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Spatial smoothing in Bayesian models: 
a comparison of weights matrix specifications 
and their impact on inference
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Abstract 

Background:  When analysing spatial data, it is important to account for spatial autocorrelation. In Bayesian statis-
tics, spatial autocorrelation is commonly modelled by the intrinsic conditional autoregressive prior distribution. At 
the heart of this model is a spatial weights matrix which controls the behaviour and degree of spatial smoothing. 
The purpose of this study is to review the main specifications of the spatial weights matrix found in the literature, 
and together with some new and less common specifications, compare the effect that they have on smoothing and 
model performance.

Methods:  The popular BYM model is described, and a simple solution for addressing the identifiability issue among 
the spatial random effects is provided. Seventeen different definitions of the spatial weights matrix are defined, 
which are classified into four classes: adjacency-based weights, and weights based on geographic distance, distance 
between covariate values, and a hybrid of geographic and covariate distances. These last two definitions embody the 
main novelty of this research. Three synthetic data sets are generated, each representing a different underlying spatial 
structure. These data sets together with a real spatial data set from the literature are analysed using the models. The 
models are evaluated using the deviance information criterion and Moran’s I statistic.

Results:  The deviance information criterion indicated that the model which uses binary, first-order adjacency 
weights to perform spatial smoothing is generally an optimal choice for achieving a good model fit. Distance-based 
weights also generally perform quite well and offer similar parameter interpretations. The less commonly explored 
options for performing spatial smoothing generally provided a worse model fit than models with more tradi-
tional approaches to smoothing, but usually outperformed the benchmark model which did not conduct spatial 
smoothing.

Conclusions:  The specification of the spatial weights matrix can have a colossal impact on model fit and param-
eter estimation. The results provide some evidence that a smaller number of neighbours used in defining the spatial 
weights matrix yields a better model fit, and may provide a more accurate representation of the underlying spatial 
random field. The commonly used binary, first-order adjacency weights still appear to be a good choice for imple-
menting spatial smoothing.
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Background
Consider the problem of mapping disease incidence, 
prevalence, or mortality with the aim of identifying spa-
tial patterns of the underlying risk surface. Such analyses 
may identify ‘hot spots’, provide insight into the causal 
processes, and guide researchers’ efforts in further inves-
tigations [1–4]. When analysing spatial data, it is impor-
tant to account for spatial autocorrelation and sampling 
variability. Spatial autocorrelation refers to the idea that 
observations taken at locations near to each other tend to 
be similar [5–8], while sampling variability refers to dif-
ferences between areas due to small populations or het-
erogeneity of individuals within areas, for example [1–4, 
9–14]. This is especially true for rare diseases, and when 
the areal units contain a small population [3, 4].

Numerous statistical models have been developed to 
address these issues of spatial data. A general overview 
of some well-known models can be found in [11, 15–19]. 
Each of these models has the common aim of account-
ing for spatial autocorrelation and sampling variability 
so as to satisfy the model assumptions and reduce uncer-
tainty of the estimates. In many disease mapping studies, 
the modelling approach has been to model the observed 
data using a Bayesian generalised linear mixed model 
(GLMM) [3, 20–22], and account for spatial autocorre-
lation through spatial random effects in the linear pre-
dictor. A fairly standard approach is to use a three-stage 
random effects model: in the first stage, the likelihood for 
the data is specified by some distribution belonging to 
the exponential family; in the second stage, the expecta-
tion of the response variable is related to the linear pre-
dictor through a link function; and the parameters in the 
linear predictor are assigned prior distributions as the 
third stage. Examples of this framework can be found in 
recent papers such as Best et al. [23], Morrison et al. [12], 
Johnson [24], Pascutto et al. [25], and is also described in 
Banerjee et al. [26].

Common choices of prior distributions for random 
effects include the conditional autoregressive (CAR) 
model [27, 28] and the simultaneous autoregressive (SAR) 
model [16, 29]. Both models make use of a spatial weights 
matrix to quantify the relative influence that the random 
effects have on each other [5, 12, 26, 30]. The effect that 
the weighting scheme has on the degree of smoothing and 
the analysis in general has received very little attention in 
the literature [10]. Some studies have considered multiple 
weighting schemes, for example [12, 31], but the motiva-
tion for doing so is usually to improve model fit and pre-
dictive ability. The results from these studies do, however, 
indicate that different weighting schemes can have a sub-
stantial impact on the analysis [10, 12].

The aims of this paper are to (1) review the different 
specifications of the spatial weights matrix found in the 

literature; (2) choose a selection of weights matrices for 
comparison; and (3) use a GLMM with spatial smooth-
ing to analyse a real and synthetic data set with the cho-
sen weights matrices to compare and contrast the effect 
that they have on model performance and parameter 
interpretation.

Griffith [32] provides several guidelines for defining 
the weights, two of which are particularly relevant. The 
first recommendation is that it is indeed better to apply 
smoothing than no smoothing at all, which reiterates 
previous statements about the necessity of smoothing. 
The second recommendation is that it is generally bet-
ter to have a small number of neighbours, around 4–6. 
Getis and Aldstadt [31] add that fewer neighbours is 
particularly appropriate if the data exhibits spatial het-
erogeneity. The number of neighbours and assigned 
weights are often chosen arbitrarily, but more system-
atic approaches have been proposed. For example, it 
may be possible to infer a reasonable neighbourhood 
and weighting scheme from the scientific context [18] or 
by filtering the spatial effects from the data [32]. Other 
alternatives include examining the correlogram of rela-
tive risks over geographic distance [10] or even using 
trial and error with respect to the number of neighbours 
induced [18].

The remainder of this paper is outlined as follows. 
“Methods” section describes the proposed methods. 
This includes a detailed specification of a particular CAR 
model used in Bayesian spatial modelling including prior 
distributions, several alternate specifications of the spa-
tial weights matrix, and a summary of the two data sets 
used in the analysis. “Results” section contains the results 
from the analysis. These results are discussed in “Discus-
sion” section.

Methods
BYM model
For rare and non-infectious diseases, the true incidence 
or number of deaths in a given area is typically estimated 
by assuming a Poisson distribution,

where yi is the number of observed cases in area i, for 
i = 1, . . . ,N , Ei is the expected number of cases, ηi is the 
area-specific log-relative risk. Ei can be regarded as on 
offset to account for differences in population, age, and/
or risk factors between areas [1, 3, 11, 14, 33]. If data on 
such characteristics are known, then an alternative is to 
include these data as additional covariates [11]. Other-
wise, Ei is generally computed as

yi ∼ Po
(

Eie
ηi
)

,

(1)Ei =

∑

i yi
∑

i Pi
Pi
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where Pi is the population at risk, which is known as 
internal standardisation [4, 11, 25, 33]. The area-specific 
log-relative risk is then expressed as a regression model

where α is the overall fixed effect, β is the effect of the 
spatial covariate xi, and γi and εi are structured and 
unstructured spatial random effects respectively. The 
unstructured spatial random effects are simply the errors 
which should be independent and identically distributed 
white noise with unknown variance σ 2

ε  if the spatial auto-
correlation is adequately accounted for by the spatial 
covariate effect and structured spatial random effect [2, 
11]. The structured spatial random effects are assumed to 
have arisen from a Gaussian Markov random field which 
is consistent with the belief that neighbouring areas have 
similar spatial effects. This spatial dependency is formal-
ised by imposing the intrinsic conditional autoregressive 
(ICAR) prior distribution, proposed by [27, 28], on the 
structured spatial random effects

where γ \i denotes the vector of structured spatial ran-
dom effects for each area excluding area i, and wij is the 
element of a symmetric weights matrix W corresponding 
to row i and column j [11, 15, 33]. This particular model 
which incorporates the ICAR prior and both the struc-
tured and unstructured spatial random effects is often 
referred to as the BYM model, named after the authors 
Besag, York, and Mollié [28].

To preserve the identifiability of the random effects, the 
ICAR prior is constrained by 

∑N
i=1 γi = 0 [4]. However, 

this only solves the issue of identifiability between γi and α; a 
likelihood identifiability problem still exists because the two 
spatial random effects are not uniquely identifiable [34]. As 
a result, the estimate of the structured spatial random effect 
can become noisy, obscuring spatial patterns. Based on the 
idea of Eberly and Carlin [34], a simple remedy is as follows: 
for a posterior sample of size M, compute the excess varia-
tion (that is, variation not explained by the covariates),

where

and modify the two random effects as follows:

(2)ηi = α + βxi + γi + εi

γi|γ \i ∼ N





1
�

j wij

N
�

j=1

wijγj ,
σ 2
γ

�

j wij



,

for i = 1, . . . ,N

ψ =
S(γ )

S(γ )+ S(ε)

S(γ ) = sd

{

median
m=1,...,M

γ
(m)
i

}

,

γ
(m)
i := γ

(m)
i − ψ · ε

(m)
i

for m = 1, . . . ,M. (This modification has been applied to all 
results for γ and ε throughout this paper.) For the param-
eters α and β, weakly informative priors are chosen,

In accordance with the assumption that the errors 
are uncorrelated, appropriate prior distributions for the 
unstructured spatial random effect and associated vari-
ance are

A suitable prior distribution for σ 2
γ  is less straightfor-

ward. Earnest et  al. [10] caution that the prior for the 
variance term of the ICAR model can have a noticeable 
influence on the estimated spatial random effect. Com-
monly suggested priors for variances or standard devia-
tions, include gamma, inverse gamma, half-Cauchy, and 
the uniform distribution [10, 11, 35]. If the neighbours 
are defined appropriately, then the structured spatial ran-
dom effects for those neighbours should be similar, and 
therefore the distribution of the variance should have the 
bulk of the density close to zero. Therefore, a prior which 
seems consistent with this prior belief is the following 
gamma distribution:

The model presented so far is deliberately simplistic, 
as the focus of this paper is about the influence of the 
weights rather than model utility or complexity. How-
ever, this base model can be easily adapted to more com-
plex situations. For example, if additional covariates are 
available, these can be incorporated as additional terms 
in Eq.  (2). Extensions to spatio-temporal data are also 
possible, where spatial and temporal smoothing can be 
employed separately or jointly, depending on the defini-
tion of neighbours [11].

Weights matrix specifications
As mentioned in the previous section, it is common for 
the weights to be defined as

The concept of ‘neighbours’ requires further clarifi-
cation. Often neighbours are defined to be areas which 

ε
(m)
i := ε

(m)
i + ψ · ε

(m)
i .

α ∼ N (0, 100),

β ∼ N (0, 100).

εi ∼ N

(

0, σ 2
ε

)

,

σε ∼ N (0, 10)I(0,∞).

σ 2
γ ∼ G(3, 1).

(3)wij =

{

1 if areas i and j are neighbours
0 otherwise

.
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share a common boundary, that is, are adjacent [1, 4, 10–
12, 15]. In this case, the weights matrix may be referred 
to as the first-order adjacency matrix. Note that areas are 
not considered to be neighbours of themselves, and thus 
the elements on the diagonal of this matrix are zero by 
definition [31]. If the areas comprise a regular grid, then 
the neighbourhood is comparable to restricted forms of 
the rook and queen chess moves, depending on whether 
areas which only share a common vertex are considered 
neighbours [10, 31]. The neighbourhood can be extended 
to include neighbours of neighbours, resulting in a sec-
ond-order adjacency matrix, and so on. More generally, 
we can define an nth-order adjacency matrix as

where ω = (ω1, . . . ,ωn) is the vector of weights cor-
responding to each order. Typically, larger weights 
are assigned to the closest neighbours, so ω may be 
defined as a decreasing function of the order, e.g. 
ωk = exp ((k − 1)/(n− 1)). The drawback to these adja-
cency-based approaches is that they do not account for 
areas of different sizes. One alternative is to define neigh-
bours as a function of geographical distance. Distance 
between areas i and j is often measured as the Euclid-
ean distance between their respective centroids [10–12, 
18, 24]. Fahrmeir and Kneib [11] point out that using the 
Euclidean distance implies the assumption of isotropy, 
that is, the influence between areas i and j is the same 
in both directions. For the purpose of defining a weights 
matrix to be used in the ICAR prior, this is actually a 
desirable property since the weights matrix must be sym-
metric in order for the structured spatial random effects 
to yield a Markov random field [11]. Let 

{

dij
}

 denote 
these distances. A common definition for distance-based 
weights is the inverse distance power function:

for positive integer k, with k often taken to be 1 [10, 31]. 
The larger the exponent k, the greater the influence of 
those areas that are close relative to those further away 
[10, 31]. Another definition is the exponential decay 
function

where � controls the rate of decay [10, 11, 15]. This decay 
parameter is often taken to be 1, as in Fahrmeir and 
Kneib [11]. Other authors have suggested more prag-
matic approaches to determining this parameter. For 
example, Earnest et  al. [10] recommends setting � = 10 

(4)
wij =

{

ωk if areas i and j are kth order neighbours, k = 1, ..., n

0 otherwise

(5)wij =
(

1/dij
)k

(6)wij = exp
(

−�dij
)

, � > 0

based on the autocorrelation of the relative risks. A simi-
lar definition is the Gaussian decay function

where the inverse of the bandwidth parameter b deter-
mines the rate of decay [15, 19].

Other distance-based weights include the variogram 
[31, 36], the bi-square, bi-square nearest neighbour, tri-
cube, and spherical kernel functions [15, 19, 31], and 
further definitions are provided in Earnest et al. [10], Dor-
mann et al. [18], and Mugglin et al. [33]. Distance-based 
weights can also be found in the literature on geospatial 
models, for example Cressie [16] and Diggle [37]. All these 
adjacency and distance-based definitions may be collec-
tively referred to as geometric weights. They share the 
assumption that closer areas have greater influence. How-
ever, it is conceivable that areas which are relatively far 
apart might have a greater influence on each other than 
areas which are simply nearby geographically. For exam-
ple, areas with similar covariate values might be expected 
to have similar relative risk estimates. This yields alterna-
tive versions of the distance-based definitions of weights, 
where the distance dij is replaced by δij, the absolute differ-
ence between the covariate values of areas i and j:

The smoothing that results from such weights matri-
ces may be still regarded as spatial smoothing since the 
spatial random effects are smoothed towards the mean 
value of their neighbours, albeit neighbours which may 
be far apart geographically. The key difference is that the 
smoothing is conducted on the covariate space rather 
than the parameter space. This idea is not new, but it is 
seldom considered, and very rarely pursued in statisti-
cal analyses. For example, Dormann et  al. [18] mention 
that weights matrices can be defined in terms of ‘environ-
mental distance’ as opposed to geographical distance, but 
only the latter is used in their analysis.

Two references which do actually use smoothing on the 
covariate space are Kuhnert [38] and Earnest et al. [10]. 
However, the weights defined in the latter are a function 
of both the geographic distances and covariate distances, 
specifically

Smoothing on the covariate space can be viewed as a 
more flexible alternative to smoothing on the parameter 
space for two reasons. First, it relaxes the assumption that 
the weights are (only) a function of geographic distance. 

(7)wij = exp

(

−
d2ij

2b2

)

, b > 0

(8)δij =
∣

∣xi − xj
∣

∣.

wij =
1

dijδij
.
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Second, it relaxes the assumption that a large difference 
in the relative risk between adjacent areas is not possi-
ble since these differences are shrunk towards the mean 
value. For example, if the covariate values correspond-
ing to two neighbouring areas are dissimilar and this is 
reflected in the weights, then the relative risk estimates 
for these two areas should potentially be dissimilar too, 
depending on how accurate the covariate is as a predictor 
in the model. This second point can be viewed as a sim-
pler alternative to adaptive Markov random fields [11, 39] 
and areal wombling [40] where the weights are treated as 
a random variable and therefore allowed to vary.

Aside from a few general recommendations already 
mentioned, the results from previous studies are not par-
ticularly helpful in terms of providing advice on which 
weighting schemes should be considered for analysis. In 
fact, the results often suggest conflicting ideas. For exam-
ple, Morrison et al. [12] found that the weights based on 
first-order neighbours and four nearest neighbours pro-
duced the best model fit, while weights based on second-
order neighbours performed worse. Conversely, of the 
geometric type weights explored by Getis and Aldstadt 
[31], the ‘rook’ specification which contains at most 
four neighbours was the least effective, while the ‘queen’ 
specification improved the model fit. Similarly, Getis and 
Aldstadt [31] found that the inverse distance power func-
tion specification, given by Eq. (5) performs poorly, while 
Earnest et al. [10] found that the inverse distances were 
considerably better than the ‘rook’ and ‘queen’ specifica-
tions. Both analyses agree, however, that the inverse dis-
tance power function appears to perform better when 
the exponent is 2 compared to the other values tested, 
namely 1, 3, or 5.

It should be pointed out that the weights matrix W is 
typically row-standardised such that each row sums to 1 
[31]. This helps with interpretation of the parameters and 
seems to be preferred over global-standardisation [31]. 
Note that the software used in our analysis automatically 
row-standardises the weights matrix; the following defi-
nitions are the unstandardised versions.

Study design
Based on the aims of this paper and the recommenda-
tions from the literature, 17 definitions of the weights 
were chosen for the analysis. The first two sets of weights 
are based on neighbourhood adjacency, specifically first-
order neighbours given by Eq.  (3) where neighbours are 
defined as areas which share a common boundary or ver-
tex, and third-order neighbours given by Eq.  (4) where 
n = 3, and ω =

(

e0, e−0.5, e−1
)

. The corresponding mod-
els are denoted as A1 and A2.

The following distance-based weights are also consid-
ered: inverse distance power function given by Eq. (5) for 

exponents k = 1, 2, and 5, and the decay functions given 
by Eqs.  (6) and (7). Rather than fix the decay and band-
width parameters at some arbitrary value, these are com-
puted as a function of the mean distance between spatial 
units, specifically

As noted by Getis and Aldstadt [31], the scale char-
acteristics of data are important. If the decay param-
eter value was fixed at 10 instead, this would result in a 
very different weights matrix if the areal units were large 
administrative regions spanning hundreds of kilome-
tres compared to much smaller areas, including artificial 
rasters of areas which may be associated with relative 
distance only. This is also true if the units of geographi-
cal distance are changed from kilometres to metres, 
for example. The justification for the definitions used 
here is that it alleviates this dependency on the scale of 
the data and should be applicable to any spatial data set 
regardless of the scale. The value of 10 in the numerator 
was determined by trial and error such that for the four 
data sets analysed, the number of non-negligible neigh-
bours appeared to be fairly consistent for a given model. 
These distance-based weights models are denoted by D1 
through D5. To compare the effect of smoothing on the 
covariate space, five new models are created by replacing 
the geographic distances, including those in the calcula-
tion of the decay and bandwidth parameters, with the 
covariate distances given by Eq. (8). These models will be 
denoted C1 through C5.

The hybrid approach of Earnest et  al. [10] is simply 
the inverse distance specification, where the distance 
is the product of both the geographic and covariance 
distances. This approach is certainly not limited to the 
inverse distance weighting scheme, however. In fact, we 
also include a hybrid version of each of the five distance-
based weights mentioned above, where the distances are 
replaced by dijδij. The resulting models will be denoted 
H1 through H5.

The inverse distance power function will produce non-
finite values if the distance between two areas is zero. 
This is theoretically possible for geographic distances, 
for example when one area is nested within another thus 
having the same centroid location, but is also applica-
ble to covariate distances, and consequently the hybrid 
approach. To avoid this issue, Earnest et al. [10] suggest 
adding a small correction to zero counts. However, the 
resulting weight will be highly dependent on that arbi-
trary value. The approach we adopt is to compute the 
weights without modification, then for each row of the 

� =
10

Ei,j
(

dij
)

b = �
−1.
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weights matrix, replace the non-finite weights by the 
maximum finite value in that row. If the graph represent-
ing the underlying spatial field is undirected, as is pre-
sumed here, then the weights matrix must be symmetric. 
To retain symmetry, the lower triangular portion of W is 
replaced by the upper triangular portion of WT.

Figure  1 illustrates the differences and similarities of 
these weighting schemes for the Scottish lip cancer data 
set, described below. In general, the number of neigh-
bours for each area for all variants of Models D, C, and H 
will be N − 1, albeit the weights will be very close to zero 
for some neighbours, effectively reducing the depend-
ency to a subset of non-negligible neighbours. The 
average number of non-negligible neighbours for the 
Scottish lip cancer data set, as a function of the thresh-
old defining which neighbours are negligible, is shown in 

Fig. 2. If it is better to have a small number of neighbours 
as the literature suggests, then it might be expected that 
weighting schemes which result in a small number of 
non-negligible neighbours, for a given threshold, per-
form better.

As a benchmark for the usefulness of including spatial 
smoothing, a model which does not account for spatial 
autocorrelation is also included, bringing the total num-
ber of models to 18. This model, denoted B, has exactly 
the same specification except that γi is removed from 
Eq. (2).

Data
Four data sets are analysed using the GLMM described 
above. The first data set is the well-known Scottish lip 
cancer data set, which has been analysed previously by 

Fig. 1  Unnormalised weights for ‘area 43’, shaded black, in the Scottish lip cancer data set. Darker purple areas are neighbours with large weights, 
signifying a high degree of correlation with area 43, as defined by the weights matrix of the respective models, while white areas have weights very 
close or equal to zero
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Breslow and Clayton [20], Rasmussen [22], and Spiegel-
halter et al. [41], amongst others. The observed data rep-
resents incidence of lip cancer in 56 counties in Scotland. 

This data set also includes the expected cases which were 
computed using external standardisation, and a covari-
ate which represents the percentage of the population 

Fig. 2  Average number of neighbours excluding areas with normalised weights less than the threshold for the Scottish lip cancer data set
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working in industries that are typically related with high 
sun exposure, namely agriculture, fishing, and forestry. In 
both the analysis of Breslow and Clayton [20] and Ras-
mussen [22], the covariate was scaled by a factor of 10, as 
is done here.

The other three data sets comprise synthetic data 
where the spatial units are arranged as a 12 by 12 grid. 
The observed vales for these three data sets are generated 
as if arising from (1) a spatial process with no autocor-
relation; (2) a random field with strong positive spatial 
autocorrelation; or (3) a convolution of Gaussian Markov 
random fields resulting in distinct clusters.

Generating synthetic data for the purpose of compar-
ing how well different models capture spatial autocor-
relation is a difficult task. The approach taken here is 
to decompose the observed values into additive com-
ponents, generating each of these separately, using the 
results from the analysis of the Scottish lip cancer data 
as a guideline for sensible values. The main component 
is the underlying spatial random field (USRF), which may 
represent unmeasured covariates. In the first data set, the 
USRF is simply noise, exhibiting no spatial patterns. In 
the second data set, the USRF appears as a smooth sur-
face showing a strong degree of autocorrelation, while 
the third data set contains four clusters of larger, corre-
lated values separated by regions of smaller, noisy values. 
This was achieved by generating the values from a convo-
lution of two Gaussian Markov random fields, similar to 
the approach of Devine et al. [42] and Getis and Aldstadt 
[31]. Next, the covariate values were generated by scal-
ing the respective USRF and adding some noise, thereby 
attaining some correlation between the two. The reason 
for this is to facilitate smoothing on the covariate space 
while allowing enough variation to warrant estimates 
of both terms in a model. A mixture of a Gaussian and 
a Gamma distribution was then used to generate the 
logarithm of the expected counts such that the majority 
of values were about 2, with few values larger than this, 
similar to the Scottish lip cancer data set. The observed 
values are then formed by exponentiating the sum of 
these components, together with some additional noise. 
Further details on the generating process can be found 
in Additional file  1 in the form of R code. The data for 
the Scottish lip cancer and synthetic data sets are sum-
marised in Fig. 3. 

The spatial autocorrelation, or lack thereof, for each 
data set is perhaps not as obvious as revealed by Fig. 3. 
The clear patterns of the USRFs generated for the syn-
thetic data sets 2 and 3 are almost completely obscured in 
the observed data. For the Sottish lip cancer data, what-
ever spatial autocorrelation might be contributing to the 
relative risk surface is not apparent from these plots.

Several statistics have been developed for the purpose 
of quantifying spatial correlation. Moran’s I statistic [43] 
is commonly used (for example, see Dormann et  al. [18]; 
Getis and Aldstadt [31]; Morrison et  al. [12]; Wheeler 
[19]). This statistic is a function of the weights matrix, how-
ever, and different matrices will produce different results. 
Moran’s I statistic was computed for the observed values in 
each data set using five different weights matrices, shown 
in Table  1. Based on the consensus of this statistic under 
various weight specifications, it would appear that the Scot-
tish lip cancer data is not strongly spatially autocorrelated. 
The second and third synthetic data sets were generated 
to exhibit spatial autocorrelation, and this is reflected by 
Moran’s I. The result for synthetic data set 1 is less clear.

Implementation
Each weighting scheme results in a different CAR prior 
distribution, effectively yielding 18 different models. The 
model parameters were estimated using Markov chain 
Monte Carlo (MCMC) sampling, implemented in Win-
BUGS [44]. The remainder of the analysis was performed 
using the software R [45]. Two parallel MCMC chains 
were run for 25,000 iterations with a thinning factor of 5 
following a burn-in period of 10,000 iterations. Conver-
gence of the chains was assessed by visual inspection of 
the posterior distributions and computation of the Gel-
man–Rubin statistic [46]. The WinBUGS code for the 
models with and without spatial smoothing are provided 
in Additional file 2.

Model evaluation
The Deviance Information Criterion (DIC) [41] is often 
used as a Bayesian measure of model fit and adequacy, 
compensating for overfitting by the inclusion of a penalty 
term. A smaller DIC indicates a better model fit. Follow-
ing the suggestions of Burnham and Anderson [47] and 
Spiegelhalter et al. [41], the DIC is used to compare the 
models in the following way: models with a DIC within 
2 units of the ‘best’ model have a similar model fit, while 
models with a larger DIC have a decidedly worse model 
fit. In some cases, the DIC defined in Spiegelhalter [41] 
returns negative values, which are not meaningful. The 
DIC used throughout this paper is the DIC3 variant pro-
posed by Celeux et al. [48] which is more reliable.

However, there are still some concerns about using DIC 
in a spatial context (see the discussion in Spiegelhalter 
et  al. [41]). As an alternative means of assessing model 
adequacy, the spatial autocorrelation in the residuals is 
measured using Moran’s I statistic. If spatial autocorre-
lation exists within the data, and the model adequately 
adjusts the log-relative risks, then the residuals ought to 
be spatially independent in accordance with the model 
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Fig. 3  A spatial representation of the expected, covariate, and observed values for the Scottish lip cancer data set, and the main simulated compo-
nents comprising the generated observed values for the three synthetic data sets
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assumptions. To be consistent, the p-values for Moran’s 
I statistic in the remainder of this paper are based on the 
binary, first-order weights defined by model A1. Both of 
these measures were used to assess and compare model 
fit and adequacy.

Note that in the case of the synthetic data sets, com-
parison of the posterior estimates of the parameters with 
the parameters used to generate the data was limited to 
broad observations about the visual patterns exhibited by 
the USRF. No attempt was made to compare the numeri-
cal values for evaluating accuracy for two main reasons. 
First, this idea may be possible in simulation studies where 
the synthetic data can be generated from the model. How-
ever, this is not possible with the BYM model because the 
ICAR prior is a conditional distribution, where the struc-
tured spatial random effect depends on its neighbouring 
values, which do not yet exist. The method of generating 
the data presented in “Data” section provides the ability 
to generate spatial random fields with any desired degree 
of autocorrelation and pattern while avoiding this issue. 

The second reason is a consequence of the first: the val-
ues generated for the USRF are not ‘true values’, and thus 
by the additive nature of the components comprising the 
observed values, the concept of true values does not exist 
for any of the parameters. Nonetheless, the main features 
of the USRF should be identifiable by a good model.

Results
Analysis of the Scottish lip cancer data
The model evaluation measures for the Scottish lip cancer 
data set are summarised in Fig. 4. The DIC for each model 
is shown above each bar. Model A1 performed consider-
ably better, while the remaining models had similar DIC 
values (all DIC values < 3.7 units of the DIC for model B). 
The DIC for model B was surprisingly small compared to 
the models excluding A1, suggesting a reasonable model 
fit despite the absence of spatial smoothing. However, the 
models which attempt to account for spatial autocorrela-
tion may provide greater insight than model B, even if the 
model fit is slightly worse, and interpretation of the other 

Table 1  Moran’s I two-sided p-values for each data set using selected weight specifications defined in the previous sec-
tion

A p-value close to zero suggests the presence of spatial autocorrelation in the observed data

Weight specification (Model) Scottish lip cancer Synthetic data 1 Synthetic data 2 Synthetic data 3

A1 0.1240 0.2619 < 0.0001 < 0.0001

A2 0.5061 0.1114 < 0.0001 < 0.0001

D2 0.2929 0.2109 < 0.0001 < 0.0001

C3 0.6504 < 0.0001 < 0.0001 < 0.0001

H5 0.6923 < 0.0001 < 0.0001 < 0.0001

Fig. 4  DIC for each model (left axis) overlayed by the two-sided p-values for Moran’s I statistic on the posterior mean of the model residuals (right 
axis) using the first-order binary weights from model A1
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parameters such as the covariate effect may change. This 
is discussed below. Despite the comparable model fit for 
most models, Moran’s I statistic, shown on the right axis, 
suggests that only model A1 accounts for spatial autocor-
relation satisfactorily in terms of the model assumptions.

The posterior estimates of the parameters for the 
model with the smallest DIC from each class of models 
are summarised in Fig.  5. The area-specific parameters 
are ordered in increasing order of the observed values. 
Aside from model C5, the estimates of the intercept, 
covariate effect, and variance σγ are similar. As expected, 
the covariate effect is generally positive, indicating that 
sun exposure is likely an influential factor in lip cancer 
incidence. The anomalous results of model C5 are dif-
ficult to interpret from this figure; these are discussed 
below when interpreting Fig.  6. While the structured 
spatial random effect appears quite small in each case, 
it reduces the unstructured spatial random effect, and 
provides interesting insights when plotted on a map, as 
shown in Fig. 6. While the weighting scheme might have 
a noticeable effect on the individual parameters contrib-
uting to the log-relative risk, the log-relative risk appears 
to be similar for all five models.

Figure  6 shows the spatial representations of the log-
relative risk and main model parameters for the models 

with the smallest DIC from each class of models contrib-
uting to this risk surface. The spatial random effects and 
covariate effect are shown on the same scale as the log-
relative risk for ease of comparison. This figure empha-
sises the contribution of the structured spatial random 
effect in accounting for spatial autocorrelation. For 
models A1, D5, C5, and H1, the pattern indicated by the 
structured spatial random effect suggests that rurality 
may also be an important risk factor. This spatial random 
effect is strong enough that the estimated underlying 
spatial pattern dominates the log-relative risk surface, 
emphasising the influence of location on relative risk. The 
covariate effect for model C5 stands out from the other 
models in that the posterior mean values are negative 
rather than positive. However, posterior mean values of 
the intercept term are positive which provide the neces-
sary balance in attaining a reasonable risk surface. While 
the negative covariate effect may be more difficult or con-
fusing to interpret, the large uncertainty of the estimates 
(Fig. 5) are probably more concerning.

Analysis of the synthetic data sets
The DIC and the p-values for Moran’s I statistic on the 
model residuals εi are provided in Fig. 7. For synthetic data 
set 1, no spatial autocorrelation was introduced in the data 

Fig. 5  Summary of the parameter estimates based on the MCMC posterior sample for models B, C5, H4, and H5, for a single MCMC chain
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Fig. 6  Spatial representation of the predicted values for select models, and a breakdown of the log-relative risk into the main components which 
comprise it: the structured and unstructured spatial random effects and the area-specific covariate effect, i.e. βxi. The values are the posterior means. 
Aside from the plots for the predicted values, the shadings are consistent across all the plots, and the legend shows the range of values for the 
specific parameter



Page 13 of 16Duncan et al. Int J Health Geogr  (2017) 16:47 

intentionally, and unsurprisingly all of the models achieved 
a similar model fit. By contrast, model B offers the worst 
model fit for synthetic data set 2, while all variants of model 
A and D offer significant improvements (an improvement 
in DIC of 21.9–90.9 units). Model C and H variants offer 
smaller improvements in model fit (between 2.8 and 11.8 
units), and additionally are more insightful than model 
B through the estimation of the USRF. Interestingly, only 
models A1, D3, and D5 appear to remove the spatial auto-
correlation from the residuals adequately according to 
Moran’s I statistic—a result which also holds for synthetic 
data set 3. Model C and H variants generally perform quite 

well for this data set, with models C4, C5, H2, and H4 each 
providing a model fit on par with model D2 (within 1 unit) 
and better than D1. Given the sharp jumps in the USRF, it 
is surprising that model C and H variants do not provide an 
even better fit, and perhaps just as surprising that model A 
and D variants are able to fit the data so well.

The spatial representations of the structured and 
unstructured spatial random effects and covariate effect 
for select models are shown in Fig.  8. For synthetic data 
set 1, the USRF identified by model A2 is shown. Note 
that these values are of a similar magnitude as the residu-
als shown directly below, while the covariate effect is much 

Fig. 7  DIC for each model, except model B, across the three synthetic data sets (left axis) overlayed by the two-sided p-values for Moran’s I statistic 
on the posterior mean of the model residuals (right axis)
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stronger than either of the spatial random effects. For syn-
thetic data set 2, the USRF is recovered quite well by model 
A and D variants (only results for model A1 shown). The 
results for model H4, provided the best fit out of the model 
C and H variants, are also shown. The USRF for H4 is not 
represented as clearly or as intensely as model A1. How-
ever, the magnitude of the unstructured spatial random 
effect is noticeably smaller than for model B. For synthetic 
data set 3, the results were again similar for model A and D 
variants; the results for D3 are shown here. The structured 
spatial random effects identify the USRF quite clearly, 
although the estimates do appear to be oversmoothed. The 
spatial pattern identified by model C4 is the inverse, with 
the structured spatial random effect indicating clusters 
of low values. These values are counter-balanced by the 
stronger covariate effect, however, resulting in a similar 
risk surface showing clusters of elevated risk (results not 
shown here). The results for all parameters and all models 
are provided in Additional files 3, 4 and 5.

Discussion
The novelty of the research presented in this paper 
includes a simple remedy for correcting the identifiability 
issue between the random effects in the BYM model, and 
the ideas of covariate and hybrid approaches to spatial 
smoothing.

Defining the spatial weights matrix based on adjacency 
or distances between geographic neighbours seems to 
provide a good model fit regardless of the spatial autocor-
relation inherent in the risk surface. In particular, model 
A1, which epitomises the usual definition of binary, first-
order adjacency weights, provided a good model fit for 
the Scottish lip cancer data, and both synthetic data sets 
containing a strong USRF. In contrast, the covariate and 
hybrid definitions of spatial weights generally performed 
worse. However, the success of these approaches may 
depend greatly on the correlation between the covari-
ate values and USRF, and for data sets like synthetic data 
set 3, the jump in values between the clusters and back-
ground noise. Overall, it seems that each of the 17 models 
with spatial smoothing are potentially viable. Given the 
results from these analyses, and the difficulty in foresee-
ing what spatial patterns, if any, may be uncovered from a 
given data set, then choosing a model which incorporates 
some form of spatial smoothing seems sensible.

Regarding the guidelines from the literature on the 
appropriate number of neighbours in defining the 
weights matrix, it appears that models which placed non-
negligible weights on only a few neighbours, such as A1, 
D3, and D5, whether geographic neighbours or neigh-
bours in the covariate space, generally provide a better 
model fit according to the DIC.

Fig. 8  Spatial representation of the log-relative risk surface, and a breakdown of its main components: the structured and unstructured spatial 
random effects and the area-specific covariate effect, i.e. βxi. The values are the posterior means. The two areas shaded grey contain values larger 
than 5 standard deviations from the mean value. The shadings are consistent across all the plots within a given data set, and the legend shows the 
range of values for the specific parameter
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Figures  6 and 8 demonstrate the contribution of the 
estimated parameters to the log-relative risk for the Scot-
tish lip cancer data and synthetic data sets respectively. 
Despite the large covariate effects and, in the case of the 
synthetic data sets, moderate correlation between the 
covariate and USRF, the inclusion of the structured spa-
tial random effect was able to uncover the USRF in many 
cases, which not only provided a better model fit than 
model B, but also offered some insight into the spatial 
patterns underpinning the log-relative risk surface.

As noted above, there may be several factors required 
for the success of the covariate and hybrid definitions of 
the spatial weights. In addition, the multiplicative rela-
tionship of the hybrid distances may be underestimating 
the degree of spatial smoothing required. One alternative 
would be to use log

(

dijδij
)

 instead, for example. Another 
potential extension to the work presented in this paper 
is consideration of multiple covariates. This could lead 
to new weight specifications and further insight into the 
impact that they have on spatial smoothing and statisti-
cal inference. Analysing larger data sets, and data sets 
with different spatial patterns may also provide more 
opportunity to observe differences between these weight 
specifications, and provide more support for weight 
specifications like those used in model C and H variants.

Finally, we wish to clarify the notion of smoothing and 
its effect on the relative risk surface. The term ‘smoothed 
relative risk’ is often used in the literature, but it should 
be apparent that the smoothing is applied to only one of 
the terms contributing to the log-relative risk, at least in 
the BYM model used here. It would be quite erroneous 
to think that the estimated risk surface is smooth sim-
ply because the structured spatial random effects are 
smoothed. As Figs. 6 and 8 indicate, the log-relative risk 
surface still permits adjacent areas with distinctly dif-
ferent values. This may be due to the weights specifica-
tion which smooths over areas in the covariate space, or 
because these values are inherited from the other com-
ponents such as the covariate effect or unstructured 
spatial random effect. In general, the inclusion of spatial 
smoothing in the model clearly has a positive impact on 
estimation of the risk surface, but the extent of smooth-
ing as it applies to the risk surface may be exaggerated. 
In other words, the issue of oversmoothing that is often 
attributed to the BYM model does not necessarily imply 
that the relative risk surface will be oversmoothed.

Conclusions
In summary, this paper compared 17 specifications of 
the weights matrix, including adjacency, distance-based, 
and covariate-based weights. Models using these weights 
were fit to both data based on simulated risk structures 

and real data for which the underlying spatial field is 
unobserved. The effect of the weights matrix on model 
fit and interpretation of the USRF can be colossal. The 
commonly used binary, first-order adjacency weights 
still appear to be a good choice for implementing spatial 
smoothing. However, using a selection of different defini-
tions of weights may be helpful. Identifying what under-
lying spatial patterns may be present based on observed 
data is usually impossible. Therefore, when analysing 
spatial data, it may be beneficial to account for spatial 
smoothing, even if the observed data do not appear to be 
spatially autocorrelated.
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