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1 INTRODUCTION

B-cell epitope prediction (BCEP) is the original subject of immunoinformatics (i.e., bioinformatics
applied to immunology). This began with protein sequence analysis to identify hydrophilic peptide
fragments bound by antibodies that recognize whole proteins (1), to enable the earlier proposed
development of synthetic peptide-based vaccines for inducing protective antibody-mediated
immunity (2). BCEP was thus initially “prediction of protein antigenic determinants,” with each
antigenic determinant being a B-cell epitope (BCE): a structural feature (e.g., sequence segment)
recognized by a paratope (i.e., antigen-binding site of an immunoglobulin such as an antibody) (3,
4). Now understood as the computational identification of putative BCEs, BCEP has since grown to
comprise much more sophisticated methods for analyzing both sequence (5–9) and higher-order
structure (10, 11) on ever larger scales (e.g., applying genomics and proteomics for vaccine design
(12, 13)). However, the full potential of BCEP for peptide-based vaccine design remains to be
realized, for which reason the utility of BCEP as such has been called into question (14–17).
Nevertheless, BCEP can support the development of vaccines and immunodiagnostics provided that
its limitations are adequately comprehended and addressed.
2 ACCESSIBLE DISORDER (AD) AND IMMUNODOMINANCE

Accessible disorder (AD) is the state of a BCE that is simultaneously both paratope-accessible and
disordered (i.e., conformationally unconstrained), such that BCE-paratope binding can occur via
induced fit and/or conformational selection (8). Clearly, BCEs must be accessible to paratopes for
physical contact to occur between them. In the context of antibody-mediated protective (e.g.,
antipathogen) immunity, this is most readily feasible for BCEs that are on outwardly protruding
solvent-accessible molecular surfaces at extracellular sites (e.g., among secreted biomolecules).
Hence, vaccine-design initiatives tend to selectively apply BCEP with a focus on surface-exposed
sites among biomolecular targets of the pertinent (e.g., pathogen) secretome (i.e., totality of secreted
biomolecules) and surfome (i.e., surface proteome) (18, 19). Additionally, surface complementarity
must be attained between BCEs and their corresponding paratopes upon physical contact if stable
BCE-paratope binding is to occur, for which the BCEs must adopt suitable conformations. This is
favored where the BCEs are disordered prior to binding by the paratopes (20, 21). Vaccines can thus
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be produced from peptides comprising disordered BCEs of
selected target proteins (e.g., pathogen virulence factors), to
elicit production of antipeptide antibodies (i.e., peptide
antibodies (22)) that can neutralize the biological activity of
the proteins (4, 23–36). Such an approach is viable where the
BCEs are disordered in both the peptides and the proteins; but if
the BCEs are conformationally constrained (e.g., folded) in the
proteins, their binding by the antipeptide antibodies may fail to
occur, as is thought to be the case among unsuccessful attempts
at peptide-based vaccine development (16).

AD among BCEs thus facilitates BCE-paratope binding; but
BCE-specific antibody production is also subject to the
phenomenon of immunodominance (i.e., bias of immune
responses toward subsets of BCEs encountered in the course of
immunization), as depicted in Figure 1. Driven by Darwinian
competition among B-cell clones, immunodominance tends to
be favored by greater numbers of functional BCE-recognizing
precursor B cells as well as stronger binding of BCEs by B cells
in terms of both affinity (i.e., strength of binding per
individual BCE-paratope pairwise interaction) and avidity (i.e.,
overall strength of cooperative binding among paratopes
that simultaneously bind two or more BCEs on a single
antigen, as is possible with engagement of one or more
bivalent immunoglobulin molecules) (37). Consequently,
individual host life history of antigenic exposure (e.g., via
infection and immunization) influences immunodominance.
Immunodominance may thus be precluded by immune
tolerance (i.e., selective inability to mount immune responses
to particular BCEs, due to functional deletion or inactivation of
their corresponding B cells), which is often induced by BCEs of
host self antigens (i.e., autoantigens) and of other antigens
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(e.g., in food) to which the host has been exposed in a
natural physiologic setting (rather than in the course of
infectious disease or vaccination) (38–40). Alternatively,
immunodominance may be heightened by the immunological
memory of prior immunization (e.g., via infection or
vaccination), as occurs in the phenonenon of original antigenic
sin (i.e., antigenic imprinting) whereby memory B-cell clones
generated by past immunization continue to dominate antibody
responses to more recent immunizations, possibly even
compromising the ability to mount protective immune
responses against newly encountered pathogen variants (41,
42). From an evolutionary standpoint, pathogens may co-
evolve with their hosts to evade immune destruction in part by
altering their BCE repertoires to limit the expression of
immunodominant pathogen BCEs on key virulence factors
(e.g., via molecular mimicry, with pathogen BCEs tending to
resemble host self BCEs) while possibly also expressing
immunodominant pathogen BCEs that serve as antigenic
decoys to detract from protective host immune responses (43).
Furthermore, immune tolerance may be broken under certain
circumstances (e.g., infection by a pathogen employing
molecular mimicry), which may result in antibody-mediated
(e.g., autoimmune) disease (44). These various scenarios
highlight the potential complexity of vaccine development with
the diversity of BCEs and possible immune responses thereto.
Peptide-based vaccine design thus provides opportunities to
systematically restrict the repertoire of vaccine BCEs and
thereby selectively target key biomolecules (e.g., critical
virulence factors) while avoiding harmful or otherwise
counterproductive antibody responses (e.g., to BCEs of
autoantigens and antigenic decoys).
FIGURE 1 | Identification of plausible candidate vaccine peptide BCEs. Accessible disorder (AD) is realized for BCEs that are simultaneously both paratope-
accessible and disordered (i.e., conformationally unconstrained) in both peptide-based immunogens and cognate native antigenic targets in situ (e.g., extracellular
pathogen virulence factors). Immunodominant BCEs are identified empirically as they occur in peptide-based immunogens (e.g., using immunogenic carrier
molecules and immunologic adjuvants) versus other contexts (e.g., in native antigenic targets comprising antigenic decoys).
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3 TOWARD NEW VACCINES AND
IMMUNODIAGNOSTICS

In essence, BCEP consists of two steps: structural partitioning of
a prospective target (e.g., protein) into plausible candidate BCEs
(e.g., peptidic sequences) and evaluation of these to assign them
numerical scores that can inform subsequent decisions (e.g., on
selecting components for inclusion in vaccines). Ideally, the
scores would directly quantify functional impact (e.g., degree
of antibody-mediated host protection against a protein toxin). In
practice, functional impact can be estimated from BCE-paratope
binding affinity in conjunction with a limited set of other key
parameters (e.g., concentrations of antibody and its target), with
said affinity itself being estimated as the BCE-paratope standard
free-energy change of binding (ΔGb°) based on target structure
(8). This can be simplified by considering only candidate BCEs of
paratope-accessible disordered target regions. Viewed more
comprehensively, BCEP can be performed largely by excluding
target regions that are at least partially inaccessible to paratopes.
Such regions may be inaccessible due to biomolecular
folding, complex formation (e.g., oligomerization) and
anatomic compartmentalization (e.g., due to biomembranes).
Accordingly, target regions may be identified for exclusion using
appropriate computational tools to predict folding (vis-à-vis
disorder, e.g., using AlphaFold (45, 46)) and higher-order
structural organization (e.g., among supramolecular assemblies
such as biomembranes (47)). For convenience, inaccessibility
may be generalized to also include forms of posttranslational
modification resulting from covalent linkage of nonprotein
moieties (e.g., glycosylation), which can be computationally
predicted to mark candidate BCEs for exclusion as well.
Likewise, generalization of inaccessibility can also be extended
to regions featuring disulfide-bond formation between cysteine
residues, as this may impede BCE-paratope binding. After
exclusion of implausible or otherwise potentially problematic
target regions based on anticipated inaccessibility, ΔGb° and in
turn functional impact may be estimated for the remaining
candidate BCEs.

For the most part, BCEP can thus be regarded as prediction of
AD. This varies with the envisioned practical application (e.g.,
vaccines versus immunodiagnostics). For vaccines, AD is
defined by what can be achieved in vivo based on endogenous
antibody production, with intracellular targets tending to be
inaccessible under physiologic conditions, though antibodies are
sometimes internalized by host cells in either free or pathogen-
bound form to mediate immunity within certain intracellular
compartments (48, 49). Such limitation may be overcome via
immunotherapeutics using exogenously supplied antibodies and
derivatives thereof (e.g., antibody fragments), notably with
artificially produced cell-penetrating antibodies that can cross
plasma membranes to bind intracellular targets (50, 51). For
immunodiagnostics, the potential extent of AD is even greater, as
constraints in vivo (e.g., on temperature and chemical
composition) can be transcended in vitro (e.g., within a
diagnostic test kit). For instance, membrane permeabilization
(e.g., using detergents and/or organic solvents (52)) can extend
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paratope access into virtually all intracellular compartments; and
treatment with chaotropic agents (e.g., urea (53) or ammonium
thiocyanate (54)) can disrupt both intermolecular and
intramolecular interactions, thereby increasing AD via order-
to-disorder transitions, as in biomolecular disassembly and
unfolding. BCEP itself is expanding in scope to support other
applications, notably the design of novel antibodies and related
constructs. BCEs can thus be identified initially as targets for
binding by complementary peptides, which may be
computationally designed and subsequently grafted on an
antibody scaffold to produce novel antibodies that recognize
the BCEs (55). The complementary peptide sequences might
themselves be disordered, possibly remaining so on the antibody
scaffold and even after binding their targets; but such persistent
disorder could pose challenges for biotechnological antibody
production, particularly with disordered regions that are
recognized to initiate proteasome-mediated degradation (56).
Nevertheless, said degradation could be circumvented via cell-
free antibody production, which can also be used to produce cell-
penetrating antibodies (57). Additionally, preexisting (e.g.,
antihapten) antibodies could be used with a diverse repertoire
of peptide-based adaptors (e.g., hapten-labeled complementary
peptides) for chemically programmable immunity that entails
redirection of the antibodies to particular targets according to the
specific choice of adaptors (58). Such repurposing of preexisting
antibodies could enable more rapid responses to emerging
threats (e.g., novel pathogens) than would be possible via
development of novel antibodies or similar constructs.

Beyond predicting AD, BCEP also encompasses the more
computationally challenging task of predicting conformational
BCEs (i.e., BCEs that are to at least some extent conformationally
constrained). Among folded proteins, conformational BCEs are
surface-exposed regions that each constitute a paratope
footprint and are thus typically discontinuous BCEs in the
sense of comprising paratope-contacting residues that are
noncontiguous along the protein sequence, sometimes even on
separate polypeptide chains where proteins form supramolecular
complexes such as viral capsids (3). Whereas prediction of AD
can be cast as sequence profiling that is reminiscent of the
earliest BCEP methods, BCEP for conformational BCEs
entails the nontrivial cascading problems of delineating
discontinuous candidate BCEs, predicting their hierarchy of
immunodominance and estimating ΔGb° for cross-reactive
binding of their corresponding paratopes to disordered
candidate BCEs (e.g., peptidic sequences forming parts of
discontinuous candidate BCEs) (59). This is further
complicated by possible protein unfolding in vivo and
consequent uncertainty regarding relevant candidate BCEs,
which confounds interpretation of data on binding of
antiprotein antibodies to peptide fragments of the cognate
protein antigens (60). In light of these considerations, the
apparently poor performance of BCEP methods benchmarked
against said data (15, 61) is unsurprising and likely reflects the
unmitigated complexity of factors underlying BCEP to identify
short peptide sequences that are recognized by antiprotein
antibodies. Yet, such challenges pose barriers to development
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of peptide-based constructs as immunodiagnostic reagents for
detecting antiprotein antibodies rather than as vaccine
components for eliciting production of antipeptide antibodies
(59), though this crucial distinction was unfortunately obscured
at the inception of BCEP (1). Confusion has thus resulted mainly
from failure to distinguish between capacity of peptides to be
bound by antiprotein antibodies (i.e., cross-reactive antigenicity)
and capacity of peptides to elicit production of antipeptide
antibodies that cross-react with proteins to confer protective
immunity (i.e., cross-protective immunogenicity); and this has
been the main reason underlying failed attempts at peptide-
based vaccine development (17).
4 CONCLUSION

BCEP can be framed mainly as computational identification
of putative paratope-accessible disordered peptidic sequences
in an appropriate translational context (e.g., in vivo versus
in vitro), thereby transcending limitations of earlier approaches
to BCEP. This enables development of vaccines and
immunodiagnostics, most notably by selecting BCEs for
inclusion among peptide-based constructs that elicit
production of antipeptide antibodies. Such antibodies can
Frontiers in Immunology | www.frontiersin.org 4
mediate protective immunity (e.g., by neutralizing pathogen
virulence factors in vivo) and/or be used for antigen detection
(e.g., with the aid of surfactants and other chaotropic agents to
increase the extent of AD among pathogen-derived proteins in
vitro). BCEP thus supports the design of peptide-based
constructs that are potentially useful as vaccine components,
as companion immunodiagnostics for monitoring antipeptide
antibody responses to vaccination, and as means for generating
antipeptide antibodies that, apart from mediating protective
immunity (e.g., via active or passive immunization), may serve
as immunodiagnostic reagents for antigen detection.
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