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INTRODUCTION

Colorectal cancer (CRC) ranks third among all diagnosed can-
cers and has the highest mortality only after lung cancer.1 CRC 

carcinogenesis is complex, involving complicated epigenetic 
and hereditary variations, along with environmental factors.2-4 
Therefore, further studies on its molecular mechanisms are 
necessary to deepen understanding of CRC. 

MicroRNAs (miRNAs) negatively modulate messenger (m)
RNAs at the post-transcriptional stage.2,3 They are potent regu-
lators of cell growth and apoptosis.5 Growing numbers of miR-
NAs have been shown to have strong associations with CRC 
progression6 and are regarded as theranostic targets for various 
cancers or other diseases.7,8 Among them, miR-103a-3p, a tu-
mor-promoting miRNA, has been shown to be capable of facili-
tating malignant transformation in several types of cancers.9-11 
MiR-103a-3p levels in tumor samples12,13 or plasma14 have been 
found to hold prognostic and predictive value in CRC. Despite 
the strong connections between miR-103a-3p in CRC, exact 
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mechanisms undergirding miR-103a-3p in CRC progression 
remain unclear.

Our research investigated the expression of miR-103a-3p in 
CRC and explored its role in cell growth and apoptosis. We dis-
covered miR-103a-3p is dramatically upregulated in HCT116 
and Caco-2 cells and that miR-103a-3p stimulates cell prolif-
eration and suppresses apoptosis by targeting GREM2. This 
research provides a potential novel direction for CRC thera-
peutic intervention.

MATERIALS AND METHODS

Bioinformatics analysis
CRC relevant miRNA data (cancer: n=50; normal: n=41) and 
mRNA data (cancer: n=6; normal: n=6) were obtained from the 
Gene Expression Omnibus (GEO) online database. Differential 
analysis was executed via the “limma” package, threshold as 
|logFC| >2, adj. P value <0.05 (for mRNA). FunRich (version 3.13, 
http://www.funrich.org) was employed for target prediction of 
differentially expressed miRNA (DE miRNA). Finally, MCODE 
was employed to identify clusters (highly connected for CRC 
development) in a miRNA-mRNA interaction network. 

Cell culture
Normal NCM460 cells15 and Caco-2, HT29, HCT116, and SW620 
CRC cells16 were employed in this study. These cells were 
bought from the Chinese Academy of Sciences (Shanghai, Chi-
na) and cultured in RPMI-1640.

Vector construction 
MiR-103a-3p mimics, miR-103a-3p inhibitor, NC-miRNA, over-
expression-NC (OE-NC), siGREM2, and GREM2 vectors con-
structed by Gene Pharma (Shanghai, China) were transfected 
into HCT116 and Caco-2 cells applying Lipofectamine 2000 
(Invitrogen, Carlsbad, CA, USA) with the instructions provided 
by the manufacturer. 

qRT -PCR
Total RNA from cells was obtained. Reverse transcription was 
conducted applying RNA reverse transcription kits. cDNA was 
synthesized applying the Reverse Transcription Kit (Applied 
Biosystems, Foster, CA, USA). Prime Script RT Master Mix Kit 
and SYBR Green reagent (Takara, Beijing, China) were em-
ployed to determine miR-103a-3p and GREM2 expression, re-
spectively. U6 and GAPDH were applied as internal controls. 
mRNA levels were computed using the 2-ΔΔCt method. The 
primers applied are shown in Table 1.

Western blot
Cells were split by radioimmunoprecipitation assay with pro-
tease inhibitor. Proteins were detached and transferred to PVDF 
membranes. Target proteins were detected by specific antibod-

ies [GREM2, 1:100; transforming growth factor-β (TGF-β), 
1:1000; cyclin D1, 1:1000; CDK2, 1:1000; P21, 1:1000; P27, 
1:2000; Bcl-2, 1:1000; Bax, 1:1000; GAPDH, 1:1000; Abcam Inc, 
Cambridge, UK] followed by HRP adherent secondary anti-
bodies using enhanced chemiluminescence.

Luciferase reporter
Cells were transfected with pmir-GLO vector (Promega, Madi-
son, WI, USA) including wild-type/mutant GREM2 3'UTR, 
miR-103a-3p mimics/NC-miRNA. They were transfected for 
48 h and then detected via dual-luciferase kit (Beyotime Insti-
tute of Biotechnology, Shanghai, China).

CCK-8 assay
Cells were evaluated using CCK-8 reagent (Dojindo, Tokyo, Ja-
pan). 5×103 cells were added in each well of a 96-well plate. At 
0, 24, 48, and 72 h, 10 µL of CCK-8 were mixed, and optical den-
sity was measured. 

Colony formation assay
Cells were inoculated into 6-well plates and cultivated in RPMI-
1640 at 37°C for 2 weeks. Cells were washed with PBS, fastened 
by 4% paraformaldehyde, and treated with 1% crystalline vio-
let staining for observation. 

Apoptosis and cell cycle assays
Cells were stored in 75% ethanol at -20°C after 48 h of incuba-
tion. Next, HCT116 and Caco-2 were mixed in propidium io-
dide (PI) for 30 min. For apoptosis testing, the transfected cells 
were labeled with Annexin V-FITC and PI for 48 h. They were 
determined using flow cytometry (BD Biosciences, Franklin 
Lake, NJ, USA), and the data were analyzed using CellQuest 
(BD Biosciences).

Statistical analysis 
The experimental data generated in this study were analyzed 
by t-test or one-way ANOVA with GraphPad prism 8.0 software 
(GraphPad Software, San Diego, CA, USA), and p<0.05 was 
considered statistically significant.

Table 1. qRT-PCR Primers

Name Sequence (5'-3')
miR-103a-3p F GCGAGCAGCATTGTACAGGG
miR-103a-3p R AGTGCAGGGTCCGAGGTATT
GREM2 F GAAGCTTTCCCTGTCCTTGTTC 
GREM2 R CCAGTCACTCTTGAGGTACTTG
U6 F CTCGCTTCGGCAGCACA
U6 R AACGCTTCACGAATTTGCGT
GAPDH F GACCTGACCTGCCGTCTAG
GAPDH R AGGAGTGGGTGTCGCTGT

F, forward primer; R, reverse primer.
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RESULTS

MiR-103a-3p is highly expressed in CRC
Through miRNA differential expression analysis, 295 DE miR-
NAs were obtained from the normal control and the CRC tis-
sues from the GEO (Fig. 1A), among which 83 were upregulat-
ed and 212 were downregulated. Also, 869 DE mRNAs were 
obtained between the normal control and CRC tissues (Fig. 
1B), including 366 upregulated and 503 downregulated 

mRNAs. FunRich analysis identified target miRNAs and genes 
(Fig. 1C). The results of MCODE revealed that CRC develop-
ment was regulated by NOVA1, RBM24, TFCP2L1, and GREM2 
(Fig. 1D). Among target miRNAs, miR-107 has been shown to 
be involved in CRC development in previous research.17 How-
ever, few reports of miR-103a-3p have been made in CRC. 
Therefore, the involvement of miR-103a-3p and its target genes 
in the development of CRC was thoroughly explored.

According to bioinformatics analysis results in the GSE112264 
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Fig. 1. MiR-103a-3p is upregulated in CRC. (A) Differential expression of miRNAs displayed in a volcano plot. (B) Differential expression of mRNAs dis-
played in a volcano plot. (C) FunRich analysis for target mRNA of differential miRNAs. (D) miRNA-target gene regulatory network. (E) The expressions of 
miR-103a-3p in the GSE112264 dataset. ***p<0.01 vs. normal. (F) qRT-PCR of miR-103a-3p expression in CRC and normal cells, with NCM460 cells as a 
control (***p<0.001). CRC, colorectal cancer.
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dataset (Fig. 1E), miR-103a-3p expression increased with CRC 
(p<0.001). Mounting reports have confirmed miR-103a-3p 
could promote the progression of gastric10 and oral cancers.18 
Compared to NCM460 cells, miR-103a-3p was greatly enhanced 

in Caco-2, HT29, HCT116, and SW620 cells (Fig. 1F). Subse-
quent experiments were performed on HCT116 and Caco-2 
cell lines wherein miR-103a-3p expression was highest.

Fig. 2. MiR-103a-3p inhibitor affects the growth and apoptosis of HCT116 and Caco-2. (A) miR-103a-3p levels with qRT-PCR. *p<0.05 vs. NC-miRNA group. 
(B) Cell viability test. *p<0.05 vs. NC-miRNA group. (C) Colony formation assay. (D) Cell cycle distribution and statistical analysis. (E) Cell cycle and apopto-
sis. (F) Flow cytometric detection of apoptosis ratio. 
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MiR-103a-3p downregulation inhibits HCT116 and 
Caco-2 cell growth and promotes apoptosis
To examine miR-103a-3p activity in CRC, NC-miRNA or miR-
103a-3p inhibitor was transfected into HCT116 and Caco-2 
cells. The miR-103a-3p levels in the inhibitor group were dras-
tically reduced, compared to the NC-miRNA group (Fig. 2A). 
CCK-8 assay revealed that miR-103a-3p downregulation sup-
pressed the increase of the proliferation rate of cells upon 
transfection for 48 h (Fig. 2B). Also, colony formation experi-
ments after transient transfection further demonstrated the 
reduced clonal ability of miR-103a-3p knockdown compared 
to NC-miRNA (Fig. 2C). Cell cycle analysis with flow cytometry 
indicated that miR-103a-3p inhibitor arrested G1 phase and 
abated S phase ratio after transfection for 48 h (Fig. 2D). West-
ern blotting revealed that miR-103a-3p inhibitor downregu-
lated G1/S-related regulatory factors with Cyclin D1 and CDK2, 
while P21 and P27 were upregulated in cells, compared with 
controls (Fig. 2E).

Cell apoptotic proportions were also assessed. In contrast to 

the NC-miRNA transfected group, the apoptosis rate of cells in 
miR-103a-3p inhibitor was markedly higher (p<0.001) (Fig. 2F). 
Meanwhile, upregulation of the apoptotic protein Bax and 
downregulation of the anti-apoptotic protein Bcl-2 in miR-103a-
3p in the aforementioned groups were also observed (Fig. 2E). 
Therefore, these results demonstrated miR-103a-3p knock-
down might inhibit cell proliferation by aggravating apoptosis 
in HCT116 and Caco-2.

GREM2 is a target of miR-103a-3p
Through FunRich and MCODE analysis, the relationships be-
tween miR-103a-3p and NOVA1, RBM24, TFCP2L1, and GREM2 
are shown to be important in CRC development (Fig. 1C and 
D). Of these targets, GREM2 expression was significantly lower 
in CRC patients in bioinformatics analysis (p<0.001) (Fig. 3A). 
Using the online tool TargetScan, we discovered that the only 
probable binding sites for miR-103a-3p in 3'-UTR of GREM2 
were mutated (Fig. 3B). Luciferase assay indicated luciferase 
activity in cells co-transfected with GREM2-wt+miR-103a-3p 
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mimics was markedly reduced, compared with the GREM2-
wt+NC-miRNA group (p<0.01). Inversely, the luciferase activ-
ity in GREM2-MUT+miR-103a-3p mimics cells exhibited no 

difference from that of the GREM2-WT+NC-miRNA group (Fig. 
3C). Further experiments were conducted to research the influ-
ence of miR-103a-3p on GREM2 protein levels. Western blot-
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ting revealed reduced GREM2 protein levels in the miR-103a-3p 
overexpression group, compared to NC-miRNA (Fig. 3D). Nev-
ertheless, GREM2 protein expression in the miR-103a-3p in-
hibitor group was upregulated (Fig. 3D). qRT-PCR further con-
firmed these results (Fig. 3E). Altogether, these results confirmed 
that GREM2 is a target gene of miR-103a-3p in cells.

GREM2 overexpression inhibits HCT116 and Caco-2 
cell proliferation and G1/S transition and promotes 
apoptosis
GREM2 activity in CRC development has not been reported. 
Herein, cells were transfected with vector coding for GREM2 
to detect cell growth, cell cycle status, and apoptosis. qRT-PCR 
results showed that GREM2 protein levels in HCT116 and 
Caco-2 transfected with GREM2 were about five-fold higher 
than that in OE-NC (Fig. 4A). CCK-8 testing revealed that over-
expression of GREM2 remarkably depressed the growth of 
HCT116 and Caco-2 cells at 72 h (Fig. 4B). Cell cycle testing 
showed that the proportions of transfected cells in G1 phase 
was visibly higher and those in S phase were relatively lower 
in contrast to OE-NC transfected cells (Fig. 4C). No difference 
in G2 phase was found in these two groups. Western blot 
analysis suggested that overexpressed GREM2 sequestered 
cyclin D1 and CDK2 levels and upregulated the expression of 
P21 and P27 (Fig. 4D). The apoptosis rate of cells transfected 
with GREM2 was pronouncedly reinforced, compared with the 
OE-NC (Fig. 4E). Apoptosis-related protein levels showed the 
same trend (Fig. 4D). The above results indicated that GREM2 
overexpression could suppress HCT116 and Caco-2 prolifera-
tion by promoting apoptosis.

GREM2 knockdown eliminates the cancer-suppress-
ing efficacy of miR-103a-3p inhibitor
Learning more about miR-103a-3p function in CRC through 
GREM2 as a cancer contributor, miR-103a-3p inhibitor+ siG-
REM2 was co-transfected into HCT116 and Caco-2. In the way 
that was expected, GREM2 expression was downregulated by 
siGREM2 (p<0.01) (Fig. 5A). Compared with miR-103a-3p in-
hibitor alone, noticeably strengthened viability of HCT116 and 
Caco-2 co-transfected of miR-103a-3p inhibitor+siGREM2 from 
48 h was seen (p<0.05) (Fig. 5B). The apoptosis rate (Fig. 5C) and 
Western blot analysis (Fig. 5D) showed that miR-103a-3p in-
hibitor+ siGREM2 reduced apoptosis when compared with the 
miR-103a-3p inhibitor transfected group. Moreover, compared 
with NC-miRNA group, the ratio of HCT116 and Caco-2 in the 
G1, S, or G2 phase in the aforementioned group was almost 
the same (Fig. 5E). Western blot analysis of cycle modulating 
proteins highlighted similar trends (Fig. 5D). In summary, 
GREM2 knockdown rescued the impact of miR-103a-3p down-
regulation on the proliferation and apoptosis of cells.

MiR-103a-3p downregulation inhibits CRC 
development by targeting GREM2 to inhibit TGF-β 
signaling
Western blot revealed that GREM2 downregulated TGF-β pro-
tein expression in HCT116 and Caco-2, while siGREM2 upreg-
ulated TGF-β protein expression in cells, indicating that GREM2 
could inhibit the TGF-β pathway (Fig. 6). Further results showed 
that in the cell lines of HCT116 and Caco-2, GREM2 was down-
regulated and TGF-β expression was upregulated by miR-
103a-3p, while GREM2 expression was upregulated and TGF-β 
was downregulated by miR-103a-3p inhibitor. In a word, down-
regulation of miR-103a-3p inhibits proliferation and promotes 
apoptosis in HCT116 and Caco-2 by targeting GREM2 through 
TGF-β pathway.

DISCUSSION

Recent studies have indicated that miRNAs are essential mod-
erators during cellular processes.2 Our research confirmed 
miR-103a-3p as a promoter of CRC, which facilitated CRC pro-
gression by targeting GREM2. 

Data concerning miR-103a-3p in CRC are limited. MicroR-
NA microarray expression analysis in CRC has implicated high 
levels of miR-103a-3p as a risk factor for worsening progno-
sis.12,13 Elevated serum miR-103a-3p in CRC patients has further 
been shown to be a diagnostic biomarker.14 Unfortunately, the 
underlying mechanism of miR-103a-3p in CRC development 
remains unclear. We discovered downregulated miR-103a-3p 
represses HCT116 and Caco-2 proliferation through arresting 
cell cycle at G1/S phase in vitro. All these data above strength-
ened the hypothesis that miR-103a-3p serves as a cancer accel-
erator in CRC.

Recognizing specific miRNA targets is essential for elucidat-
ing miRNA function on tumorigenesis and development pro-
gression.19,20 GREM2 was discovered as a target of miR-103a-3p 
by bioinformatics analysis. Luciferase activity verified the bind-
ing of miR-103a-3p to the 3'-UTR of GREM2. In HCT116 and 
Caco-2 lines, miR-103a-3p expression was inversely related to 
GREM2 protein levels. Furthermore, GREM2 knockdown di-
minished the influences of miR-103a-3p downregulation on 
proliferation and apoptosis in HCT116 and Caco-2. Therefore, 
miR-103a-3p possibly accelerates the CRC progress by depress-
ing GREM2.

The exact function of GREM2 in disease is controversial, ow-
ing to incompatible results in different types of illnesses. In 
gastric cancer, GREM2 is reported to be an oncogene that reg-
ulates cell growth, apoptosis, invasion, migration, and tumori-
genic ability. However, in diabetic nephropathy-related cells, 
highly expressed GREM2 not only raised the Bax/Bcl2 ratio but 
also boosted apoptosis in high-glucose milieu.21 These findings 
demonstrated that the action of GREM2 is disease‑specific. In 
the literature, it was reported that GREM2 is present at low lev-
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els in normal intestinal epithelium, yet cannot be detected in 
adenomas,22 and genome-wide association study has indicated 
that GREM2 is likely to be a susceptibility gene in CRC.23 These 
two works indicated that GREM2 can act as a tumor-suppressor 
in CRC. Research into mechanisms has revealed that GREM2 
overexpression blocks HCT116 and Caco-2 proliferation and 
G1/S phase changes and promotes apoptosis.

Abnormal proliferation is a crucial early event in cancer de-
velopment.24 MiR-103a-3p boost cell proliferation through in-
hibiting ATF7 in gastric cancer.10 It was discovered that miR-
103a-3p knockdown attenuates proliferation and migration, and 
accelerates apoptosis in thyroid cancer.11 Here, we proved that 
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miR-103a-3p knockdown impaired HCT116 and Caco-2 pro-
liferation and G1/S transition in CRC. It is widely accepted 
that the cell cycle plays a decisive part in cancer cell prolifera-
tion.25 To exit silence and initiate the cell cycle, cells initially 
upregulate cyclin D1.26 Meanwhile, CDK inhibitors (e.g., P21 
and P27) suppress cell cycle G1/S phase transformation and 
bring about cell cycle arrest.27,28 Here, we demonstrated that 
miR-103a-3p inhibitor reduced the levels of cyclin D1 and CDK2 
and increased the levels of P21 and P27. Our research indicatet 
miR-103a-3p stimulates HCT116 and Caco-2 proliferation 
through regulating the cell cycle. Studies have reported that cell 
cycle arrest is closely related to apoptosis.29 As expected, our 
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research demonstrated miR-103a-3p inhibitor advanced cell 
apoptosis of HCT116 and Caco-2. Interestingly, we confirmed 
that the apoptotic proteins Bcl-2 and Bax were modulated by 
miR-103a-3p inhibitor, and this is consistent with reports by 
Zhang, et al.30 Highly expressed miR-103a-3p in CRC cells pro-
motes the expression of HIF1A by targeting the core molecules 
LATS2 and SAV1 of the Hippo/YAP1 pathway and also im-
proves CRC proliferation, invasion, migration, glycolysis, and 
angiogenesis.31 However, GREM2 knockdown eliminated this 
effect. Related reports have indicated that GREM2 inhibits the 
enhancement of drug resistance in prostate cancer cells by 
regulating TGF-β pathway.32 The downregulation of miR-103a-
3p inhibits proliferation and apoptosis of HCT116 and Caco-2 
by targeting GREM2 to TGF-β pathway was also indicated by 
our research.

In summary, miR-103a-3p was confirmed to be highly ex-
pressed in CRC cells (HCT116 and Caco-2 cell lines). In-depth 
investigation has revealed that in CRC cells, miR-103a-3p down-
regulation inhibits proliferation through G1/S transition and 
accelerates apoptosis by targeting GREM2 through TGF-β 
pathway. Our research might offer a basic mechanism for CRC 
progression and provide insights that miR-103a-3p/GREM2 is 
possibly a novel target for CRC therapy.
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