracting non-clinical features is followed by learn-
ing from the labeled examples, therefore fewer manual
ground truth labeling is needed as compared to the
approaches using clinical features. As these systems do
not rely on particular image landmarks, they avoid the
error cascading due to initial segmentation or localization.
Non-clinical features are generalized features which make
it possible for the system to transfer knowledge learned
from one disease to other diseases. Such feature extrac-
tion can facilitate learning algorithms such as multi-task
learning [196,197] and transfer learning [198]. Further-
more, since the techniques apply statistical evaluation, the
performance of the systems is expected to improve when
more data is available. The result of such systems can
be a quantifiable score other than Yes or No, which is
particularly useful in clinical assessment. The use of non-
clinical features for CAD is a promising area for future
CAD systems.

Result: predicting ocular diseases based on genetic
information
Genetic information can be used to detect heritable dis-
ease related genotypes, mutations or phenotypes for clini-
cal purposes [199]. Ocular diseases are highly inheritable,
thus genetic information can provide important insights
into disease risk and disease prognosis.

Heritability of ocular diseases
Heritability is the proportion of phenotypic variation in a
population that is attributable to genetic variation among
individuals [200].

According to [201], heritability can be presented in
statistical terms a linear mixed model, where the observ-
able characteristics of an organism can be represented as
a linear function of genetic and environmental factors,
namely: Phenotype(P) = Genotype(G) + Environment(E),
and the heritability can be represented as H2 = G/P
where H2 represents the heritability due to all genetic
effects. Since the beginning of the 20th century, heri-
tability studies have been conducted on numerous diverse
biological and psychological human traits. Among these,
attempts have been made to estimate the genetic contri-
bution to human longevity and lifespan [202,203], and a
person’s susceptibility to becoming a smoker [204,205].

In 1992, the first ophthalmic twin study was conducted
to investigate the heredity of refractive error [206].

Since then, over 100 articles have been published in
the scientific literature examining the genetic contribu-
tion to variation in ophthalmic traits. Table 3 summa-
rizes the heritability of various ocular diseases or ocular
related phenotypes as reported in the literature. It is
observed that the heritability values reported in different
studies vary from each other, as the value is population
related.

The range of heritability values are shown in Figure 6,
from which it is observed that Central Corneal Thickness
is the most heritable trait while PM spans a wider range
due to its population dependence, and cataract seems a
less heritable disease.

Knowledgebases of genetic markers for ocular diseases
For the past 20 years, biomedical research community
has spend huge efforts in identifying genetic markers for
heritable diseases, through classical linkage studies [231]
or recent Genome-wide association studies [232]. The
discovered disease related biomarker include genes, muta-
tions or Single-nucleotide polymorphisms (SNPs). Such
valuable knowledge has been continuously accumulated
in various biomedical databases which are usually called
as knowledgebases. This section introduces the knowl-
edgebases highly relevant to this study.

• OMIM - Online Mendelian Inheritance in Man
OMIM is a continuously updated catalog of human
genes and genetic disorders and traits, with particular
focus on the molecular relationship between genetic
variation and phenotypic expression [233]. It is thus
considered to be a phenotypic companion to the
Human Genome Project [234]. As on 8 May 2013, it
has more than 14, 000 disease related gene entries in
stock.
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Table 3 Heritability for ocular diseases or disease related
traits

Disease/Traits Heritability value Source

AMD 0.7 [207]

AMD 0.75 [208]

AMD 0.71 [209]

AMD 0.46-0.71 [210]

AMD 0.45 [211]

AMD (small hard drusen) 0.63 [212]

CCT 0.95 [213]

CCT 0.72 [214]

CDR 0.48 [215]

CDR 0.66 [214]

Corneal astigmatism 0.6 [216]

Corneal curvature 0.71 [216]

Cortical cataract 0.24 [217]

Cortical cataract 0.58 [218]

Glaucoma 0.63 [219]

Glaucoma 0.7 [220]

Glaucoma (shallow anterior chamber) 0.92 [221]

Hyperopia 0.75 [222]

Hyperopia 0.86-0.89 [218]

IOP 0.47-0.51 [223]

IOP 0.3 [224]

IOP 0.36 [215]

IOP 0.56-0.64 [225]

Noncongenital cataract 0.15-0.32 [226]

Nuclear cataract 0.356 [217]

Nuclear cataract 0.48 [227]

Ocular refraction 0.89-0.94 [228]

Pathological Myopia 0.306 [229]

Pathological Myopia 0.8 [230]

• GWAS Catalogue - Catalogue of Published
Genome-Wide Association Studies (GWAS)
GWAS is an approach to rapidly scan markers across
the complete sets of genome (DNA) of many people
to find genetic variations associated with a particular
disease [235]. The first GWAS published in 2005 [236]
was associated with an ocular disease. It investigated
AMD and found two SNPs that are significantly
associated with AMD. Since then, similar successes
have been reported using GWAS to identify genetic
variations that contribute to risk of type 1 diabetes
[237], Parkinson’s disease [238], heart disorders [239],
obesity [240] etc. The GWAS Catalogue http://www.
genome.gov/gwastudies/ is a collection of GWAS
discovered SNPs, hosted by NHGRI (National
Human Genome Research Institute). SNP-trait
associations listed in the GWAS Catalogue are
limited to those with p − values < 1.0 × 10−5. As on
8 May 2013, the catalog includes 1594 humane GWA
studies which examined over 200 diseases and
identified more than 10,000 disease associated SNPs.

Ocular disease related SNPs
Figure 7 shows the ocular disease related SNPs found from
the OMIM and GWAS Catalogue knowledgebases. There
are potentially many uses of these identified SNPs: a better
understanding of disease etiology, personalized medicine,
new leads for studying underlying biology and risk predic-
tion. From a risk prediction perspective, it is reasonable to
average a larger number of predictors, of which some may
have (limited) predictive power, and some actually may be
noise. The idea being that when added together, the com-
bined small signals results in a signal that is stronger than
the noise from the unrelated predictors [241].

Discovering novel disease related snps from large-scale
genome wide association study
Computational methods investigating for SNP-trait asso-
ciation study [242,243] have been developed. Such

Figure 6 Heritability for various ocular traits. The range of heritability values for different ocular traits. A higher heritability value means a higher
change of inheriting the trait.

http://www.genome.gov/gwastudies/
http://www.genome.gov/gwastudies/
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Figure 7 Ocular disease related SNPs found in OMIM and GWAS Catalogue. (query made on May 8th, 2013).

methods treat SNPs as individual players in one’s genetic
profile. Following these methods, efforts [244-246] have
been expanded to investigate those SNPs which have lit-
tle effects on disease risk individually but influence the
disease risk jointly, the phenomenon being known as
epistatic interaction, where the effects of one gene are
believe to be modified by one or several other genes.
The single-locus and epistasis SNP detection based algo-
rithms test individual SNPs or pair of SNPs without taking
into consideration, the underlying biological intertwining
mechanism. Whereas, the real gene-gene interaction par-
ticipating in biological pathway are often composed of a
group of arbitrary number of SNPs. To date, exhaustively
detecting significant SNP groups of arbitrary size is still
computationally infeasible [245].

Recently, machine learning especially sparse learning
algorithms have been introduced for GWAS data anal-
ysis. This is intended to tackle the challenge of iden-
tifying a group of N potent but interwinely correlated
SNPs, some of which may not pass the stringent thresh-
old by themselves. Penalized regression based on Least
Absolute Shrinkage Selector Operation (LASSO) [247]
have recently been explored for GWAS analysis. Some
researchers [248,249] have proposed 2-step approaches
for Genome-wide association analysis via shortlisting a
group of marginal predictors using penalized likelihood
maximization for further higher order interaction detec-
tion. Hoggart et al. [250] have proposed a method to
simultaneously analyze all SNPs in genome-wide and
re-sequencing association studies. D’Angelo [251] have
combined LASSO and principal-components analysis for
detection of gene-gene interactions in genome-wide asso-
ciation studies. These approaches are not global due to
the 2-stage process and none of them have considered
incorporating prior knowledge into the model building.
Prior knowledge can be combined into GWAS to improve
the power of association study [252]. it can also model
dependencies and moderate the curse of dimensionality.

Discussion
From the above survey, two major observations were
made. First, there is a trend of transition of the way of
acquiring knowledge about CAD from semi-automatic to
automatic. The second trend is the integration of hetero-
geneous data sources. These two trends are discussed in
the following subsections.

The trend of semi-automatic to automatic knowledge
acquisition
In the 1970s and 80s, research was focused on construct-
ing knowledge-bases from inputs of physicians [253,254]
for CAD tools. Building such systems required a lot
human intervention, e.g. experts’ inputs, and can be con-
sidered as a ‘semi-automatic’ way for knowledge acquisi-
tion. Over the years, the alternative approach of automatic
knowledge acquisition without inputs from clinicians or
experts, has become more popular [255,256]. One such
way of knowledge acquisition is to capture patterns in
data using non-clinical features (Section “Approaches
using non-clinical features”). This approach offers several
advantages:

• Knowledge-bases derived from datasets are more
precise in comparison with knowledge-bases
constructed from expert inputs, as the inputs
provided by human experts may be vague, due to
limited grades of perception [257]. An increased
precision of CAD systems will make them more
reliable for a mass screening application.

• Knowledge-bases constructed using the automated
approach captures empirical evidence in the data.
This approach aligns with the trend of evidence-
based decision making, which emphasizes on the use
of empirical evidence to make clinical decisions [258].

• Medical datasets embed local epidemiological
patterns. Hence the derived knowledge-bases can
result in more accurate CAD tools, as disease and
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symptom patterns vary from one region to another
[259]. A system learnt using data obtained from a
particular region can be expected to be more precise
in performing mass screening in that same region.
The physician experts on the other hand may not be
aware of local trends, especially when they do not
have sufficient experience of clinical practice in a
particular locality.

The trend of integration of heterogeneous data sources
One of the reasons, why CAD tools may be found to have
sub-optimal accuracy is that the training data may itself
lack all the attributes that are required for decision making
[260]. Combining decision support methodologies that
process information stored in different data formats has
been shown to improve the performance [261]. Apart
from laboratory information, attributes extracted from
gene profiling data, visual clues from medical image, as
well as other sources could be combined and may possibly
lead to more satisfactory accuracy.

The advances in technologies related to medical sig-
nal acquisition, medical imaging and genotyping have
resulted in a increased volume and complexity of collected
bio & medical data. This makes it difficult for physi-
cians to parse through the information while providing
timely diagnoses and prognoses. Due to its complexity,
analysis of such data has been limited to bioinformatics
applications [262]. There is a significant need for devel-
opment and improvement of computer-aided detection or
decision support systems in medicine, with an expected
amplification in the future.

In the era of information explosion, data from multi-
ple sources are becoming increasingly available. Retinal
fundus cameras can be found in numerous primary com-
munity healthcare institutions as well as optical shops.
With the dramatic reduction in genotyping costs in recent
years, it is foreseeable that SNP data can be acquired at
low cost and with as much as ease as demographic clini-
cal data in the near future. The health screening outreach
programs have allowed individuals access the clinical data
which was hard-to-access previously.

Each of these heterogeneous data sources (image fea-
tures, personal profile data, SNP data) is likely to con-
tain a different perspective on the disease risk of an
individual, based on the pathological, environmental and
genetic mechanisms of the disease. These perspectives
may potentially be complementary and a combination
of the data from these independent sources can provide
a more comprehensive and holistic assessment of the
disease.

Integration of different data sources in CAD systems
can also help in early detection since some of the
early symptoms of the disease may appear in one data
source but not the other. Consequently, using just one

single source or type of data may be limiting for early
detection.

There is no previous work attempting to combine these
three types of data for automatic disease detection except
[20] mentioned in Section “Result: CAD of ocular diseases
based on clinical data”. Possible reasons could be that only
until recently such data has become available on a large
scale. Also, researchers working on these heterogeneous
data sets usually come from different domains with dif-
ferent foci, e.g. computer vision and image understanding
researchers focused on DFP analysis, bioinformaticians
are interested in discovering disease associated SNP or
SNP groups. Effectively combining these data can maxi-
mize the information gain and pave the way for a holistic
approach for automatic and objective disease detection
and screening.

Converse to the integration of multiple data sources,
there is a possibility of using the same image to detect
multiple diseases since many ocular diseases may have
common symptoms. Along this line, there are already
machine learning algorithm such as multi-task learning
which look to solve similar problems. However, to the
best of our knowledge, currently there is no work in this
direction.

Conclusion
CAD for ocular diseases, which can automate the detec-
tion process, has attracted extensive attention from many
clinicians and researchers. They not only alleviate the
increasing burden on the clinicians by providing auto-
matic and objective diagnosis with valuable insights, but
also offer early detection and easy access for patients. In
this article, we have reviewed in detail the recent progress
of developed methods used in CAD of ocular diseases in
available literature. We investigated three types of data
(i.e., clinical, genetic and imaging) that have been com-
monly used in existing methods for CAD. A number
of major ocular diseass including DR, Glaucoma, AMD
and PM were also introduced along with existing meth-
ods that have been proposed to detect these diseases.
The necessity of turning semi-automatic acquisition of
domain knowledge into fully automatic ones (which does
not require inputs from operators) was examined. The
advantages of integrating heterogeneous data sources for
ocular disease detection were highlighted. We are of the
belief that these two trends are of great importance and
deserve further study in the future.

Appendix
A Image databases
This section briefly describes the commonly used
databases for each disease. The name of the associated
disease is mentioned in brackets after the name of the
database.
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• ORIGA−light (Glaucoma): The ORIGA−light [263]
database contains 650 annotated DFPs, including 168
glaucomatous images and 482 randomly selected
nonglaucoma images. Each image is tagged with
grading information, and manually segmented result
of optic disc and cup.

• Erlangen Glaucoma Registry (Glaucoma): The Erlangen
Glaucoma Registry [264] includes 861 eyes of 454
Caucasian subjects (239 normal eyes of 121 subjects,
250 ocular hypertensive eyes of 118 patients, 372 eyes
of 215 patients with chronic open-angle glaucoma).

• The Singapore Malay eye study (SiMES) (Glaucoma):
SiMES [24] is a population-based study conducted
from 2004 to 2007 to assess the causes and risk factors
of blindness and visual impairment in the Singapore
Malay community. The study was approved by the
institutional review board of Singapore Eye Research
Institute. The database contains 3280 subjects, with
complete or partial personal data, DFP data and
genome information for each subject. The personal
data in SiMES contains demographic data such as
age, gender and height, ocular examination data, such
as IOP and cornea thickness, as well as historical
medical data. SiMES examined a population-based,
cross-sectional, age stratified, random sample of 3280
Malays (78.7% participation rate) aged 40 to 80 years
living in Singapore.

• The Singapore Indian Eye Study (SINDI)
(Glaucoma): The SINDI [25] is a population-based,
cross-sectional study, which was conducted on 3400
Indians aged 40 to 83 years residing in Singapore.
Ocular components including axial length (AL),
anterior chamber depth (ACD), and corneal radius
(CR) were measured by partial coherence
interferometry. Refraction was recorded in spherical
equivalent (SE). After 502 individuals with previous
cataract surgery were excluded, ocular biometric data
on 2785 adults were analyzed.

• The Singapore Chinese Eye Study (SCES)
(Glaucoma): The aims of SCES [26] are to identify the
determinants of Anterior Chamber Depth (ACD) and
to ascertain the relative importance of these
determinants in Chinese persons in Singapore. 1060
Chinese participants were recruited from the
Singapore Chinese Eye Study. All subjects underwent
AS optical coherence tomography (OCT; Carl Zeiss
Meditec, Dublin, CA). Customized software
(Zhongshan Angle Assessment Program, Guangzhou,
China) was used to measure the AS-OCT
parameters. Anterior chamber depth was determined
using IOLMaster (Carl Zeiss Meditec). Univariate
and multivariate regression analysis were performed
to assess the association between ACD with ocular
biometric and systemic parameters.

• High-Resolution Fundus (HRF) Image Database
(Glaucoma): The HRF [265] database has been
established by Friedrich-Alexander University
Erlangen-Nuremberg (Germany) and the Brno
University of Technology (Czech Republic). contains
15 images of healthy patients, 15 images of patients
with DR and 15 images of glaucomatous patients.
Binary gold standard vessel segmentation images are
available for each image. Masks determining field of
view (FOV) are provided for particular datasets. The
gold standard data is generated by a group of experts
working in the field of retinal image analysis and
clinicians from the cooperating ophthalmology clinics.

• The Rotterdam Study (Glaucoma): The Rotterdam
Study [266] is a prospective population-based cohort
study investigating age-related disorders. The study
started in 1990 and is still ongoing. The original
cohort was comprised of 7983 participants 55 years
or older; ancillary studies were added later on, and in
total 14,926 participants have been enrolled. In 2007,
OCT scanning of the macular and ONH regions was
added to the armamentarium. To determine which
regions of the OCT volumes could be segmented in
what fraction of subjects, the macular and ONH of
925 consecutive subjects was imaged with the
Topcon 3-D OCT-1000 (Topcon, Tokyo, Japan).

• DIARETDB0 and DIARETDB1 (DR): These two
databases [267,268] of DFPs contain wide variety of
DR related lesions such as Hemorrhages (H),
Microaneurysms, Hard Exudates (HE), Cotton Wool
Spots (CWS) or Soft Exudates and Neovascularization.
There are 219 images in total with 25 of them
completely normal. The Field of View (FOV) is
50 deg and image resolution is 1500 × 1152 pixels.
The ground truth is in the form of locations and sizes
of the lesions. The major difference between the two
databases is that DIARETDB0 has calibration level 0
DFPs which means that the images are taken with
different fundus cameras with unknown camera
settings. However DIARETDB1 has calibration level
1 DFPs in a sense that images are taken from the
same fundus camera. DIARETDB0 is supposed to
have more variation in visual appearance across
images as compared to DIARETDB1.

• ROC (DR): ROC stands for Retinopathy Online
Challenge [269] which is a competition aiming to
compare the accuracies of MA detectors on a
benchmark database. The database consists of 50
training and 50 testing images. The ground truth
consists of the positions of the centers of MAs and
irrelevant lesions. Ground truth for the training
images is released while that for the test images is
kept with the organizers. Participants can submit
their detection results through the challenge website
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and the organizers compute a performance score for
the detections.

• Messidor (DR): Messidor database [270] consists of
1200 DFPs containing MAs, Neovascularization and
Hemorrhages. The images were acquired using a
color video 3CCD camera on a Topcon TRC NW6
non-mydriatic retinograph with a 45 degree FOV.
The images are of resolution 1440×960, 2240×1488
or 2304 × 1536 pixels. The ground truth is in the
form of Retinopathy grade from 0 (normal) to 3
(most severe). Similarly, risk of macular edema is
marked on a scale from 0 (no risk) to 2 (high risk).

• STARE (DR, AMD): (STructured Analysis of the
REtina) is a dataset containing images of multiple
diseases. It contains 397 DFPs in total and ground
truth is in the form of severity grades for the disease.
The images are of resolution 700 × 605. Of all the
images, 62 were labeled as containing drusen,
including 20 ones as large many, 13 ones as large few,
10 as fine many, and 19 as fine few. To the best of our
knowledge, it is the first dataset containing drusen
labeling. STARE also contains DR related lesions. 91
images are labeled as being affected by DR [75]. It
also contains manually labeling of vessels of part of
the images.

• ARIA (DR, AMD): ARIA was published by St Paul’s
Eye Unit of Royal Liverpool University Hospital
Trust in UK. It contains 212 images in total,
including 92 ones with AMD, 61 normal ones,
and 59 ones with DR.

• AREDS (AMD): Age-Related Eye Disease Study
(AREDS) enrolled 4,757 participants, aged 55-80
years. Among them, 3640 participants had at least
early AMD and the other 1117 ones did not [271].

• Thalia-D (AMD): Thalia is a dataset constructed by
iMED group from I2R (Institute of Infocomm
Research, Singapore). It consists of 350 images, with
96 labeled as early AMD (drusen) and the others
non-AMD (no drusen). Image resolution is
3072 × 2048 and ground truth is in the form of
marked drusen boundary [272].

• EUGENDA (AMD): Euregio genetic database
(EUGENDA) is an ongoing project currently targets
on AMD. Now it contains more than 4000 images
with more than 191 ones containing drusen
(http://www.eugenda.org/).

• CAPT (AMD): Complications of Age-Related
Macular Degeneration Prevention Trial (CAPT)
is a randomized clinical trial to evaluate whether
prophylactic laser treatment to the retina can prevent
the complications of the advanced stage of AMD.
In total, 1052 patients with two high-risk eyes were
enrolled. The images collected by CAPT can be used
as dataset for automatic AMD detection [273].

Note that for Pathological Myopia, to the best of our
knowledge, there have not been many studies on image
based CAD. However, there were studies on the prevalence
rate of PM [274-277] which used large volumes of DFPs.

B Details on methods for disease detection
Diabetic retinopathy
DFP for Detecting DR
Detection of DR using DFP typically involves four steps
1) Preprocessing to enhance lesions, 2) Segmentation of
candidate lesions, 3) Feature extraction from candidate
lesions 4) Classification of candidate lesions into lesions
and non-lesions, based on the features extracted. The
green channel of the DFP is preferred for analysis since
the retina has a good contrast in this channel [98]. Out
of these, the segmentation methods specific to DR are
discussed below.

Segmentation is usually based on morphological opera-
tions [114,167]. Lay and Baudoin et al. [114] were among
the first to propose automatic segmentation of MAs. They
performed morphological opening of images using struc-
turing elements of different orientations and subtracted
the resultant image from the original one, though it is hard
to choose an optimal size of the structuring element [97].

Apart from morphological approaches, researchers have
used Gabor filters [130], Gaussian correlation filters [131],
curvelet transforms [105], wavelet transforms [278], local
image properties [279,280], or just the intensity values in
the green channel [97,137] for segmenting out candidate
lesions.

Some of the works detected both bright and red lesions
[106,137,149,153,154] while Abramoff et al. [155] and
Agurto et al. [146] have also detected neovascularization
in addition to the lesions. Individual detections were then
fused in these works to predict the severity of DR.

In terms of the effectiveness of CAD systems for mass
screening of DR, it can be assessed by the accuracy of
these systems. Accuracy of systems depend on the kind of
data used for training and testing them. The Retinopathy
Online Challenge (ROC) is aimed at evaluating the accu-
racy of MA detectors on a benchmark database. The final
score of a method is computed by averaging the sensitivi-
ties at seven false positive rates (1/8, 1/4, 1/2, 1, 2, 4, and 8
false positives per image). The state of the art score on the
ROC database is 0.434 achieved by [79].

OCT Imaging for detecting DR
Apart from DFPs, OCT images can also be used for DR
detection. An OCT image can analyze different layers of
the retina and has the capability of detecting cystoid flu-
ids. Wilkins et al. [37] proposed to detect Cystoid Macular
Edema (CME) which is one of the symptoms of DR. They
presented a method for segmenting retinal cyst without
going further for DR detection. A drawback with the OCT

http://www.eugenda.org/
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images is that they are prone to noise during capture
and a poor Signal to Noise Ratio (SNR) can affect the
segmentation accuracy [37].

Glaucoma
For glaucoma assessment, there exist mainly four imaging
modalities which provide quantitative parameters of the
ONH in glaucoma: 1/ Digital Fundus Photograph (DFP);
2/ OCT; 3/ Confocal Scanning Laser Ophthalmoscopy
(CSLO) and 4/ Scanning Laser Polarimetry (SLP).

DFP for detecting glaucoma
Digital Fundus Photograph (DFP) is one of the main and
popular modalities to diagnose glaucoma. Since it is pos-
sible to acquire DFPs in a noninvasive manner which is
suitable for large scale screening, DFP has emerged as
a preferred modality for large-scale glaucoma screening.
In a glaucoma screening program, an automated system
decides whether or not any signs of suspicious for glau-
coma are present in an image. Only those images deemed
suspect by the system will be passed to ophthalmologists
for further examination.

Glaucoma detection based on DFP can be catego-
rized into three main strategies: 1) detection without disc
parametrization, 2) detection with disc parametrization
using stereo DFP, and 3) detection with disc parametriza-
tion with monocular DFP.

For detecting glaucoma without disc parametrization,
a set of features are computed at the image-level with-
out performing OD and cup segmentation from the DFP.
Then, two-class classification is employed to classify a
given image as normal or glaucomatous. Bock et al.
[90] presented an automated glaucoma detection system,
where different generic feature types were compressed
by an appearance-based dimension reduction technique.
A probabilistic two-stage classification scheme combined
these features types to extract the novel Glaucoma Risk
Index(GRI). Several other papers [81,82,99-101,108] have
also adopted this strategy for glaucoma detection.

For the other two strategies of detecting glaucoma with
disc parametrization, OD and cup regions are segmented
to estimate the relevant disc parameters. The strategy
based on monocular DFP utilizes the 2-D projection of
retinal structures to compute the areas of OD and cup.
As shown in Figure 4, in a monocular DFP, OD appears
as a bright circular or elliptic region partially occluded
by blood vessels. Retinal nerve fibres converge to the OD
and form a cup-shaped region known as the cup. After
segmenting the OD and cup [92,109,116], vertical CDR
is estimated to detect glaucoma [80,117,118,125,126]. In
a recent work [117], Cheng et al. introduced optic disc
and optic cup segmentation using superpixel classifica-
tion for glaucoma screening. In optic disc segmentation,
histograms and centre surround statistics were used to

classify each superpixel as disc or non-disc. For optic
cup segmentation, in addition to the histograms and cen-
tre surround statistics, the location information was also
included into the feature space to boost the performance.

Different from monocular DFP, a stereo set of DFP con-
tains partial depth information, which can be used to
characterize the region inside the OD such as the cup
and neuroretinal rim. A considerable body of work based
on stereo DFP has been carried out to detect glaucoma
[110,132-134,140,141]. For example, Abramoff et al. [133]
proposed an automated segmentation method of the optic
disc cup and rim from stereo color photographs using
pixel feature classification. In their system, a depth map
and outputs of a Gaussian steerable filter bank were used
as features for training a classifier.

OCT Imaging for detecting glaucoma
OCT is relatively new in ophthalmic care compared to
fundus photography. And the use of image analysis tech-
niques based on OCT images has a shorter history. Never-
theless, it is a rapidly growing and important modality for
glaucoma detection. In the assessment of glaucoma, the
optic disc is an important structure. While stereo fundus
photography is able to extract some 3-D shape information
of the optic nerve head, OCT provides true 3-D information.
Figure 8 gives three spectral-domain OCT images in glau-
coma [44]. There are mainly two strategies for segment-
ing the disc/cup in optic-nerve head (ONH) from OCT
images for glaucoma detection [12]: 1) a pixel classifica-
tion approach applied to depth-columns of OCT voxels
in which the reference standard is defined by manual
planimetry from stereo fundus photographs and 2) direct
segmentation of structures (neural canal opening and cup)
from 3-D OCT images using a graph theoretic approach.

For the first strategy of segmenting ONH, a series of
studies [44-46] has been performed. Lee et al. [45] devel-
oped a method which can segment the optic disc cup and
neuroretinal rim in spectral-domain OCT scans centered
on the optic nerve head. Their system first segmented
3 intraretinal surfaces using a fast multiscale 3-D graph
search method. Then, the retina of the OCT volume was
flattened to have a consistent shape across scans and
patients based on one of the segmented surfaces. Finally,
selected features derived from OCT voxel intensities and
intraretinal surfaces were used to train a k-NN classi-
fier, which determined which A-scans in the OCT volume
belong to the background, optic disc cup and neuroretinal
rim. As a further study, [44] presented a fast, fully auto-
matic method to segment the optic disc cup and rim in
3-D SD-OCT volumes, in which automated planimetry
was performed directly from close-to-isotropic SD-OCT
scans. In their proposed scheme, four intraretinal sur-
faces were segmented by utilizing a fast multiscale 3-D
graph search algorithm. Then, the retina in each 3-D
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Figure 8 Cross-sectional images of the spectral-domain OCT volume in glaucoma. (a) X-Y image of the OCT volume. (b) X-Z image of the OCT
volume corresponding to the horizontal line in (a). (c) Y-Z image of the OCT volume corresponding to the vertical line in (a).

OCT scan was flattened to ensure a consistent optic
nerve head shape. For the classifier training, a set of
15 features derived from the segmented intraretinal sur-
faces and voxel intensities in the SD-OCT volume were
selected. Finally, based on the convex hull-based method,
prior knowledge about the shapes of the cup and rim was
incorporated into the system.

For the second strategy of segmenting ONH, a variety
of studies [38-40,49] directly segmented the neural canal
opening and cup from 3-D OCT images. Hu et al. [38]
introduced a scheme for segmenting the optic disc mar-
gin of ONH in SD-OCT images using a graph-theoretic
approach. They utilized a small number of slices sur-
rounding the Bruch’s Membrane Opening (BMO) plane
for creating planar 2-D projection images. In addition,
since there are large vessels in images, the information
from the segmented vessels was used to suppress the vas-
culature influence by modifying the polar cost function
and remedy the segmentation difficulty. In order to inves-
tigate the correspondence and discrepancy between the
Neural Canal Opening (NCO)-based metrics and the clin-
ical disc margin, Hu et al. [40] proposed an automated
approach for segmenting the NCO and cup at the level of
the Retinal Pigment Epithelium (RPE)/Bruch’s Membrane
(BM) complex in SD-OCT volumes.

CSLO Imaging for detecting glaucoma
CSLO utilizes a diode-laser light source to produce
quantitative measurements of the ONH and posterior
segment. A commercially available CSLO device is the
Heidelberg Retina Tomograph (HRT; Heidelberg Engi-
neering, Heidelberg, Germany), which is capable of
detecting the structural alterations in glaucoma. An exam-
ple of an HRT image is shown in Figure 9(b) [90].

Numerous studies [159-162] have reported that HRT
measurements are highly reproducible. In [161,162], after
outlining the optic disc border manually, the system
generated geometric parameters such as the cup volume,

cup depth, cup shape measure or even retinal height vari-
ations along the rim contour. Then, they applied discrim-
inant analysis (Moorfields Regression Analysis (MRA)) to
combine these geometric parameters. Since the gained
quantitative parameters are not fully objective due to
the manual outlining of the OD border, Burgansky-Eliash
et al. [159] used the parameters of a non-linear shape
model of the topographic ONH shape for glaucoma classi-
fication, which overcame the subjectivity of contour based
methods. In the work of [160], the progression of glauco-
matous degeneration over years could be quantified. The
authors utilized the HRT Topographic Change Analysis
(TCA) to automatically locate and quantify the temporal
glaucomatous structural ONH changes.

SLP Imaging for detecting glaucoma
SLP is another available imaging modality for the detec-
tion of glaucoma. Alongside the structural changing of the
ONH, the degeneration of the nerve fibres is depicted by
a thinning of the retinal nerve fibre layer (RNFL) in the
course of glaucoma. SLP is able to measure the thickness
of the RNFL for glaucoma detection. In SLP, the retina is
illuminated by polarized light and RNFL thickness can be
directly determined from the polarization change of the
reflected light [59].

SLP is commercialized as the GDxVCC (Carl Zeiss
Meditec, Inc., Dublin, CA). GDxVCC includes both the
scanner itself and a software program that assists in
the acquisition procedure, which can be used to analyze
the scan, derives various parameters and translates these
into an overall score, the Nerve Fiber Indicator. It could
be considered as a soft classification of glaucoma likeli-
hood. Images generated by the GDx VCC are shown in
Figure 10 [281]. Many glaucomatous progression detec-
tion strategies can be formulated for SLP data. Based on
repeated GDxVCC SLP measurements, Vermeer et al. [61]
tested several strategies to identify the optimal one for
clinical use. Medeiros et al. [62] presented a scheme for
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Figure 9 Example images of the central retina. Optic nerve head (ONH) centred fundus photograph (a) is used for automated glaucoma
detection by the proposed glaucoma risk index while glaucoma probability score utilizes HRT 2.5-dimensional topography images (b) Images taken
from [90].

differentiating between glaucomatous and control cases,
which extracted global and sectoral geometric parameters
such as average thickness, minimum thickness from RNFL
thickness.

Age-related macular degeneration
DFP for detecting AMD
The existing automatic AMD detection methods focus
mainly on detecting drusen, the symptom of early AMD.
Several other methods walk a step further to grade AMD.

In DFPs, drusen appear as small bright spot with par-
ticular size and orientation, as shown in Figure 11(b).
Because the intensity and color of the image may vary
with different imaging condition, finding local maxima is
a more effective method than global thresholding is. Local
maxima are found through geodesic method [63], His-
togram based Adaptive Local Thresholding (HALT) [65],
and Otsu method based adaptive threshold [74]. After
maxima detection, the candidates are further classified
according to contrast, size and shape.

Apart from spatial domain, frequency domain has also
been used for drusen detection. For example, multi-scale

and multi-orientation wavelet is used to detect drusen in
a hierarchical framework [63] or through Support Vector
Data Description (SVDD), which is derived from sup-
port vector machine [76]. Furthermore, a mathematical
technique, amplitude-modulation frequency modulation
(AM-FM) was shown to be able to generate multi-scale
features for classifying pathological structures, such as
drusen, on a retinal image [84].

In recent years, with the progress of computer vision
and machine learning, more and more advanced tech-
niques have been introduced for drusen detection, e.g.,
novel feature descriptor such as ICA [85] and biologically
inspired features [76], feature selection schemes such as
AdaBoost [86], and parameter choosing approaches [64].
A latest work, Thalia [272] is a system for drusen lesion
image detection and AMD assessment, using a hierarchi-
cal word transform (HWI) as representation.

There are other methods using background model-
ing [94] and saliency [102]. The background modeling
method [94] first segments the healthy structure of eye
and blood vessels and the inverse of the healthy parts
provide the drusen detection result. The saliency based

Figure 10 Images generated by the GDx VCC. (a) The reflectance image, which is displayed as a colored intensity map (greater reflectance
corresponds to a lighter color). (b) The retardation map converted to RNFL thickness. The RNFL thickness is color-coded based on the color
spectrum with thinner regions displayed in blue and green and thicker regions displayed in yellow and red [281].
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Figure 11 The symptoms of AMD seen in DFP. (a) DFP of a healthy eye. (b) DFP of an eye affected with dry AMD, with drusen presented. (c) DFP
of an eye affected with wet AMD. Presence of exudates can be seen.

method [102] first detects the salient regions and then
classifies them as blood vessel, hard exudates or drusen.
In [95], a general framework was proposed to detect and
characterize target lesions concurrently. In the frame-
work, a feature space, including the confounders of both
true positive (e.g., drusen near to other drusen) and
false positive samples (e.g., blood vessels), is automatically
derived from a set of reference image samples. Subse-
quently a Haar filter was used to build the transformation
space and Principal Component Analysis (PCA) was used
to generate the optimal filter.

Since drusen is one of the main early symptom of
AMD, most of the existing work on AMD detection take
drusen detection and segmentation as basis. The overlap
of drusen with macular is used to measure the sever-
ity of AMD [103,104]. The performance of such meth-
ods is restricted by the accuracy of drusen detection.
To bypass drusen detection and segmentation, in recent
years, researchers have started to seek for methods detect-
ing AMD directly from DFPs. An early attempt in this
direction was a histogram based representation followed
by Case -Based Reasoning [111]. Good results were pro-
duced, however observations indicated that relying on
the retinal image colour distribution alone was not suf-
ficient. Thus the authors upgraded the method by using
a spatial histogram technique that included colour and
spatial information [112]. The latest work from the same
team comprises hierarchical image decomposition stored
in a tree structure to which a weighted frequent sub-tree
mining algorithm is applied. The identified sub-graphs
are then incorporated into a feature vector representation
(one vector per image) to which classification techniques
can be applied [119,120]. These methods detect AMD
from the scope of a single image. Another strategy is
to use content-based image retrieval. Region based and
lesion based features were tested and gave satisfactory
performance [127] and [128].

The above mentioned works detect dry (non-exudate)
AMD. Till now, there are few works on wet AMD detec-
tion except the one proposed in [121] where the basic
idea is that the vessels in the DFP seem different under
dry and wet AMD. Thus the method first detected the

vessels, using a wavelet based method. Subsequently the
area, standard deviation, and other features describing
the distribution of the vessels were used as features for
classification.

OCT imaging for detecting AMD
As mentioned in Section Imaging modalities, it is easier to
observe edema and exudates in OCT (Figure 12). In [31],
a method for automated characterization of the normal
macular appearance in SD-OCT volumes was reported
together with a general approach for local retinal abnor-
mality detection. Ten intraretinal layers were automati-
cally segmented and the 3-D image dataset was flattened
to remove motion-based artifacts. From the flattened

Figure 12 Example of AMD related exudate in OCT image. (a) OCT
image showing an eye with severe exudate. (b) OCT image showing
an eye with medium exudate. (c) OCT image showing a normal eye.
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OCT data, 23 features were extracted in each layer locally
to characterize texture and thickness properties across the
macular. The normal ranges of layer-specific feature varia-
tions have been derived from 13 SD-OCT volumes depict-
ing normal retinas. Abnormalities were then detected
by classifying the local differences between the normal
appearance and the retinal measures in question. This
approach was applied to determine footprints of fluid-
filled regions-SEADs (Symptomatic Exudate-Associated
Derangements) in 78 SD-OCT volumes from 23 repeat-
edly imaged patients with choroidal neovascularization
(CNV), intra, and sub-retinal fluid and pigment epithelial
detachment. In [36], the authors improved this method by
employing a probabilistically constrained combined graph
search-graph cut method refines the candidate SEADs by
integrating the candidate volumes into the graph cut cost
function as probability constraints.

Pathological myopia
Research on CAD of PM has mainly relied on DFP but
recently there have been efforts to explore the use of SS-
OCT for PM analysis.

DFP for detecting PM
An observable sign for PM detection is PPA, an atrophy
of pre-existing retina tissue. The APAMEA system pro-
posed by Liu et al. [71] was the first CAD system for
PM detection. In APAMEA, features were extracted from
a sectional texture map generated from entropy analysis
in the optic disc ROI, and SVM learning achieved a 85%
specificity and 90% sensitivity. Later on, Tan et al. [72]
reported a PPA detection method using a variational level
set approach. The method used a disc difference approach
to locate PPA by obtain a difference in the two areas, e.g.,
optic disc with PPA and the fundamental optic disc. It
reported a 95% accuracy. The above two methods were
based on a rather small data set of only 40 images. A recent
advance in PPA detection was reported in [73], which was
tested on a much larger dataset containing 1584 images.
The authors presented a biologically inspired feature (BIF)
approach for the detection of PPA. BIF mimics the corti-
cal processes for visual perception. In the approach, a focal
region (ROI) is segmented from the retinal image and the
BIF is extracted followed by selective pair-wise discrim-
inant analysis for negative and positive sparse transfer
learning. The authors reported that negative sparse trans-
fer learning is superior to the positive one for their task.
The method achieves an accuracy of more than 90% in
detecting PPA.

Different features have been extracted from DFP for PM
detection. APAMEA extracted a texture feature obtained
through entropy analysis. In [73] BIF was used for sparse
learning. The study conducted by Zhang et al. [20] devel-
oped a combined approach integrating SIFT features

extracted from DFP with genetic information as well
as other clinical data. The study demonstrated that, by
learning from multiple data sources, the classifier can
achieve a more accurate prediction result. It is the first
reported study to combine heterogeneous data including
image, genetic and text data for PM detection.

SS-OCT imaging for detecting PM
SS-OCT uses a frequency swept laser as a light source
[41] and, in practice, has less roll-off of sensitivity with tis-
sue depth than conventional SD-OCT instruments. The
current SS-OCT instruments use a longer wavelength,
generally in the 1 μm range, which has improved their
ability to penetrate deeper into tissues than the conven-
tional SD-OCT instruments [282]. Though CAD systems
based on SS-OCT have not emerged, some clinical stud-
ies have discovered that SS-OCT could be a powerful
machine for PM analysis. A recent study conducted in
Japan [48] reported that SS-OCT can detect optic nerve
pits or pit-like changes in PM eyes. Such changes are not
detectable by other imaging modalities.

Other diseases
A brief review of cataract grading and CAD for corneal
opacity is given below.

Cataract
Cataract is characterized by a cloudiness (opacity) in the
eye lens which obstructs vision and can even lead to
blindness. Cataract can be categorized into three types
based on the location of opacity within the lens struc-
ture: nuclear, cortical and Posterior Sub-Capsular (PSC)
[283]. Nuclear cataract (NC) begins at the center of the
lens and spreads towards the surface. Cortical cataract
begins at the outer rim of the lens and moves towards the
center. PSC forms at the back of the lens. NC is graded
using slit-lamp images of the eye while Cortical cataract
(CC) and PSC are graded from the retro-illumination
images of the eye lens. The grades are usually real num-
bers in a range that depends on the grading system
used.

Figure 13(b) and (c) show the slit-lamp images of a
normal eye and NC affected eye, respectively. It can be
seen that the lens nucleus is the affected part and conse-
quently NC is graded by extracting features from the eye
lens. The extracted features include intensity of the sul-
cus region [52] (Figure 13(a)), luminance profile in the eye
lens [51] and color and intensity based features extracted
from the nuclear region [50,284]. The accuracy of NC
grading can be quantified using the average grading dif-
ference which is the average of the difference between
actual and predicted grading over all the test samples.
A lower value of this measure is better. The average
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Figure 13 Parts of the right eye as viewed in a slit-lamp image [50]. (a) Important parts of the eye as seen in a slit lamp image. (b) Slit lamp
image of a normal eye. (c) Slit lamp image of an eye affected with Nuclear Cataract.

grading difference of the state-of-the-art work [284]
is 0.336.

CC and PSC usually co-occur and are graded using
retro-illumination images shown in Figure 14. Retro-
illumination images are usually in pairs as each lens has
two images of it, one focusing on the anterior cortex (ante-
rior image, Figure 14 top row) and the other, 3–5 mm
posterior to it, close to the posterior capsule (posterior
image, Figure 14 bottom row). Most of the CC is present
in the anterior cortex, and so it is sharply visible in ante-
rior image. On the other hand, PSC is clearer in posterior
image as compared to the anterior image.

Typical features used for grading CC and PSC include
enhanced texture features [56], intensity, edge, size and
spatial location based features [285], entropy [57] and

Symlets wavelet coefficients and intensity features [58].
In [58] the grading accuracy is represented in terms of
correlation of the predicted grades with the actual and the
value of correlation coefficient is 0.7392.

Corneal opacity
Corneal haze describes the condition when the cornea
becomes cloudy or opaque. The cornea is normally clear,
so corneal haze can greatly impair vision. Although the
haze can occur in any part of the cornea, it is most often
found within the thicker, middle layer of the cornea, called
the stroma. Corneal haze is most often caused by inflam-
matory cells and other debris that are activated during
trauma, infection or surgery. Corneal haze sometimes
occurs during laser vision correction procedures.

Figure 14 Examples of retroillumination images. Retroillumination images corresponding to (a) a normal eye lens, (b) lens with 61.07% of
cortical cataract, and (c) lens with 4.95% of cortical opacities and 31.28% of PSC opacities. Top row shows anterior images while the bottom row
shows posterior images [58].
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Slit lamp imaging has been used to clinically estimate
corneal haze manually by physicians but not automati-
cally. For example, it was used to observe the cornea haze
after excimer laser ablation of cornea [286,287]. Slit lamp
suffers from resolution reduction caused by interference
of light reflected from structures above and below the
plane of examination. Confocal microscopy uses a con-
denser to focus the light source within a small area of the
cornea and an objective, which has the same focal point
(hence the term confocal) as the condenser. Therefore it
is possible to avoid light contamination from out-of-focal
information. Compared with slit lamp, an advantage of
confocal microscope is a much higher spatial resolution.
Moreover, it allows real-time viewing of structures in the
living cornea at the cellular level in four dimensions (x,
y, z, and time). It can be used to measure corneal haze
[288,289].

The above imaging modalities have been used in
clinic with manual detection but till now, as far as we
know, there is no automatic method based on these
modalities. Currently, the existing automatic method
is based on the most straightforward way: examining
frontal photograph of eye [290,291]. In [291], five sit-
uations are considered: cataract, iridocyclitis, corneal
haze, corneal arcus, and normal eyes. In the proposed
method, each image is first preprocessed using histogram
equalization and K-means clustering. The extracted fea-
tures are then fed into a RBF based neural network
classifier.
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