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A B S T R A C T   

Background and objective: Spatial interaction between tumor-infiltrating lymphocytes (TILs) and 
tumor cells is valuable in predicting the effectiveness of immune response and prognosis amongst 
patients with lung adenocarcinoma (LUAD). Recent evidence suggests that the spatial distance 
between tumor cells and lymphocytes also influences the immune responses, but the distance 
analysis based on Hematoxylin and Eosin (H&E) -stained whole-slide images (WSIs) remains 
insufficient. To address this issue, we aim to explore the relationship between distance and 
prognosis prediction of patients with LUAD in this study. 
Methods: We recruited patients with resectable LUAD from three independent cohorts in this 
multi-center study. We proposed a simple but effective deep learning-driven workflow to auto-
matically segment different cell types in the tumor region using the HoVer-Net model, and 
quantified the spatial distance (DIST) between tumor cells and lymphocytes based on H&E- 
stained WSIs. The association of DIST with disease-free survival (DFS) was explored in the dis-
covery set (D1, n = 276) and the two validation sets (V1, n = 139; V2, n = 115). 
Results: In multivariable analysis, the low DIST group was associated with significantly better DFS 
in the discovery set (D1, HR, 0.61; 95 % CI, 0.40–0.94; p = 0.027) and the two validation sets (V1, 
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HR, 0.54; 95 % CI, 0.32–0.91; p = 0.022; V2, HR, 0.44; 95 % CI, 0.24–0.81; p = 0.009). By 
integrating the DIST with clinicopathological factors, the integrated model (full model) had better 
discrimination for DFS in the discovery set (C-index, D1, 0.745 vs. 0.723) and the two validation 
sets (V1, 0.621 vs. 0.596; V2, 0.671 vs. 0.650). Furthermore, the computerized DIST was asso-
ciated with immune phenotypes such as immune-desert and inflamed phenotypes. 
Conclusions: The integration of DIST with clinicopathological factors could improve the stratifi-
cation performance of patients with resectable LUAD, was beneficial for the prognosis prediction 
of LUAD patients, and was also expected to assist physicians in individualized treatment.   

1. Introduction 

Lung cancer is the primary contributor to cancer-related mortality on a global scale, with lung adenocarcinoma (LUAD) repre-
senting the predominant subtype [1,2]. The tumor-node-metastasis (TNM) staging system has the capability to predict the survival and 
risk stratification of patients [3], although its accuracy is limited [4]. Recent studies have shown that the assessment of the tumor 
immune microenvironment (TIME) in solid tumors is a beneficial complement to the TNM staging system [5]. The status of TIME is 
closely related to tumor progression, metastasis, and prognosis [6,7]. TIME is primarily affected by the interactions between 
tumor-infiltrating lymphocytes (TILs) and tumor cells. At present, many research fields [8–11] have demonstrated that the interaction 
between TILs and tumor cells is associated with the prognosis of patients. Therefore, it is anticipated that the interactions between TILs 
and tumor cells will be characterized in order to identify a novel biomarker for prognosis prediction and risk stratification in LUAD. 

TILs have the potential to be valuable in predicting the effectiveness of the immune response and prognosis [12]. Many studies have 
concentrated on the complex spatial interplay between TILs and tumor cells, which could exert an influence on the occurrence, 
development, invasion, and metastasis of cancers [10,11,13]. In fact, the spatial distribution of cells is the prerequisite and important 
influencing factor for the interactions between them. Some studies [14,15] have indicated that the spatial distribution structure of cells 
is closely associated with tumor treatment response and patient prognosis. In particular, the distance between various types of cell 
subgroups is indicative of the prognostic effect of immunotherapy. However, these studies have mainly used multiplex immunoflu-
orescence (mIF) or immunohistochemical (IHC) to characterize the relationship between TILs and tumor cells. These methods are 

Table 1 
Distributions of clinicopathologic factors of all three cohorts.   

D1 V1 V2 p-value 

Age at surgery (median [IQR]) 62.0 (55.0, 69.0) 62.0 (57.0, 66.5) 54.0 (48.0, 62.5) <0.0011 

<65 years 181 (65.6 %) 97 (69.8 %) 98 (85.2 %) <0.0012 

≥65 years 95 (34.4 %) 42 (30.2 %) 17 (14.8 %)  
Sex    0.0832 

Male 141 (51.1 %) 86 (61.9 %) 58 (50.4 %)  
Female 135 (48.9 %) 53 (38.1 %) 57 (49.6 %)  

Smoking status    <0.0012 

Never 208 (75.4 %) 65 (46.8 %) 74 (64.3 %)  
Former/current 68 (24.6 %) 74 (53.2 %) 41 (35.7 %)  

pT stage    <0.0012 

T1 124 (44.9 %) 42 (30.2 %) 81 (70.4 %)  
T2 130 (47.1 %) 60 (43.2 %) 21 (18.3 %)  
T3 19 (6.9 %) 24 (17.3 %) 6 (5.2 %)  
T4 3 (1.1 %) 13 (9.3 %) 7 (6.1 %)  

pN stage    <0.0012 

N0 218 (79.0 %) 80 (57.6 %) 83 (72.2 %)  
N1 18 (6.5 %) 19 (13.7 %) 13 (11.3 %)  
N2 40 (14.5 %) 40 (28.7 %) 19 (16.5 %)  

TNM stage    <0.0012 

I 198 (71.7 %) 50 (36.0 %) 70 (60.9 %)  
II 32 (11.6 %) 33 (23.7 %) 17 (14.8 %)  
III 46 (16.7 %) 56 (40.3 %) 28 (24.3 %)  

Tumor site    <0.0012 

Upper/Middle lobe 183 (66.3 %) 76 (54.7 %) 65 (56.5 %)  
Lower lobe 93 (33.7 %) 63 (45.3 %) 50 (43.5 %)  

Adjuvant chemotherapy    <0.0012 

No 211 (76.4 %) 63 (45.3 %) 56 (48.7 %)  
Yes 65 (23.6 %) 76 (54.7 %) 59 (51.3 %)  

Follow-up (month, median [95 % CI])a 85.0 (82.4–88.6) 36.9 (36.4–43.0) 60.8 (57.8–65.1)  
No. of OS events 62 (22.5 %) 46 (33.1 %) 30 (26.1 %)  
No. of DFS events 116 (42.0 %) 67 (48.2 %) 48 (41.7 %)  

Notes: IQR stands for Interquartile Range, and CI stands for Confidence Interval. 1,2 Since the data used in this paper is a subset of [22], so p-values 
determination is as same as this literature. 

a Estimated by reverse K-M method. 
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costly and susceptible to variation due to the selection of antibodies, the experimental procedures, and the utilization of diverse 
automated immunohistochemical staining instruments. 

Hematoxylin and Eosin (H&E) -stained images contain abundant TIME information, which is expected to be a beneficial supple-
ment to mIF/IHC analysis. Conventionally, pathologists manually evaluate the TILs of patients on H&E slides [16]. However, manual 
quantification is labour-intensive and subjective, which often leads to interobserver inconsistency [17]. The advent of computer 
technology has spurred the advancement of automated analysis of whole-slide images (WSIs). Deep learning (DL) technology has the 
potential to extract image features automatically providing a valuable tool for quantitative analysis of WSIs [18], information mining 
[19], and prognostic analysis [20]. This technology has the potential to automate the quantification of TILs in WSIs. In addition, 
pathomic features (e.g. spatial arrangement features) provide additional information that may be useful for TILs detection, thus 
utilizing DL methods to analyze these features for prognosis is also a current research focus [17,21]. Nevertheless, recent workflows are 
still insufficient in exploring effective biomarkers of the spatial distance between cells for prognostic value based on H&E-stained WSIs. 
From this perspective, it is anticipated that a robust biomarker will be identified which quantifies the spatial distance between tumor 
cells and lymphocytes in patients with LUAD. 

In this study, we proposed a simple but effective deep learning-driven workflow to segment and classify the tumor cells and TILs 
from H&E-stained WSIs. We then quantified the spatial distance between tumor cells and lymphocytes (referred to as DIST) based on 
the DL outputs. Finally, a prognosis analysis of this proposed biomarker was performed in patients with LUAD from three independent 
centers. Our hypothesis is that DIST is an independent prognostic factor for disease-free survival (DFS) and overall survival (OS), and 
that it could provide effective prognostic stratification of patients with resectable LUAD. 

2. Method 

2.1. Patients 

Patients with LUAD were retrospectively enrolled from three medical institutions: GDPH (Discovery cohort 1, D1), SXCH (Vali-
dation cohort 1, V1), and YNCX (Validation cohort 2, V2). The clinicopathological information and H&E-stained WSIs of patients were 
collected. The clinicopathological information of patients is listed in Table 1. Due to the retrospective image analysis approach utilized 
in this study, the requirement for patient informed consent was waived. The specific inclusion and exclusion criteria are shown in 
Fig. 1. The endpoints of interest for this study are DFS and OS, which are defined as the time from surgery to the first recurrence or 
death and the time from surgery to death, respectively. 

2.2. WSI digitalization and quality control 

The H&E-stained glass sections of patients were scanned as WSIs using two different scanners, as shown in Fig. 2(a). The first 
scanner was a Leica Aperio-AT2 scanner (USA, 40× magnification, 0.25 μm/pixel) in D1 and V2, and the second was a NanoZoomer- 
NDP scanner (Japan, 40× magnification, 0.22 μm/pixel) in V1. Given the considerable heterogeneity in the characteristics of WSIs 
across different institutes, the WSIs used in this study underwent a meticulous review by two senior pathologists. This process involved 
the selection of the most representative slides and the removal of low-quality samples, such as those exhibiting blurring or out-of-focus 
characteristics. 

Fig. 1. Inclusion criteria and exclusion criteria. Discovery and validation cohort inclusion criteria and exclusion criteria in this study. Inclusion 
criteria: 1) Routine H&E-stained diagnostic images, 2) Stage I-III LUAD underwent curative-intent resection, 3) Overall Survival (OS) information 
for all patients, 4) Follow-up time no less than two years. Exclusion criteria: 1) Treated with neoadjuvant chemotherapy, 2) History of other tumors, 
3) No tumor or not enough tissue, 4) Obvious artifacts on pathology image quality evaluation, 5) No intact clinicopathologic information. 
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2.3. Tumor region segmentation 

During the digitization of the WSI, a significant quantity of white background will be generated. These regions are of little value in 
the context of pathological image analysis and will result in a significant increase in the amount of calculation required. To remove the 
white background in the WSI and obtain the tumor region of interest, thesubsequent steps were implemented to conduct tumor region 
segmentation. Firstly, the OTSU operation was performed on WSI at low magnification to obtain the tissue mask. Secondly, the deep 
convolutional network ResNet50, which had been pre-trained on the Camelyon Challenge dataset [23], was employed to segment the 
WSI into the tumor lesion regions and other regions, as shown in Fig. S1. Subsequently, 67 WSIs previous annotated by pathologists 
from discovery cohort were selected to finetune the pre-trained model. Following finetuning, pathologists proceeded to manually 
correct any inaccuracies in the segmented tumor regions. The finetuning model was then deployed to the remaining WSIs in D1 and the 
other two cohorts for tumor region segmentation. Finally, the tumor region was segmented into patches (with a size of 2048 × 2048) 
with non-overlapping boundaries. For each patch, the model predicted the classification probability, thereby obtaining a probability 
result of the WSI. This result was binarized by the OTSU operation, and the final tumor region was determined as the largest connected 
area, as shown in Fig. 2(b). 

2.4. Nuclei segmentation and classification 

In this study, we utilized the Hover-Net [24], which had been pre-trained on the PanNuke dataset [25], for the purpose of seg-
menting and classifying nuclei within tumor regions. Four categories of nuclei were segmented and classified, including tumor cells, 
lymphocytes, stroma cells, and others. The entire process is shown in Fig. 2(c). 

2.5. TILs density calculation 

The quantification of the density of TILs can be formulated as Eqs. (1) and (2): 

Fig. 2. The overall workflow of the study. (a) H&E-stained slides were digitized into whole slide images (WSIs). (b) The tumor region of WSI was 
segmented by a transfer learning framework, and segmentation masks were checked by two pathologists. (c) Fully automated nuclei segmentation 
and classification. HoVer-Net was deployed to segment and classify the cells into tumor cells, lymphocytes, and other cells in the tumor region of 
WSI at the maximum magnification. (d) Distance between the tumor cell and lymphocyte in the tumor region. In each WSI, the distance of the 
nearest lymphocyte to the tumor cell was calculated, and then we averaged the distance (DIST) of all tumor cells as the imaging biomarker. (e) 
Model development and validation. A discovery cohort was used to optimize DIST and the optimal value in the discovery cohort was selected as the 
cut-off to stratify patients into low and high DIST groups. Univariable and multivariable Cox regression analyses were performed to evaluate the 
association of DIST and clinical risk factors with DFS and OS. The other two cohorts were used to validate the performance of the model. 
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DLE=
Number of lymphocytes in tumor epithelium

Area of tumor epithelium
(1)  

DLS=
Number of lymphocytes in tumor − associated stroma

Area of tumor − associated stroma
(2)  

where DLE and DLS represented the density of TILs in the tumor epithelium and tumor-associated stroma, respectively. Subsequently, a 
base-2 logarithmic operation was applied to the TILs density for the purpose of enhanced analysis. The process above can be sum-
marized as Eqs. (3) and (4): 

DLE − score= log2(DLE+1) (3)  

DLS − score= log2(DLS+1) (4)  

2.6. Spatial distance quantification 

The spatial distance (DIST) between tumor cells and lymphocytes was established through three steps. Firstly, the position co-
ordinates (X, Y) of each patch in the WSI obtained in Section 2.3 were recorded, and the coordinate (x,y) of each cell center was also 
recorded separately. Then, the centroid coordinates of each cell in the WSI was converted to absolute coordinates according to the 
position coordinate of each patch in the WSI and the coordinate of the cell center in that patch. Secondly, the coordinates of the tumor 
cells and lymphocytes were spliced, with the absolute coordinates of each tumor cell defined as a node. The number of lymphocytes 
surrounding the tumor node was then calculated at a specific threshold (25 μm/pixel for D1 and V2, and 22 μm/pixel for V1), as shown 
in Fig. 2(d). Finally, we assigned a number to each tumor cell (1, 2, i, …, m) in each WSI, and calculated the spatial distance of the 
nearest lymphocyte to each tumor cell i named di using the 2-norm method. We then averaged the distances davg from all m tumor cells 
to the nearest lymphocyte as Eq. (5): 

davg =
1
m

∑m

i=1
di (5) 

The quantification of spatial distance between tumor cells and lymphocytes at the WSI level can be achieved using the method 
described above. To further analyze the effect of spatial distance (DIST) between tumor cells and lymphocytes, we sorted all DIST 
values for each patient in three cohorts (D1, V1, and V2). The optimal cut-off was then determined based on OS for D1, which divided 
patients into the low DIST group and the high DIST group. 

2.7. Immune phenotypes determination 

The immune phenotypes were grouped by immune-desert, immune-excluded, and inflamed. Amongst these, the immune-desert 
phenotype was linked to a poor prognosis, whereas the inflamed phenotype was correlated to a favorable prognosis [12,26]. To 
investigate the relationship between DIST and immune phenotypes, patients were divided into three cohorts into different immune 
phenotypes based on the density of TILs in the tumor epithelium and tumor-associated stroma, as described in Section 2.5. As in 
Ref. [26], samples with a lower tertile cut-off value for the DLE-score were classified as immune-desert. The remaining samples were 
divided into two groups, based on the median value of the ratio of the DLE-score and the DLS-score, which was used as a cut-off. The 
group above the cut-off was labelled as inflamed, and another was labelled as immune-excluded. 

2.8. Statistical analysis 

Continuous variables are depicted as the median (interquartile range). Discrete variables are expressed as counts (percentage). 
Comparative analysis across different centers is conducted using the Kruskal-Wallis rank-sum test for continuous variables and 
Pearson’s Chi-square test or Fisher’s exact test for discrete variables. The Cox proportional hazards regression model is used for 
survival analysis. The Kaplan–Meier (K-M) survival curves between the high-risk and low-risk groups are compared using the log-rank 
test. The factors that show statistical significance (p < 0.05) in the univariable Cox regression analysis will be selected as potential 
candidates for the multivariable Cox regression analysis. Harell’s C-statistics (C-index) and the integrated area under the curve (iAUC) 
are used to evaluate the discriminant performance of the predictive model. 

2.9. Implementation details 

The deep learning-driven methodologies are implemented by PyTorch framework (Version 1.7.1; https://pytorch.org/) on an 
Ubuntu 18.04 server equipped with an 3090 GPU. The implementation of tumor segmentation is released at https://github.com/ 
YuMeng-W/TumSeg-main. The experiment conditions of nuclei segmentation and classification are as same as the settings reported 
in literature [24]. Statistical analyses are conducted by R (Version 4.3.1; https://r-project.org/), and relevant R packages including 
survivor, survminer, timeROC, and Rmisc. All statistical tests adopt a two-tailed approach, wherein asignificance level of p < 0.05 is 
considered statistically significant. 
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3. Results 

3.1. Baseline characteristics of patients 

Following the meticulous application of all inclusion and exclusion criteria delineated in Fig. 1, the eligible patients were duly 
enrolled in each cohort. Table 1 outlined the comprehensive details pertaining to the clinicopathological characteristics of three 
cohorts. Statistically significant differences were observed among the three cohorts in terms of clinicopathological factors. (i.e., age at 
surgery, smoking status, pT stage, pN stage, TNM stage, tumor site, and adjuvant chemotherapy), with the exception of sex (p = 0.083). 

3.2. Prognostic ability of DIST 

We divided the patients with LUAD into three independent cohorts according to Section 2.1. The maximally selected rank statistics 
[27] were employed in the discovery cohort to determine the potential cut-off value of DIST. Consequently, a patient with a DIST value 
exceeding the cut-off value was categorized as belonging to the high DIST group, and vice versa. Kaplan-Meier (KM) curves 

Fig. 3. Kaplan-Meier curves of patients in three cohorts in terms of DFS and OS. Kaplan-Meier curves of patients stratified by DIST in the discovery 
cohort D1 (a1) and the two validation cohorts V1 and V2 (b1 and c1) in terms of DFS. Kaplan-Meier curves of patients stratified by DIST in discovery 
cohort D1 (a2) and two validation cohorts V1 and V2 (b2 and c2) in terms of OS. 
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demonstrated that the low DIST group exhibited superior DFS than the high DIST group (D1, hazard ratio [HR], 0.41; 95 % confidence 
interval [CI], 0.27–0.61; p < 0.001; V1, HR, 0.61; 95 % CI, 0.36–1.02; p = 0.058; V2, HR, 0.44; 95 % CI, 0.25–0.78; p = 0.005; Fig. 3 
(a1)–(c1)). In terms of OS, the low DIST group had better survival rate compared to the high DIST group (D1, HR, 0.31; 95 % CI, 
0.19–0.52; p < 0.001; V1, HR, 0.43; 95 % CI, 0.22–0.85; p = 0.015; V2, HR, 0.48; 95 % CI, 0.23–0.98; p = 0.043; Fig. 3(a2)–(c2)). For 
the subgroup analysis, the data from three centers were combined. In terms of DFS, it was observed that patients belonging to the low 
DIST group exhibited superior DFS compared to those in the high DIST group. This was statistically significant in subgroup analysis for 
age at surgery, sex, smoking status, and TNM stage (p < 0.05). However, there was a marginal statistical significance in adjuvant 
chemotherapy (p = 0.32; Fig. S2). Similarly, patients belonging to the low DIST group had better OS than their counterparts in the high 
DIST group. This was statistically significant in the age at surgery, sex, smoking status, TNM stage, and received adjuvant chemo-
therapy subgroups (all p < 0.05; Fig. S3). 

In terms of DFS, the experimental results of univariable and multivariable Cox regression analyses are shown in Table 2. In the 
discovery cohort, the univariable Cox regression analysis showed that factors (age at surgery, sex, smoking status, TNM stage, and 
DIST) exhibited statistical significance with p < 0.05. After adjustment for relevant clinical factors, the multivariable Cox regression 
analysis distinctly indicated that DIST emerged as an independent prognostic factor for DFS (D1, HR, 0.61; 95 % CI, 0.40–0.94; p =
0.027; V1, HR, 0.54; 95 % CI, 0.32–0.91; p = 0.022; V2, HR, 0.44; 95 % CI, 0.24–0.81; p = 0.009). The experimental results also 
showed that DIST emerged as an independent prognostic factor for OS (D1, HR, 0.42; 95 % CI, 0.24–0.73; p = 0.002; V1, HR, 0.36; 95 
% CI, 0.18–0.72; p = 0.004; Table 3). 

3.3. Prognostic model development and validation 

The whole process of model development and validation is shown in Fig. 2(e). Considering age at surgery, TNM stage, and DIST as 
independent prognostic factors in the multivariable Cox regression analysis of the discovery cohort pertaining to DFS, we selected the 
above factors to develop a prediction model (named full model). We used the full model to compare and analyze with the TNM stage 
model, DIST model, TNM_DIST model (TNM stage and DIST factors jointly modeled), and Clinicopathologic model (age at surgery and 
TNM stage jointly modeled). A comprehensive summary encompassing the baseline hazard, coding, and model’s regression co-
efficients was provided in Table S1 (DFS) and Table S2 (OS). In addition, the discriminant performance of each model was evaluated by 
the C-index and iAUC, and the correction performance of each model was evaluated by the Akaike Information Criterion (AIC). In 
Table 4 and Table S3, the full model had stronger discriminative and correction performance than the clinicopathological model in the 
discovery cohort and two validation cohorts. Specifically, the TNM_DIST model had stronger discriminative and correction perfor-
mance compared to the TNM stage model subsequent to the inclusion of the DIST factor. Adding the DIST factor to the TNM stage 
model enhances the predictive capacity for DFS (likelihood ratio test, c2 = 3.932, p = 0.047), and similarly, adding the DIST factor to 

Table 2 
Univariable and multivariable Cox regression analyses for DFS in three cohorts.   

Discovery cohort D1a Validation cohort V1 Validation cohort V2 

HR (95 % CI) p-value HR (95 % CI) p-value HR (95 % CI) p-value 

Univariable Analysis 

Age at surgery 
≥65 years vs. ＜65 years 1.40 [0.97, 2.03] 0.076 0.77 [0.44, 1.34] 0.354 1.25 [0.58, 2.66] 0.571 

Sex 
Female vs. Male 0.55 [0.38, 0.80] 0.002 0.56 [0.33, 0.95] 0.031 0.92 [0.52, 1.61] 0.762 

Smoking status 
Former/Current vs. Never 1.79 [1.22, 2.64] 0.003 1.64 [1.00, 2.68] 0.049 0.66 [0.35, 1.23] 0.190 

TNM stage 
III vs. I/II 4.91 [3.29, 7.33] <0.001 2.28 [1.41, 3.70] <0.001 2.97 [1.66, 5.32] <0.001 

Tumor site 
Upper/Middle vs. Lower 1.37 [0.92, 2.05] 0.121 1.08 [0.67, 1.75] 0.757 1.25 [0.70, 2.23] 0.449 

DIST 
Low vs. High 0.41 [0.27, 0.61] <0.001 0.61 [0.36, 1.02] 0.058 0.44 [0.25, 0.78] 0.005 

Multivariable Analysis 

Age at surgery 
≥65 years vs. ＜65 years 1.68 [1.15, 2.47] 0.007 0.81 [0.46, 1.42] 0.459 0.93 [0.41, 2.10] 0.864 

Sex 
Female vs. Male 0.66 [0.42, 1.01] 0.058 0.63 [0.27, 1.47] 0.282 0.54 [0.25, 1.18] 0.123 

Smoking status 
Former/Current vs. Never 1.45 [0.92, 2.27] 0.108 1.14 [0.51, 2.55] 0.741 0.36 [0.15, 0.83] 0.016 

TNM stage 
III vs. I/II 4.60 [2.98, 7.10] <0.001 2.31 [1.42, 3.77] <0.001 2.51 [1.37, 4.59] 0.003 

DIST 
Low vs. High 0.61 [0.40, 0.94] 0.027 0.54 [0.32, 0.91] 0.022 0.44 [0.24, 0.81] 0.009 

Notes: 
a D1 is the discovery cohort. 
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the Clinicopathologic model also improved the prediction ability of DFS (likelihood ratio test, c2 = 4.752, p = 0.029). Figs. S4 and S5 
demonstrated the ROC curves (t = 60 months) and time-dependent AUC plotted over time. Compared to the reference model, the full 
model showed a higher AUC at most time points. 

3.4. Correlation between DIST and immune phenotypes 

To further evaluate the effects of DIST on the immune microenvironment, we combined three datasets to explore the correlation 
between DIST and immune phenotypes. The differences in DIST across three immune phenotypes (immune-desert, immune-excluded, 
and inflamed) in all discovery and validation cohorts were statistically significant by the Pearson Chi-square test (p < 0.001). The 
results showed that the low DIST group exhibited a higher prevalence of the inflamed phenotype (D1, 100 %; V1, 78 %; V2, 92.3 %), 
and the high DIST group displayed a higher proportion of the immune-desert phenotype (D1, 52.7 %; V1, 95 %; V2, 93.8 %), while the 
low DIST group (D1, 94.8 %; V1, 44 %; V2, 60 %) and the high DIST group was closed in the immune-excluded phenotype (V1, V2), as 
shown in Fig. 4. 

Table 3 
Univariable and multivariable Cox regression analyses for OS in three cohorts.   

Discovery cohort D1a Validation cohort V1 Validation cohort V2 

HR (95 % CI) p-value HR (95 % CI) p-value HR (95 % CI) p-value 

Univariable Analysis 
Age at surgery 

≥65 years vs. ＜65 years 2.04 [1.24, 3.36] 0.005 1.08 [0.57, 2.02] 0.814 1.39 [0.57, 3.41] 0.468 
Sex 

Female vs. Male 0.49 [0.29, 0.83] 0.007 0.43 [0.22, 0.85] 0.015 0.95 [0.46, 1.95] 0.894 
Smoking status 

Former/Current vs. Never 2.00 [1.19, 3.34] 0.008 2.04 [1.11, 3.75] 0.021 0.69 [0.32, 1.51] 0.351 
TNM stage 

III vs. I/II 5.54 [3.30, 9.30] <0.001 2.02 [1.13, 3.61] 0.018 3.48 [1.69, 7.14] <0.001 
Tumor site 

Upper/Middle vs. Lower 1.39 [0.80, 2.44] 0.243 1.38 [0.76, 2.51] 0.296 1.01 [0.49, 2.07] 0.986 
DIST 

Low vs. High 0.31 [0.19–0.52] <0.001 0.43 [0.22–0.85] 0.015 0.48 [0.23–0.98] 0.043 

Multivariable Analysis 

Age at surgery 
≥65 years vs. ＜65 years 2.76 [1.64, 4.64] <0.001 1.28 [0.67, 2.44] 0.462 1.08 [0.42, 2.79] 0.866 

Sex 
Female vs. Male 0.59 [0.32, 1.07] 0.083 0.57 [0.20, 1.61] 0.291 0.65 [0.24, 1.72] 0.382 

Smoking status 
Former/Current vs. Never 1.43 [0.79, 2.60] 0.242 1.54 [0.60, 3.99] 0.369 0.46 [0.16, 1.29] 0.139 

TNM stage 
III vs. I/II 5.16 [2.94, 9.06] <0.001 1.94 [1.08, 3.48] 0.026 3.10 [1.49, 6.48] 0.003 

DIST 
Low vs. High 0.42 [0.24, 0.73] 0.002 0.36 [0.18, 0.72] 0.004 0.52 [0.24, 1.11] 0.09 

Notes: 
a D1 is the discovery cohort. 

Table 4 
Performance of the full model and reference models in three cohorts (OS).  

Cohort Model C-index (95 % CI) iAUC AIC 

Discovery cohort (D1) TNM stage 0.651 (0.592–0.710) 0.638 629.2 
DIST 0.614 (0.554–0.675) 0.606 647.2 
TNM_DIST 0.695 (0.631–0.759) 0.677 625.1 
Clinicopathologic 0.723 (0.658–0.788) 0.721 618.9 
Full 0.745 (0.682–0.809) 0.746 612.9 

Validation cohort 1 (V1) TNM stage 0.586 (0.511–0.661) 0.590 417.4 
DIST 0.570 (0.497–0.644) 0.598 416.3 
TNM_DIST 0.613 (0.524–0.702) 0.645 412.4 
Clinicopathologic 0.596 (0.512–0.680) 0.593 417.9 
Full 0.621 (0.527–0.716) 0.650 413.5 

Validation cohort 2 (V2) TNM stage 0.632 (0.547–0.717) 0.634 267.2 
DIST 0.585 (0.497–0.673) 0.586 273.9 
TNM_DIST 0.682 (0.593–0.771) 0.673 264.8 
Clinicopathologic 0.650 (0.556–0.744) 0.648 267.0 
Full 0.671 (0.581–0.762) 0.677 265.6 

Clinicopathologic model = age at surgery + TNM stage; Full model = age at surgery + TNM stage + DIST. 
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Fig. 4. Correlation between DIST and immune phenotypes in each cohort. The proportion of patients with different immune phenotypes correlated 
to different levels of DIST for each cohort are shown as histogram plots. 

Fig. 5. Visualization of segmented cells in tumor region. The first row is the segmentation map of the tumor region, and the second row is the spatial 
distribution map of segmented cells in the tumor region. The red, green, blue, and black areas indicate tumor cells, lymphocytes, mesenchymal cells, 
and others, respectively. 
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3.5. Visualization of tumor cells and TILs in WSI 

The central coordinates of tumor cells and lymphocytes are projected into pathological WSI, as illustrated in Fig. 5. The optimal cut- 
off value of DIST in the discovery cohort was 33.89 μm, and the DIST values of case 1 and case 2 were 19.87 and 43.69 μm, respectively. 
Therefore, case 1 and case 2 were classified as belonging to the low and high DIST groups, respectively. Follow-up data showed that 
case 1 had no recurrence at 130.2 months after the operation, while case 2 exhibited recurrence at 6.0 months after the operation. Both 
cases were classified as stage IA, yet exhibited markedly disparate DFS. The primary contributing factor was the degree of lymphocyte 
infiltration in the tumor region, which differed markedly between the two cases. Additionally, the distance between tumor cells and 
lymphocytes exhibited notable variability. As shown in Fig. 5, the lymphocytes of case 1 exhibited a higher density of infiltration 
within the tumor region, with a tendency to cluster at a greater distance from tumor cells. 

4. Discussion 

In this study, we proposed a framework for the automatic quantification of spatial distance between tumor cells and lymphocytes 
using H&E-stained WSIs. We calculated the average of the nearest lymphocyte distance of each tumor cell in the WSI (named DIST). 
The prognosis analysis found that compared with the high DIST group, the low DIST group had significantly better DFS and OS. The 
results also showed that DIST was an independent prognostic factor, and that it could be employed to provide effective prognostic 
stratification of patients with resectable LUAD. 

Accurate tumor region segmentation and nuclei classification is the key prerequisite step for the spatial distance quantification 
between tumor cells and lymphocytes. Currently, the majority of studies evaluating the spatial interaction of TILs and tumor cells 
employed IHC- and mIF-stained pathological images to classify nuclei and characterize the relationship between them [10,28,29]. 
Galon et al. [28] characterized tumor-infiltrating immune cells in human colorectal cancer through gene expression profile and IHC 
image analysis. Lundgren et al. [10] used immune cell markers, such as CD4, CD8α, and FoxP3, to perform multiple immunofluo-
rescence imaging on tumor tissue microarray (TMA) of 175 patients with periampullary adenocarcinoma. Our group calculated the 
density of CD3 and CD8 based on IHC pathological images and constructed the immune infiltration score named I-score, which could 
stratify patients with resectable NSCLC effectively and accurately [29]. However, these studies require a large amount of annotation 
data, and IHC- or mIF-stained pathological images are laborious and time-consuming to obtain. In addition, these images contain less 
TIME information compared to H&E-stained WSIs. In this study, we employed transfer learning to leverage publicly available labelled 
H&E-stained pathological images from other diseases for pre-training the model. This was then applied to lung cancer pathological 
images with only a few annotations, resulting in promising segmentation results. This approach significantly reduced the annotation 
workload of pathologists. Subsequently, the state-of-the-art model, Hover-Net [24], was employed in the process of accurate nuclei 
segmentation and classification using H&E-stained WSIs. The results demonstrated the significance of calculating the DIST from all 
tumor cells to the nearest lymphocyte in WSIs according to the coordinate of the cell, which would be conducive to downstream 
analysis. 

The influence of spatial interactions between TILs and tumor cells on cancer prognosis has been extensively researched over many 
years. Most research have focused on the prognostic effect of in situ immune cell infiltration [30], the quantity of cells [7], pathological 
features [17,21], the density of TILs [22,31–33], and spatial patterns of TILs [34]. Federico et al. [30] conducted a comprehensive 
characterization of tissue slides from patients with locally advanced NSCLC using high-dimensional flow cytometry of TILs in 
conjunction with multiple immunofluorescence and gene sequencing. Research analysis indicated that increased B cell infiltration was 
related to a favorable prognosis in NSCLC patients. Additionally, literature [7] reported that the characteristics of the interaction 
between fibroblasts, TILs, and tumor cells could be employed for the classification of ER + HER2-breast cancer. This study indicated 
that the spatial mixing numbers of fibroblasts and TILs were related to good prognosis, but patients with high fibroblasts and low TILs 
had poor survival. Corredor et al. [17] predicted the likelihood of recurrence in NSCLC by capturing the spatial TIL features to 
co-localize the TILs and nuclei clusters across the tissue slide image. Verdicchio et al. [21] developed an automated pipeline to extract 
various hand-crafted pathomic features for the classification of TILs in breast cancer WSIs. These methods aimed to investigate the 
microscopic patterns in pathological data by extracting features from pathological analysis, but the process of selecting a large number 
of useful pathological features is time-consuming. Donnem et al. [31] conducted an assessment on the density of CD8+ TILs within the 
stroma, which was established it as an independent prognostic factor of NSCLC. Lin et al. [32] classified the tumors of LUAD into 
several subtypes based on TILs density and mRNA expression of PD-1/PD-L1, and demonstrate that their approach could better stratify 
patients of different clinical outcomes. However, the spatial distance and distribution between TILs and surrounding tumor cells is the 
premise of spatial interaction between them, which is not considered in the aforementioned papers. Barua et al. [35] used the G-cross 
spatial distance distribution method to analyze the abundance and spatial distribution of various cell types in TMA, along with their 
intercellular proximity. The results indicated that heightened infiltration of regulatory T cells into the central tumor region inde-
pendently predicted a decrease in the overall survival rate of patients with NSCLC. Peng et al. [14] developed a framework to analyze 
the cell interaction networks in the tumor microenvironment, and revealed the spatial distance and complex interplays between 
immune and tumor cells. This study showed that spatial distance and compartmentalization between CD133+ cancer stem cells and 
CD8+ T cells were emphasized to play a pivotal role in immune response and carry out risk stratification on patients with LUAD. 
Although these researches achieving promising results, the number of extracted features is large and feature selection is complex, 
which is prone to over-fitting. Therefore, we proposed a simple and effective biomarker with simple calculation and good general-
ization ability to characterize the spatial distance between tumor cells and lymphocytes. It was demonstrated that the proposed 
biomarker DIST was an independent prognostic factor between DFS and OS in several external validation cohorts. By integrating the 
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DIST and baseline characteristics of patients, the full model demonstrated superior discriminative and correction performance in three 
independent cohorts when compared to models without DIST. This indicated that DIST not only enhances the prediction ability of DFS 
but also provides effective prognostic stratification of patients with resectable LUAD. 

The immune phenotypes have contributed to the remodelling of the immunosuppressive microenvironment, the determination of 
prognosis, and the informing of novel cancer immunotherapy [36]. In general, the immune phenotypes include inflamed, 
immune-excluded, and immune-desert in NSCLC [26]. According to the literature [12], the immune-desert phenotype is correlated 
with unfavorable prognosis, whereas the inflamed phenotype is linked to a good prognosis. The DIST in this study may be considered to 
reflect the spatial distance between tumor cells and lymphocytes, thus to represent the ability of the WSI to predict prognosis. It was 
found that the low DIST group was strongly correlated with the inflamed phenotype, while the high DIST group was strongly correlated 
with the immune-desert phenotype, by exploring the correlation between DIST and immune phenotypes. Furthermore, we observed 
that a considerable proportion of patients in the immune-desert group were categorized as low DIST in the discovery cohort. This 
discrepancy arises because our proposed DIST metric averages the distance between tumor cells and lymphocytes across the entire 
tumor region, not only encompassing both tumor epithelium and tumor-associated stroma which are used to define the immune 
phenotypes. Thus, it was plausible that numerous lymphocytes may exist within the tumor epithelium. It can be reasonably assumed 
that these lymphocytes would influence the DIST calculation and lead to the observed results in the immune-desert group of Fig. 4. 
Overall, the experimental findings effectively illustrate that the proposed biomarker is beneficial in improving the risk stratification of 
patients with LUAD. 

This study also has some limitations. Firstly, this study is retrospective, and the distribution of clinicopathological factors across the 
three centers is markedly disparate, presenting a significant challenge to the generalizability of the model. In addition, the production 
process of pathological slides and scanner parameters differs across each cohort, resulting in a considerable variation in pathological 
images and a high risk of batch effect. Secondly, due to the inherent limitations of the deep learning-based nuclei segmentation 
method, there is a certain degree of bias in the TILs density and the spatial distance calculations. Moreover, this study only considers 
the distance of lymphocytes in proximity to tumor cells, and more complex spatial relationships between tumor cells and lymphocytes 
will be further explored in the future. Besides, a single pathological WSI only reflects two-dimensional information at the section level, 
which is insufficient to reflect the three-dimensional spatial structure relationship between the cells. Finally, it is not possible to claim 
which type of lymphocyte proximity to tumor cells regards the positive prognostic impact. In order to investigate this relationship 
further, it is necessary to use specific biomarkers of lymphocyte subtypes. 

5. Conclusions 

In conclusion, we propose a simple but effective biomarker, DIST, which is calculated by measuring the spatial distance between 
tumor cells and lymphocytes. This biomarker was able to stratify patients with resectable LUAD into low-risk and high-risk groups in 
terms of DFS and OS, with significant differences. DIST was found to be an independent prognostic factor for DFS and OS, and the 
clinicopathological model integrated by DIST demonstrated an improvement in the stratification performance for patients with 
resectable LUAD. This finding was beneficial for the prognosis prediction of LUAD patients and was also expected to assist physicians in 
the administration of individualized treatment. 
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