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Knowledge of brain connectivity is an important aspect of modern neuroscience, to understand how the brain realizes its functions.
In this work, neural mass models including four groups of excitatory and inhibitory neurons are used to estimate the connectivity
among three cortical regions of interests (ROIs) during a foot-movement task. Real data were obtained via high-resolution scalp
EEGs on two populations: healthy volunteers and tetraplegic patients. A 3-shell Boundary Element Model of the head was used
to estimate the cortical current density and to derive cortical EEGs in the three ROIs. The model assumes that each ROI can
generate an intrinsic rhythm in the beta range, and receives rhythms in the alpha and gamma ranges from other two regions.
Connectivity strengths among the ROIs were estimated by means of an original genetic algorithm that tries to minimize several
cost functions of the difference between real and model power spectral densities. Results show that the stronger connections are
those from the cingulate cortex to the primary and supplementary motor areas, thus emphasizing the pivotal role played by the
CMA L during the task. Tetraplegic patients exhibit higher connectivity strength on average, with significant statistical differences
in some connections. The results are commented and virtues and limitations of the proposed method discussed.
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1. Introduction

It is well known that the execution of even simple motor
and/or cognitive tasks by the brain requires the participation
of multiple cortical regions, which are mutually intercon-
nected and exchange their information via plastic long-range
synapses. Consequently, knowledge of brain connectivity
is becoming an essential aspect of modern neuroscience,
especially useful to understand how the brain realizes its
basic functions and what the role of the different regions
is. Connectivity, however, is an elusive concept, which can
have different definitions depending on the emphasis of the
investigators [1]. In particular, the definition of connectivity
is strictly related to the mathematical method used to
extract connectivity parameters from data, that is, it is
“model dependent” and should always be used together
with the particular method adopted. For instance, most
methods presently used to derive connectivity graphs (such
as the Direct Transfer Function or the Partial Directed
Coherence [2–8]) are based on the assumption of linearity,

whereas neurons are intrinsically nonlinear. Moreover, these
methods use empirical equations (i.e., they are based on
black box models), which do not provide a description of
the underpinning physiological mechanisms (e.g., they do
not explicitly consider the time constant and strength of
synapses, the role of inhibitory interneurons, etc.). On the
other hand, the main advantage of these methods is that they
provide analytical solutions to the problem, which are not
“modeler driven.”

As an alternative method to study effective connectivity,
a few authors in recent years have employed the so-
called “neural mass models.” These models were originally
proposed in the mid seventies [9, 10] and subsequently
improved in the late nineties [11, 12]. They mimic the
activity of entire neural populations via the feedback
arrangement of excitatory and inhibitory groups, which
are assumed to share a similar membrane potential and
work in synchronism. The interaction between excitatory
and inhibitory groups can produce oscillatory rhythms,
either via an intrinsic instability of the model (like a limit
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cycle) or by a resonance amplification of an external noise.
In particular, similar models have been used to simulate
alpha rhythms [11], dynamics in the olphactory cortex [13],
or paradoxical epileptic discharges [12, 14]. A few recent
studies used these models to study effective connectivity
among different regions of interest (ROIs), to analyze the
dependence of cortical EEG on connectivity patterns [15,
16] and to evaluate the EEG power spectral density [17].
Recently, we also used neural mass models, including fast
inhibitory dynamics, to simulate the power spectral density
of cortical EEG [18–20] during simple motor tasks. The
main indication of these studies is that neural populations
with different dynamics (e.g., different time constants of
excitatory and inhibitory synapses) suitably interconnected,
can produce EEG rhythms similar to those measured in
human subjects via high-resolution EEG methods.

Application of neural mass models to estimate effective
connectivity is, however, a very hard task, due to the elevated
number of parameters involved and the presence of nonlin-
ear terms, which preclude the use of analytical solutions. For
instance, in a recent paper [21] we derived some connectivity
patterns between three cortical regions (the cyngulate and
the primary and supplementary motor cortices) during a
simple foot-movement task, by minimizing a least-square
criterion function of the difference between model and
data spectral densities. However, just a few exemplary cases
could be analyzed, since the minimization algorithm often
converges to a suboptimal solution (i.e., a local minimum)
which may exhibit just a poor fitting and, moreover,
may be characterized by unphysiological parameter values.
Furthermore, also the metrics used to compare model and
patient spectral densities may be questionable and affect the
final minimisation results.

For this reason, in the present paper we designed a
new method, based on a genetic algorithm, to provide
an automatic fitting between model and real data. The
method tries to find absolute minima of alternative cost
functions within the same procedure. Genetic algorithms
have already been used to estimate the parameters of a neural
mass model in order to fit real data (see, e.g., [22]). The
algorithm has been applied to high-resolution scalp EEG data
measured during a simple foot-movement task; scalp EEG
was preliminarily propagated to the cortex via a propagation
model, to infer cortical electrical activity in three Regions of
Interest (ROIs). The model [20] assumes that each ROI is
characterized by an intrinsic rhythm (established by the time
constants of synapses) and can receive additional rhythms
from other connected ROIs. Results have been applied to a
group of normal subjects and a group of tetraplegic patients
to establish simple patterns of connectivity between the
cyngulate, motor, and premotor cortices, and to look for
possible differences in the two populations.

2. Method

2.1. Model of a Single Population. The model of a single
population was obtained by modifying equations proposed
by Wendling et al. [12]. It consists of four neural groups

which communicate via excitatory and inhibitory synapses:
pyramidal cells, excitatory interneurons, inhibitory interneu-
rons with slow synaptic kinetics, and inhibitory interneurons
with faster synaptic kinetics. Each neural group simulates a
pool of neurons which are lumped together and which are
assumed to receive similar input and to behave in a similar
manner. One lumped circuit communicates with another
through the average firing rate corresponding to what that
given population of cells is firing on average.

Each neural group receives an average postsynaptic
membrane potential from the other groups, and converts the
average membrane potential into an average density of spikes
fired by the neurons. This conversion is simulated via a static
sigmoidal relationship. The effect of the synapses is described
via second-order linear transfer functions, which convert the
presynaptic spike density into the postsynaptic membrane
potential. Three different kinds of synapses, with impulse
response he, hi, and hg , are used to describe the synaptic effect
of excitatory neurons (both pyramidal cells and excitatory
interneurons), of slow inhibitory interneurons and of fast
inhibitory interneurons, respectively. Model equations can
be written as follows.

Pyramidal Neurons:

dy0(t)
dt

= y5(t), (1)

dy5(t)
dt

= A · a1 · z0(t)− 2 · a1 · y5(t)− a2
1 · y0(t), (2)

z0(t) = (2 · e0)
1 + er·(s0−v0)

, (3)

v0(t) = C2 · y1(t)− C4 · y2(t)− C7 · y3(t). (4)

Excitatory Interneurons:

dy1(t)
dt

= y6(t), (5)

dy6(t)
dt

= A· a1·
(
z1(t) +

p(t)
C2

)
− 2 · a1· y6(t)− a2

1· y1(t),

(6)

z1(t) = (2 · e0)
1 + er·(s0−v1)

, (7)

v1(t) = C1 · y0(t). (8)

Slow Inhibitory Interneurons:

dy2(t)
dt

= y7(t), (9)

dy7(t)
dt

= B · b1 · z2(t)− 2 · b1 · y7(t)− b2
1 · y2(t), (10)

z2(t) = (2 · e0)
1 + er·(s0−v2)

, (11)

v2(t) = C3 · y0(t). (12)
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Fast Inhibitory Interneurons:

dy3(t)
dt

= y8(t), (13)

dy8(t)
dt

= G · g1 · z3(t)− 2 · g1 · y8(t)− g2
1 · y3(t), (14)

z3(t) = (2 · e0)
1 + er·(s0−v3)

, (15)

v3(t) = C5 · y0(t)− C6 · y2(t). (16)

In these equations, the symbols vi represent the average
membrane potentials (i = 0, 1, 2, 3 for the four groups).
These are the input for the sigmoid function which converts
them into the average density of spikes (zi, i = 0, 1, 2, 3) fired
by the neurons. Then, these outputs enter into the synapses
(excitatory, slow inhibitory, or fast inhibitory), represented
via the second-order linear functions. Each synapse is
described by an average gain (A,B,G for the excitatory, slow
inhibitory, and fast inhibitory synapses, resp.) and a time
constant (the reciprocal of a1, b1, and g1, resp.). The outputs
of these equations, which can be excitatory, slow inhibitory,
or fast inhibitory, represent the postsynaptic membrane
potentials (yi, i = 0, 1, 2, 3). Interactions among neurons
are represented via seven connectivity constants (Ci). Finally,
p(t) represents all exogenous contributions, both excitation
coming from external sources and the density of action
potentials coming from other connected regions.

2.2. Model of Connectivity Among ROIs. The previous
model was used to simulate a single ROI, the dynamic of
which ensues from the interactions among the four neural
subgroups. In order to study how the ROIs interact, we
consider N ROIs which are interconnected through long-
range excitatory connections. To simulate this connectivity
we assumed that the average spike density of pyramidal
neurons (z0) affects the input p(t) in (6) via a weight factor,
W , and a time delay, T . Hence, the input pi(t) in the ith ROI
can be computed as follows:

pi(t) = ni(t) +
∑
j

Wijz0, j(t − T), (17)

where Wij is the weight of the synaptic link from the jth
(presynaptic) ROI to ith (postsynaptic) ROI, T is the time
delay (assumed equal for all synapses), ni(t) represents a
gaussian white noise with mean value mi and standard
deviation σi, and the sum in the right hand member of (17)
is extended to all ROIs, j, which target into the ROI i.

2.3. Acquisition and Processing of EEG Data. The experiment
took place in the laboratories of the Santa Lucia Foundation,
Rome, after the informed consent was obtained. The subject
was comfortably seated in an armchair with both arms
relaxed, in an electrically shielded, dimly lit room. He
was asked to perform a brisk protrusion of the lips (lip
pursing) while he was performing a right foot movement. A
58-channel EEG system (BrainAmp, Brainproducts GmbH,
Germany) was used to record electrical potentials by means

of an electrode cap, accordingly to an extension of the 10–
20 international system. A/D sampling rate was 200 Hz.
During motor task, subject was instructed to avoid eye
blinks, swallowing, or any movement other than the required
foot movements. Bipolar EMG was recorded from control
and spinal cord injury (SCI) subjects, with surface electrodes
from the right tibialis anterior muscle and orbicularis oris
muscle to detect the onset of foot and lip movements,
respectively. The electro-oculograms (EOGs) were recorded
to avoid trials with artifacts due to eye-blink movements. The
EMG was monitored throughout recordings from electrodes
placed as described above to avoid poor quality of the
recordings due to muscular artifacts. Artifact rejection was
performed on a wide segmentation of the trials (from −4.0 s
to +4.0 s) while a narrow segmentation (from −2.5 s to
+0.5 s) was used as analysis period.

A 3-shell Boundary Element Model (BEM) of the head
was used to estimate the cortical current density (CCD)
distribution in some regions of interest (ROI) of the cortex
(the cingulate cortex (CMA L), the primary motor area
(M1F L), and the supplementary motor area (SMAp L))
starting from activity measured on the scalp. The procedure
used is described in previous works [18, 19, 23]. From the
CCD, the average estimated cortical activity in the region
has then been evaluated. The latter has been successively
subjected to spectral analysis in order to produce the spectra
used for the estimation of the model parameters.

Power spectra have been computed by using the Welch’s
average modified periodogram method [24]. In particular,
the model Power Spectral Density (PSD) was computed
using simulated signal with duration 100 seconds, and
averaging 50% overlapping sections each with duration
1 second. The use of a 100 seconds simulated signal is
justified by the necessity to reduce the variance of the
estimated spectrum to an acceptable level. We verified, using
a random repetition of the same simulation by changing
the input noise, that these spectra are only scarcely affected
by the single noise realization. All power spectra have been
preliminary normalized to have unitary area in the same
frequency range (6–50 Hz). Since the signal beyond 40 Hz
may be corrupted, the limit of our investigated gamma range
was 30–40 Hz. In particular, we did not investigate the so-
called high-gamma range (above 50 Hz).

We examined 5 subjects with spinal cord injury (SCI; 4
males, 1 female, mean age 26.4 ± 2.8 years) and 5 healthy
subjects (4 males, 1 female, mean age 25.1 ± 1.5 years).
Informed consent was obtained from all the subjects. The
study was approved by the local ethics committee. The
SCIs were all of traumatic aetiology and were located at
the cervical level (C6 in 3 SCI subjects; C5 and C7 in the
remaining 2 subjects); at the time of the study, all the patients
had a stabilized lesion (mean time since trauma 19.4 ± 7.2
months). Neurological status was assessed according to the
American Spinal Injury Association (ASIA) standards on the
basis of the patients’ motor and sensory scores, neurological
level, and neurological impairment. The completeness of
the lesion was defined according to the concept of sacral
sparing: sensory preservation of the peri-anal zone and/or
motor function of the external anal sphincter (preservation
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of the lower sacral segments). The lesion was complete in all
5 patients (ASIA-A: complete motor and sensory loss below
the lesion level). None of the SCI patients had suffered a
head or brain lesion in concomitance with the spinal injury.
Neither uncontrollable spasticity-induced body movements
nor dysaesthetic pain syndrome were reported by any of the
patients. All subjects were right-handed as assessed by the
Edinburgh inventory [25].

In order to perform a subsequent fitting, we chose only
those EEG tracings for which alpha and gamma rhythms
were located at approximately the same frequencies in the
three ROIs. This corresponds to model hypothesis (see in
what follows) that each of these rhythms is generated by
a single external source (limitations of this choice will be
discussed at the end). 102 tracings satisfied this criterion. The
algorithm was able to fit 59 of these trials: 36 trials on healthy
subjects and 23 trials on tetraplegic ones.

2.4. The Model of the Motor Task. Analysis of real EEGs
(see also [20, 21]) demonstrates that power spectral density
during the task may exhibit three simultaneous rhythms, in
the alpha, beta, and gamma ranges, respectively. In order to
simulate this behavior, we assumed that the cortical ROIs
involved in the movement (i.e., the M1F L, the CMA L,
and the SMAp L), when activated, oscillate with an intrinsic
rhythm in the beta range. This hypothesis reflects the fre-
quent idea that, during behavioral activation, beta rhythms
are generated locally, perhaps by a recurrent feedback loop
involving pyramidal cells and inhibitory interneurons [26].
These waves represent excitement of the cortex to a higher
state of alertness or tension. Moreover, we assumed that
the alpha rhythm is sent to the cortex by an external area
(probably located in the thalamus and reticular nucleus).
This hypothesis corresponds to the idea [32, page 201]
that alpha rhythms arise from the endogenous rhythmicity
of thalamic populations, which are then transmitted to
other thalamocortical populations even in the absence of an
external stimulus. Finally, an important problem is how to
produce gamma rhythms in the model. A first possibility
is that all ROIs can generate not only their intrinsic beta
rhythm, but also a gamma oscillation, via a second group
of populations with faster kinetics, and that these gamma
rhythms are then synchronized via long-range synapses. The
idea of multiple rhythms in the same ROI was proposed by
David and Friston [15], and was used by us in a previous
model for connectivity estimation [17]. A second possibility,
which allows PSD to be mimicked with a smaller number of
parameters, is that gamma oscillation is generated by a single
far region of the cortex, and then transmitted to the other
ROIs via long-range synapses.

In the present study we adopted the second hypothesis.
First, we assumed that the thalamus receives an external
input (simulated as a significant white noise term) and drives
the other populations but does not receive any connectivity
from them (i.e., any possible feedback from the cortex to
the thalamus is neglected). Hence, the motor command
originates from the low-frequency region (LF), and spreads
toward the cortex. Moreover, the three ROIs in the cortex
(CMA L, M1F L, and SMAp L) can recruit a gamma or
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HF (prefrontal 
cortex)
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motor area)

(supplementary
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Figure 1: Model of interconnected ROIs used in the present work
to simulate power spectral densities in prefrontal regions during a
foot-movement task. Wij are connectivity weights, estimated from
real data using the genetic algorithm described in the text. The
regions CMA L, M1F L and SMAp L oscillate in the beta range
when stimulated with white noise. The LF region oscillates in the
alpha range, whereas the HF region generates a rhythm in the
gamma band (see Table 1 for parameter numerical values within the
regions).

high-frequency rhythm from another region (named HF),
which may be located in the prefrontal cortex. This rhythm
should reflect the cognitive or conscious aspects of the
task. Finally, the cingulate cortex can also modulate the HF
region and drives the other two ROIs (i.e., the primary
and supplementary motor areas). The latter are linked via a
feedback loop. A sketch of the overall model is illustrated in
Figure 1.

2.5. The Model Parameters. The model has a relatively large
number of parameters, but only a few of them were used
as variables for the fitting procedure. It appears that letting
the fitting algorithm modulate all of the model parameters
leads to incoherent solutions: the same simulated power
spectra can be obtained with different sets of parameters.
So the parameters estimated by the fitting algorithm were
only the reciprocal of time constants of excitatory synapses
(to tune power peaks frequencies) and connectivity strengths
(to adjust power peaks relative amplitudes). The other
parameters have constant values, given in Table 1. Most of
these values are biologically plausible [11] and let the model
oscillate in the alpha (8–12 Hz), beta (12–30 Hz), and gamma
band (>30 Hz) [18, 19]. Still the input mean m and variance
σ2 have been estimated via the fitting procedure, since no
plausible values for these parameters have been found yet. In
fact, as usual in neural mass models [12, 15, 20], this noise
simulates all random contributions coming from external
sources not included in the model and also accounts for
internal neural variability. To do this we run a preliminary set
of fittings in which m and σ2 were used as fitting variables in
order to find their optimum values for each trial. The values
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Table 1: Model parameters.

Parameters LF CMA L, M1F L, SMAp L HF

A(mV) 2.67 5.17 5.55

B(mV) 3.15 4.45 3.8

G(mV) 22.3 57.1 173

b1(s−1) 20 30 40

g1(s−1) 300 350 790

m(mV) −103.3011 −130.4829 −16.1439

σ2(mV 2) 27807 10028 23642

All Regions

C 135

C1 C

C2 0.8 C

C3 0.25 C

C4 0.25 C

C5 0.3 C

C6 0.1 C

C7 0.8 C

r(mV−1) 0.56

s0(mV) 6

e0(s−1) 2.5

found were averaged and used as constants (Table 1) in the
following fitting procedures.

2.6. Genetic Algorithm and Fitting Procedure. A Genetic
Algorithm (GA) is a search technique that solves opti-
mization problems by simulating the Darwinian natural
selection [27]. We used the GA to find the set of model
parameters for which the model output fits a given real EEG
signal. Parameters used for the fitting procedures are the
reciprocal of time constants of excitatory synapses (a1), and
connectivity strengths.

The GA is divided into generations. Each generation con-
sists of a lot of individuals that are candidate solutions (sets
of model parameters) for the fitting. The first generation is
typically random. Parameters are represented as bit arrays
(chromosomes). Each individual is ranked with a fitting
coefficient (FC) in the range [0, 1] by calculating the model
output and comparing it to the real EEG signal: the better
the fitting between the simulated signal and the real one,
the higher the FC of the individual. Best-ranked individuals
(higher FC) have higher probability to reproduce. During
reproduction couples of parents are randomly selected
according to their FCs. Each couple generates two new
individuals whose chromosomes are obtained from applying
genetic operators to the parents’ ones. Typical genetic
operators are crossover and mutation (Figure 2). Crossover is
the exchange of genetic material between parents to generate
the sons’ chromosomes. Mutation simply switches the values
of a low percentage of bits (mutation rate). The worst
individuals of the previous generation are replaced with
the best newborn individuals. In this way, each generation
tends to preserve the best genetic material. The algorithm
converges to a population composed of sets of parameters
that fit the real EEG signal well.
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Figure 2: An exemplum of the mechanism for son generation
implemented in the genetic algorithm.

The major challenge in implementing a GA is to find an
efficient fitting function for determining the FCs and rank
the individuals, so that the algorithm is able to converge
in reasonable time. To compare the simulated signal to the
real one, we used their PSD. Actually, analysis of the peak
frequencies and amplitudes in the PSD allows evaluations of
the rhythms characterizing the signal, their frequencies, and
the relative power associated to each frequency band.

We introduced some changes to the original GA to
improve its speed of convergence.

(i) The global population was divided in 4 tribes. Each
tribe has its own fitting function. The algorithm
allows migration between tribes, so that each indi-
vidual may choose the tribe that consent its offspring
to converge to the solution in the fastest way. In
order to compute the FCs of each tribe, we first
calculated three alternative cost functions. The first
is the classic mean square error. The second aims at
quantifying the similarity in the ratios between the
local maxima and the local minima (i.e., it gives more
emphasis to the maxima and minima of the PSD
than to other values of the PSD). The third focuses
the attention especially to the position of the peaks
(i.e., the frequencies of the three rhythms). These
three functions were then combined with different
weights, in order to obtain four alternative FCs to be
used in the four tribes. The fourth tribe (also named
melting pot) is the one characterized by the strictest
requirements.
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(ii) The algorithm uses a dynamic mutation rate. The
probability of a bit to switch is related to the similarity
between the parents’ chromosomes: the more similar
the chromosomes, the higher the mutation rate.
A high similarity between parents means that the
population converged to a local maximum; in this
condition, an increase in the mutation rate would
favour the escape from the maximum attraction field.

(iii) An aging factor was introduced. This means that
members of the previous generation can still generate
sons and daughters, but starting with a decreased FC.
Otherwise, the creation of new populations would
erase all good old individuals, and if they had poor
sons and daughters their legacy would be lost. On
the other hand, if old individuals are not weakened,
evolution may be too slow.

(iv) The order of bits inside chromosomes can be
shuffled. Commonly each parameter is encoded in
a single chromosome, but such a coding system
is inefficient when combined with the dynamic
mutation rate described above. When one of the
parameters approaches its best value, it tends to
be inherited by all the members of the population.
This means that all the individuals have an almost
identical chromosome, thus the mutation rate for the
bits encoding this parameter grows rapidly and the
partial information reached may be wasted in the
successive generation. This problem can be avoided
by spreading the information of each parameter
among all the chromosomes. Figure 2 illustrates a
more standard coding system.

The algorithm stops either when individuals finish
improving their FCs, or after 400 generations. At the end of
the simulation the best individual belonging to the melting
pot is taken as the best solution.

We noticed that the most beneficial changes are those
which best resemble the natural selection.

3. Results

Exempla of model fitting in four exemplary cases are shown
in Figure 3. The left panels refer to two healthy subjects, while
the right panels refer to two tetraplegic patients. It is worth
noting that the model is able to simulate the position and the
relative amplitude of the three peaks in all three ROIs quite
well. The other fitted PSDs are similar to those presented
here, both for what concerns the shape and the quality of
fitting.

The average values of estimated synaptic weights in the
healthy population and in the tetraplegic patients are shown
in the histogram of Figure 4. Two main aspects of this figure
deserve attention.

First, by considering the overall fitting parameters, with-
out distinguishing between healthy and tetraplegic subjects,
one can observe that some weights are predominant com-
pared with others. In particular, the stronger connections are
those from the cyngulate cortex to the primary motor cortex,
and from the cyngulate cortex to the supplementary motor

cortex. A visual summary of the synaptic strengths, com-
puted by using the average parameters in both populations,
is shown in the bottom panel of Figure 4.

Second, from a separate parameter estimates, one can
detect statistically significant differences in the synaptic
strength between healthy and tetraplegic subjects. In partic-
ular, connectivity in tetraplegic patients is about 12% higher
(on average) compared with that of healthy volunteers.
Differences in connection weights between the two classes are
very significant (p < .01 evaluated with an untailed t-test)
from the thalamus to the primary motor cortex and from the
thalamus to the supplementary motor cortex. The differences
in the connection weights are also significant (p < .05) from
the high frequency region to some cortical ROIs.

Finally, we used the average values of the synaptic
strengths in the two populations to compute paradigmatic
PSDs (one for a typical healthy subject using the average
parameters of that class and the other for a typical tetraplegic
subject). The results are illustrated in Figure 5. As it is evident
from this figure, the paradigmatic tetraplegic subject exhibits
a stronger peak in the gamma band compared with that
evident in the paradigmatic healthy volunteer and a smaller
peak in the beta range. This difference is a consequence of the
higher connectivity weights from the HF region and from the
LF region.

4. Discussion

The aim of this work was to derive patterns of connectivity
among the main regions of interest (the cingulate cortex
and the primary and supplementary motor areas) involved
in simple motor tasks. To this end, we used neural mass
models and electrophysiological data obtained with scalp
EEG, propagated to the cortex. Moreover, we analyzed dif-
ferences between normal and tetraplegic subjects. Although
various attempts to derive connectivity from EEG, and to
characterize EEG in pathological conditions are present in
the literature, most works make use of empirical model (e.g.,
based on coherence and correlation among time series). Just
a few attempts to elucidate existing data via interpretative
models can be found in the literature [15–17].

In an interpretative model, parameters have a clear bio-
physical significance, and the model allows the formulation
of hypotheses on the physiological mechanisms, the neural
architecture, and the parameter changes responsible for
data generation. Promising models assume the presence of
interacting neural masses, which are reciprocally connected
and generate the neural signals responsible for the measured
electrical activity. Similar models integrated with Bayesian
inference (a framework named “Dynamic causal models” by
the authors) were used by Friston and coauthors to estimate
effective connectivity from neuroimaging data [15, 28], to
analyze event-related potentials [29] or to predict the spectral
profile of local field potentials in the rat [17]. Neural mass
models were used to study the transition to seizures and to
model epileptic activity [12, 30], to analyze the effect of drugs
on EEG spectra [31], or to simulate the effect of the overall
brain connectivity on individual EEG rhythms measured on
the scalp [16].
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Figure 3: Comparison between real (dashed line) and simulated (continuous line) power spectral densities in the three regions M1F L
(primary motor cortex), SMAP L (supplementary motor cortex), and CMA L (cingulate cortex) of the left hemisphere during execution of
the foot imagery motor task. The left panels refer to two healthy subjects, while the right panels refer to two tetraplegic patients. All spectra
are normalized to have unitary area in the range 6–50 Hz. The value of the fitting coefficient (ranging between 0 and 1) is shown above each
panel.

Our work goes in the same direction as previous papers.
However, three main innovative methodological aspects
deserve a critical discussion: the kind of information used to
validate the model, the structure adopted for the model, and
the fitting procedure for parameter estimation.

The first important issue concerns what kind of data the
model is intended to reproduce, and so, which measurement
is compared to model output. This is a crucial point, since the
type and structure of a model are strictly dependent on the
problem under study. In this work, as in previous ones [18–
21], we focused attention on the frequency content of cortical
EEG, in particular on the peaks of power spectral density.
Indeed, spectral measures are commonly used to summarize
cortical dynamics and to assess changes in cortical activity
during cognitive and/or motor tasks. It is generally believed
that the alpha rhythm originates from the thalamus and is

distinctive of a relaxed state. The beta rhythm is associated
with normal waking activity, as it occurs during natural
human motor behavior or after proprioceptive stimulation.
A shift from alpha to beta rhythms is considered a marker
of alerting. Gamma rhythms appear to be involved in higher
mental activity, including perception and consciousness.
Although these rhythms are currently described and analyzed
in the neurophysiological literature [32, 33], the problem of
how to link their changes to the underlying neural processes,
the neural architecture and connectivity strength is still
largely unsolved.

An important aspect is that we focused attention just on
three ROIs, and we never tried a fitting to other ones. The
ROIs were selected according to widely accepted considera-
tions on their involvement in the preparation and execution
of simple self-generated movements. In fact, there is a general
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Figure 4: Connectivity weights (mean value + SD) estimated on
5 healthy subjects and on 5 tetraplegic patients with the genetic
algorithm described in the text. A qualitative exemplum of the
resulting connectivity, based on the average values on the entire
population, is depicted in the bottom panel, where line thickness
is proportional to the connectivity weight. It is worth noting in the
upper panel the presence of very significant statistical differences
(p < .01, columns with ∗∗) between healthy subjects and
tetraplegic patients for what concerns the connections from the
LF region to the primary motor and supplementary motor areas.
Significant statistical differences (p < .05, columns with ∗) are also
evident in the connections which link the HF region to the primary
motor and supplementary motor areas.

consensus that the M1F and the medial aspect of the SMAp

are amongst the main generator sources of the early and
late components of the motor-related cortical potentials
(reviewed by [34]) which, in turn, reflect the physiological
excitation of the cortical areas involved in preparing and
producing movements. Anatomical and physiological studies
on nonhuman primates have demonstrated that among the
distinct cingulate motor areas buried in the cingulate sulcus,
those roughly located at the same rostrocaudal level as the
SMAp proper (caudal CMA, dorsal, and ventral parts) are

primarily implicated in movement execution itself rather
than in higher cognitive control of voluntary movements (for
review see [35, 36]).

In order to simulate EEG spectral patterns in these areas,
including both alpha and beta as well as gamma rhythms,
we adopted a simple model structure based on a few a
priori assumptions. First we assumed that the cingulate
cortex drives the primary motor area and the supplementary
motor area during execution of the task, but it receives
only negligible feedback from them. This assumption seemed
justified by the attention that the cingulate cortex has
received in the neuroscientific literature recently [37]. In
these contributions the cingulate cortex is seen as a part of
the cortex, that is, mainly involved in the promotion of action
and movements of decisions. By contrast, the two motor
areas may be connected by a reciprocal feedback. These areas
are important in our model since the primary motor area
is responsible for the execution of all voluntary movements,
while the supplementary motor area implements internally
generated or well-learned actions, that is, actions which do
not require monitoring the external environment.

A further assumption is that the three ROIs under
analysis, if stimulated, can oscillate with an intrinsic beta
rhythm. This assumption agrees with present knowledge.
Indeed, as traditionally described in the literature, a motor
related activity in the beta range is frequently located close to
the sensory motor area following finger movements [38] and
is reflected to the premotor area [39]. As suggested by [40]
beta oscillations may be “indicative of a resonant behavior
of the connected networks in the sensorimotor areas.” This
reflects our basic model assumption.

Beyond this fundamental aspect, the model incorporates
two other important assumptions, which are used to generate
alpha and gamma rhythms, but have a less evident physiolog-
ical and neural counterpart.

First, model assumes that a low frequency alpha rhythm
originates from an external area (that we named “thalamic
area”) and then propagates to the other regions of interest.
Indeed, a classic idea on the genesis of alpha rhythms [32,
page 201] is that this rhythm arises from the endogenous
activity of thalamic neurons, or from thalamocortical con-
nections, especially involving the occipital region. Recent
works on the cat, support the critical role of the thalamus for
the generation of occipital oscillations [41]. A recent study on
the location of EEG rhythms in humans confirms that alpha
rhythms are especially evident in the occipital or occipito-
temporal regions, that is, they mainly arise from posterior
neural sources [39]. Hence, although we cannot exclude
that a source of alpha rhythms may also be present in the
examined frontoparietal regions, the most likely hypothesis
is that this rhythm originates in thalamic and/or occipital
regions, and is then transmitted toward the other regions of
interest.

An important simplification, which deserves a brief
comment, is that we neglected any feedback synapse from
cortical regions to the “thalamic area.” Of course, cortico-
thalamic feedbacks exist in the brain and may have a role
in the modulation of the alpha spectral content. Our choice
has been adopted just to reduce the number of parameters
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Figure 5: Example of paradigmatic power spectral densities simulated with the model using the average connection weights estimated on
healthy volunteers (left panel) and on tetraplegic patients (right panel). All spectra are normalized to have unitary area in the range 6–50 Hz.
It is worth noting the higher peak in the gamma range, and the lower peak in the beta range in tetraplegic patients compared with the healthy
subjects.

in the fitting procedure, in order to avoid the problem of
“overfitting.” In fact, increasing the number of unknown
parameters improves the quality of fitting, but worsens the
reliability of parameter estimates.

A further important assumption is that also the gamma
rhythm originates from an external area, that we supposed
to be located in the frontal cortex. This hypothesis is
corroborated by the observation that neurons in the frontal
cortex shows the intrinsic capacity to oscillate at 40 Hz
[42, 43]. However, alternative hypotheses on the origin of
gamma rhythms can be found in the literature (see [44] for
an excellent review) and we cannot exclude that this rhythm
originates internally in the considered ROIs due to recurrent
excitation and inhibition mechanisms (especially involving
fast inhibitory interneurons). Hence, the gamma region in
the model should be considered as a “latent source,” that
has not necessarily a physiological counterpart. This problem
requires further theoretical and experimental work.

Once this model structure has been designed, a funda-
mental point concerns what aspects of the spectra should be
used to perform a best fitting between model predictions and
real data. In previous works we used a least-square criterion
function of the difference between model and measured
spectra [18–21]. Assuming a Gaussian distribution of the
measurement error, a least square criterion corresponds to a
maximal likelihood estimation, that is, maximization of the
a priori conditioned probability. A more complex Bayesian
procedure has been adopted by Moran et al., recently [17]
under the framework of dynamic causal models [28, 45].
A Bayesian procedure involves also the inclusion of some
a priori knowledge on the probability distribution of the
estimated parameters.

In the present work we tried an innovative strategy, based
on the idea that not all aspects of the PSD are of equal

interest. In particular, we focused attention especially on the
position and relative amplitude of the main peaks in the
power spectra, thinking that these summarize the underlying
mechanisms generating EEG rhythms. Moreover we tried
different complementary “cost functions” in the implemen-
tation of the genetic algorithm (GA). Although GA are time
consuming compared with other minimization techniques,
they offer the possibility to try different alternative solutions
for the problem (implementing different tribes) and to
overcome the problem of local minima (which often makes
the result of fitting procedures untenable) by generating
different sons through mutations in the parameter space.

Two main objectives have been pursued with this tech-
nique: to discover possible simple circuits, connecting the
three aforementioned ROIs, able to explain the observed
PSDs, and to detect possible differences in connectivity
circuits between healthy subjects and tetraplegic patients.
Results point out the existence of significant differences
between the two classes, especially for what concerns the
weights which link the LF (thalamic) and HF regions to the
primary and the supplementary motor cortices. In particular,
these weights are stronger in tetraplegic patients compared
with healthy individuals and these differences are statistically
significant. Differences in connectivity weights might reflect
a higher awareness (related with the gamma component)
and a greater attention (related with thalamic inputs) in the
tetraplegic patient than in the normal individuals, that is,
greater concentration toward the task. The existence of larger
and stronger connectivity weights in the cortical connectivity
networks estimated in tetraplegic patients compared with
those estimated in healthy volunteers has been previously
observed by several authors [46, 47].

A further interesting result of our work is that the
greatest weights in the neural circuit are those which link the
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cingulate cortex to motor areas. This result underlines the
importance of a feedforward signals from the frontal cortex
in the initiation and planning of the voluntary movement.

In the present work we performed 12 statistical tests,
hence a possible objection is that the significance level
should be corrected to account for multiple hypotheses.
The problem of whether correction is appropriate or not
is quite complex and depends on the objective of the
work. As clearly stated in recent publications [48] if the
main goal is generation hypothesis or initial screening for
potential solutions, it may be appropriate to use the standard
significance level without corrections to avoid Type II errors
(not detecting real differences or trends). Conversely, if
the main goal is rigorous testing of a hypothesis, then an
adjustment for multiple tests (like Bonferroni or Holm’s
methods) is needed. The objective of the present work is
certainly “hypothesis generation,” hence we preferred to
use classical t test to avoid type II error. Of course, in
order to “test the hypotheses” generated with our procedure,
one needs to repeat the experiment with new “fresh” data,
considering only the individual hypotheses to be verified,
and using a correction. This may be the subject of future
works.

Finally, it is important to discuss the main limitations of
the present preliminary work, and possible lines for future
changes.

A first aspect concerns the variability of parameter
estimates within the same subject. Although this variability is
less accentuate compared with that between the two classes,
and between different subjects in the same class, it is still
quite elevated. Analysis of how the connectivity pattern may
vary in the same subject from one trial to the next still
requires a deeper future analysis.

In the present model we assumed that connectivity
originates from pyramidal neurons, and reaches the input
of excitatory interneurons, that is, we did not consider
possible lateral connections from pyramidal neurons to
inhibitory interneurons. Inhibitory interarea connections,
however, may be important to reduce neural activity, to
avoid instability, and to improve synchronization among
rhythms. Lateral inhibitory synapses were considered by
David et al. [29], and Stephan et al. [28], in their DCM
schema of neural populations for the analysis of event related
responses. In particular, these authors assumed that lateral
connections originating from pyramidal neurons target to
all other populations (both excitatory and inhibitory) in the
lateral ROIs, although they did not consider the presence
of inhibitory interneurons with fast kinetics. Inclusion of
lateral connections toward inhibitory interneurons may be
of value in future works, to improve two aspects of results.
First, it may help to maintain the activity of the motor and
premotor ROIs far from saturation. Indeed, with the present
values of parameters, these two populations are strongly
activated and often work close to the upper saturation
region of their sigmoid. Second, activation of fast inhibitory
interneurons might help to explain the presence of gamma
rhythms, even without introducing an ad hoc rhythm from
an external population. The idea that gamma rhythms may
originate from stimulation of fast inhibitory interneurons

(or alternatively from gap junctions) has been proposed
by various authors recently [32, 49]. Of course, a flaw of
introducing lateral synapses to inhibitory interneurons is the
increase in the number of free parameters, which may further
complicate the convergence of the fitting procedure and the
interpretation of results.

Another important limitation of the present work is
that the model is able to simulate PSD spectra only if
the rhythms in the three ROIs (in the alpha and gamma
bands) have almost the same frequency. In view of that,
we excluded all trials which present different frequencies in
the spectra from the best fitting procedure. The reason for
this limitation is that the three ROIs receive the alpha and
gamma oscillations from the same external ROIs (i.e., the
alpha rhythm from the LF region or thalamus; the gamma
rhythms from the HF ROI, prefrontal, see Figure 1). In order
to generate rhythms with different frequencies in the alpha
and gamma bands, one should hypothesize the presence of
more LF and HF regions. However, this aspect would further
complicate parameter estimation and would make the model
less parsimonious. It is possible that introduction of lateral
interregion synapses directed to inhibitory interneurons may
allow a more flexible positioning of rhythms in individual
ROIs.

Finally, we are aware that use of the genetic algorithm,
although very flexible in finding a good solution avoiding
local minima, is time consuming. Alternative more efficient
fitting methods (maybe introducing some prior probability
for the estimate, according to a Bayesian approach [50]) may
be attempted in future studies.

In conclusion, the present work represents a first attempt
to explain the presence of multiple rhythms in three ROIs
involved in motor tasks, and their variability, using a simple
model of interconnected populations. Encouraging results
concern the capacity to obtain reliable PSD spectra, by acting
on a few parameters representing the connection weights,
and to detect significant differences between the two classes.
However, important limitations are still evident: they are
especially concerned with a lack of inhibitory interactions
among ROIs, with the dispersion of individual parameter
estimates, and with the difficulty to generate more flexible
peaks in the spectra. Overcoming these limitations deserve
much future work.

Nevertheless, despite their present limitations, we claim
models of interacting neural mass may be of great value
to gain a deeper insight into the mechanisms of rhythms
generation in EEG, and to start the formulation of more
quantitative hypotheses on the neural architecture and
connectivity changes underlying motor/cognitive tasks.
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[7] M. Kamiński and K. J. Blinowska, “A new method of the
description of the information flow in the brain structures,”
Biological Cybernetics, vol. 65, no. 3, pp. 203–210, 1991.

[8] A. Korzeniewska, M. G. Mańczak, M. Kamiński, K. J. Bli-
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