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Abstract
Background: In order to optimize the potential benefits of neural stem cell (NSC) transplantation for the treatment of
neurodegenerative disorders, it is necessary to understand their biological characteristics. Although neurotrophin
transduction strategies are promising, alternative approaches such as the modulation of intrinsic neurotrophin
expression by NSCs, could also be beneficial. Therefore, utilizing the C17.2 neural stem cell line, we have examined the
expression of selected neurotrophic factors under different in vitro conditions. In view of recent evidence suggesting a
role for the pineal hormone melatonin in vertebrate development, it was also of interest to determine whether its G
protein-coupled MT1 and MT2 receptors are expressed in NSCs.

Results: RT-PCR analysis revealed robust expression of glial cell-line derived neurotrophic factor (GDNF), brain-
derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in undifferentiated cells maintained for two days in
culture. After one week, differentiating cells continued to exhibit high expression of BDNF and NGF, but GDNF
expression was lower or absent, depending on the culture conditions utilized. Melatonin MT1 receptor mRNA was
detected in NSCs maintained for two days in culture, but the MT2 receptor was not seen. An immature MT1 receptor of
about 30 kDa was detected by western blotting in NSCs cultured for two days, whereas a mature receptor of about 40
– 45 kDa was present in cells maintained for longer periods. Immunocytochemical studies demonstrated that the MT1
receptor is expressed in both neural (β-tubulin III positive) and glial (GFAP positive) progenitor cells. An examination of
the effects of melatonin on neurotrophin expression revealed that low physiological concentrations of this hormone
caused a significant induction of GDNF mRNA expression in NSCs following treatment for 24 hours.

Conclusions: The phenotypic characteristics of C17.2 cells suggest that they are a heterogeneous population of NSCs
including both neural and glial progenitors, as observed under the cell culture conditions used in this study. These NSCs
have an intrinsic ability to express neurotrophic factors, with an apparent suppression of GDNF expression after several
days in culture. The detection of melatonin receptors in neural stem/progenitor cells suggests involvement of this
pleiotropic hormone in mammalian neurodevelopment. Moreover, the ability of melatonin to induce GDNF expression
in C17.2 cells supports a functional role for the MT1 receptor expressed in these NSCs. In view of the potency of GDNF
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in promoting the survival of dopaminergic neurons, these novel findings have implications for the utilization of melatonin
in neuroprotective strategies, especially in Parkinson's disease.

Background
Neural stem cells are multipotent cells which are capable
of self-replication and differentiation into neurons, astro-
cytes or oligodendrocytes in the central nervous system
[1]. Because of their intrinsic plasticity and multipotency,
there are great expectations that NSC transplantation will
ultimately provide immense benefits in the treatment of
neurodegeneration. However, it is essential to fully under-
stand the cellular and molecular mechanisms involved in
the differentiation and function of NSCs, in order to fully
harness their therapeutic potential. Because of the very
limited availability of NSCs in the central nervous system
(CNS), neural stem cell lines are very useful for the study
and characterization of NSC biology. For example, trans-
plantation studies with the C17.2 neural stem cell line [2]
have revealed that these cells express diverse neurotrans-
mitter phenotypes, depending on the environment pre-
vailing in the CNS area of engraftment [3,4]. Recently,
transplanted C17.2 NSCs, genetically modified to express
glial cell line-derived neurotrophic factor (GDNF), were
found to engraft in the 6-hydroxydopamine-lesioned
mouse striatum and to express therapeutic levels of this
neurotrophin, with consequent protection of dopaminer-
gic neurons in this model of Parkinson's disease [5].
Although this and other similar approaches are promis-
ing, limitations including the stability and regulation of
transduced genes await resolution. Therefore, it was of
interest to determine whether C17.2 cells have the intrin-
sic ability to express neurotrophins or neurotrophic fac-
tors, which would make them amenable to modulation
by appropriate agents in vitro or in vivo. In addition, we
examined whether these NSCs express receptors for the
pineal hormone melatonin, which can induce GDNF
mRNA and protein expression [6,7] and which has been
implicated in the development of vertebrates including
humans [8-10]. Initially, different concentrations and
types of sera were used for cell culture in order to select
optimal conditions for gene expression studies. We now
report that C17.2 NSCs exhibit heterogeneous pheno-
types and express neurotrophic factors and melatonin
MT1 receptors.

Results
Effects of culture conditions on neurotrophic factor and 
cell-specific marker mRNA expression in C17.2 NSCs
Following two days in culture, C17.2 cells remain in an
undifferentiated state, as indicated by their flat and
rounded appearance (Fig. 1A) and high expression of the
stem cell/progenitor cell marker, nestin (Fig. 1C,1E,1G).
These cells also expressed the early neuronal marker, β-

tubulin III, but there was little or no expression of the
mRNA for the glial marker, glial fibrillary acidic protein
(GFAP). After seven days in culture, differentiating C17.2
cells exhibit an elongated shape with an extension of neu-
rite-like processes, as shown in Fig. 1B. However, as
observed in undifferentiated cells after two days, there was
still strong expression of nestin and β-tubulin III, with lit-
tle or no detectable GFAP mRNA (Fig. 1D,1F,1H). An
examination of neurotrophin mRNA expression in undif-
ferentiated C17.2 cells, revealed a robust expression of
GDNF, BDNF and NGF, regardless of the type or concen-
tration of serum used for culturing (Fig. 1C,1E,1G). A sim-
ilar strong expression of BDNF and NGF was observed in
differentiating cells after seven days, but GDNF mRNA
was relatively lower in cells maintained in 1% fetal bovine
serum (FBS) or 10% FBS + 5% horse serum (Fig. 1F,1H).
The mRNA levels of the control gene, GAPDH, did not
change under the conditions examined (Fig. 1I).

Detection of MT1 receptor mRNA and protein in C17.2 
NSCs
Melatonin MT1 receptor mRNA was detected by RT-PCR in
NSCs maintained for two days, especially in cells cultured
in 1% FBS, as shown in Fig. 2A. GAPDH mRNA expression
did not change under the conditions examined (Fig. 2B).
C17.2 NSCs maintained for indicated periods in 1% FBS
or 10% FBS + 5% horse serum, expressed the MT1 receptor
protein, as revealed by western analysis (Fig. 2C,2D).
Interestingly, when cells were cultured for 2–3 days, the
MT1 protein detected had a molecular weight of about 30
kDa, which is less than the predicted size of the mature
receptor. However, when cells were cultured for 10–12
days, a mature MT1 receptor of about 40–45 kDa was
present, as shown in Fig. 2D. The MT2 receptor transcript
was not detected under any of the conditions used in this
study.

Immunocytochemical detection of the MT1 receptor and 
cell-specific markers in C17.2 NSCs
MT1 receptor immunoreactivity was detected within
C17.2 cells maintained in 1% FBS for two days, as shown
in Figure 3A,3B. Omission of the primary antibody or its
preincubation with a blocking peptide (CIDtech Research
Inc., Cambridge, ON) abolished MT1 immunoreactivity
(Fig. 3C), indicating the specificity of MT1 detection. In
keeping with RT-PCR results, nestin (Fig. 3D,3E) and β-
tubulin III (Fig. 3F), were detected by immunocytochem-
ical analysis. Double- labeling studies indicated that the
MT1 receptor is coexpressed with the stem /progenitor cell
marker, nestin (Fig. 4A,4B,4C), the glial marker, GFAP
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(Fig. 4D,4E,4F) and the early neuronal marker, β-tubulin
III (Fig. 4G,4H,4I).

Induction of GDNF mRNA expression by melatonin in 
C17.2 NSCs
In order to assess the potential functionality of the MT1
receptor detected in C17.2 NSCs, the effect of low physio-
logical concentrations of melatonin on GDNF mRNA
expression was examined. Cells were grown as described
in Methods and treated with melatonin or vehicle

(0.001% DMSO) for 24 hours. Following RT-PCR analy-
sis, GDNF mRNA levels were converted to optical density
(OD) values and normalized to GAPDH OD levels, as
reported previously [6]. After conversion of GDNF/
GAPDH OD ratios to percentage values, one-way ANOVA
indicated a significant treatment effect (F3,7 = 7.03, p <
0.04). A Neuman-Keuls test indicated a significant
increase in relative GDNF mRNA expression in cells
treated with 0.05, 0.1 and 1 nM melatonin as shown in
Figure 5.

Discussion
The expression of nestin in undifferentiated C17.2 cells is
consistent with the presence of this intermediate filament
protein in stem and progenitor cells in the mammalian
CNS [11]. However, as noted above, nestin mRNA was
also readily detected in cells exhibiting morphological
changes characteristic of differentiation, after one week in
culture. Similarly, mRNA for the early neuronal marker, β-
tubulin III, was found under all conditions examined,
whereas GFAP mRNA was detected only in some cultures.
These observations suggest that the C17.2 cells examined
in this study are an heterogeneous population of stem and
progenitor cells in keeping with evidence that NSCs

Morphology and expression of neurotrophins and pheno-typic markers in C17.2 NSCsFigure 1
Morphology and expression of neurotrophins and 
phenotypic markers in C17.2 NSCs. (A) Undifferenti-
ated cells exhibit a flat and rounded structure after 2 days in 
culture, as revealed by phase contrast microscopy. (B) After 
7 days in culture, differentiating cells appear elongated with 
processes. Lanes:1–6: GDNF, BDNF, NGF, Nestin, GFAP 
and β-tubulin III mRNA expression in neural stem cells main-
tained in 1% calf serum (C,D), 1% fetal bovine serum (E,F), or 
10% fetal bovine serum + 5% horse serum (G,H) for 2 or 7 
days as indicated. (I) GAPDH mRNA from cells cultured in 
1% calf serum, 1% fetal bovine serum (FBS) or 10% FBS + 5% 
horse serum (HS)-Lanes: 1–3 (2 days), 4–6 (7 days).
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Melatonin MT1 receptor mRNA and protein expression in C17.2 NSCsFigure 2
Melatonin MT1 receptor mRNA and protein expres-
sion in C17.2 NSCs. (A) RT-PCR detection of the MT1 
transcript (397 bp) in neural stem cells (NSCs) maintained 
for 2 days in 1% FBS: lane 2 or 10% FBS + 5%HS: lane 3, but 
not in 1% calf serum : lane 1. (B) Expression of glyceralde-
hyde- 3-phosphate dehydrogenase (GAPDH, 237 bp), lanes 
1–3. (C) Cells were kept in culture for the number of days 
indicated and extracted proteins were examined by western 
analysis. Lane 1: 1 day in 1% FBS; lane 2: 1 day in 10% FBS + 
5% HS; lane 3: 3 days in 1% FBS. (D) Cells were grown for 1 
week in 10% FBS + 5% HS and then subcultured in 1% FBS 
for 5 days before western analysis. Molecular weight (kDa) 
markers are indicated on the left.
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exhibit morphological and phenotypic heterogeneity
[12,13].

The expression of diverse neurotrophins by NSCs is con-
sistent with the role of these factors in the differentiation
and development of the CNS. Presumably, the robust
mRNA expression observed, particularly in cells
maintained in 10% FBS + 5% HS, is driven by the serum-
enriched milieu of potential inducers including neuro-
transmitters, hormones and growth factors, such as basic
fibroblast growth factor and epidermal growth factor,

which can stimulate C17.2 cell growth in vitro [14]. In
contrast to BDNF and NGF, which exhibited strong
mRNA expression under all conditions examined, GDNF
expression was weaker or not detectable in differentiating
cells after seven days in culture. The suppression of GDNF
expression might have been due to the prolonged expo-
sure of NSCs to regulatory factors in the serum, as its
decline appears to be inversely correlated with the concen-
tration or enrichment of serum used for cell culture. Thus,
moderate, weak or no expression of GDNF was observed
in cells cultured for 1 week in 1% CS, 1% FBS or 10% FBS
+ 5% HS, respectively (see Fig. 1D,1F,1H). Various biolog-
ical agents or pathways have been implicated in the regu-
lation of GDNF expression. For example, fibroblast
growth factor-2 and proinflammatory cytokines such as
interleukin(IL)-1β, IL-6 and tumor necrosis factor-α stim-
ulate GDNF synthesis and secretion [15]. Activation of
protein kinase C by phorbol esters increases GDNF
expression [15,16], whereas the adenylate cyclase activa-
tor, forskolin, inhibits GDNF production in cultured cells,
suggesting an inhibitory role for the cyclic AMP- protein
kinase A pathway [15]. The cAMP pathway and its tran-
scriptional factor cAMP response element binding protein
(CREB) have been shown to induce differentiation in neu-
ronal progenitor cells [17,18]. Therefore, it is possible that
activation of this pathway was involved in both the initi-
ation of differentiation and the inhibition of GDNF
expression observed in C17.2 cells after seven days.

While this work was in progress, it was reported that
C17.2 neural stem cells constitutively secrete BDNF,
GDNF and NGF, but do not label for GFAP or neuronal
markers like β-tubulin III [19]. Our findings are in agree-
ment with these observations with regard to neurotrophin
expression. However, in contrast to their findings, β-tubu-
lin III mRNA and immunoreactivity were readily detected
in our study. In addition, although GFAP mRNA was
weakly expressed or not detectable in some cultures,
immunoreactivity for this glial cell marker is present in
C17.2 cells, as shown in Figure 4. These differences may
be due to our examination of β-tubulin III and GFAP
expression in cells maintained for 2–12 days in culture,
whereas their C17.2 cells were examined after 2–3 weeks
[19]. Other factors, such as our use of low serum concen-
trations, as compared with the enriched culture medium
used by Lu et al. [19], may also be involved. The detection
of melatonin MT1 receptor mRNA in C17.2 cells after 2
days but not after 7 days, presumably involves downregu-
lation of this receptor. There is considerable evidence that
many G protein-coupled receptors are downregulated by
their agonists [20]. More importantly, melatonin, which
is present in serum, has been found to suppress MT1 tran-
scription in vitro [21]. Interestingly, our immunocyto-
chemical studies revealed MT1 immunoreactivity within
C17.2 cell bodies and extensions, as shown in Figure

Melatonin MT1 receptor, nestin and β-tubulin III immunore-activity in C17.2 NSCsFigure 3
Melatonin MT1 receptor, nestin and β-tubulin III 
immunoreactivity in C17.2 NSCs. Cells were main-
tained in 1% FBS for the number of days indicated, except for 
those shown in panel E, which were cultured in 10% FBS + 
5% HS. (A,B) MT1 in cells maintained for 2 days. (C) Peptide 
(immunogen) blockade of MT1 immunoreactivity after 2 days. 
(D,E) Nestin immunoreactivity after 2 and 3 days, respec-
tively. (F) β-tubulin III immunoreactivity after 3 days. Scale 
bars: (A,D,F) 50 µm. (B,E) 20 µm.
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3A,3B. Although an intracellular localization could result
from internalization of receptors [20], it is also possible
that the immunoreactivity detected within these neural
stem/progenitor cells is due to the presence of newly syn-
thesized MT1 receptors. In accordance with this view, the
MT1 protein detected in short-term (2-day) cultures is
about 30 kDa, which is less than the approximately 37–45
kDa molecular weight observed in various mammalian
tissues [22-24]. Moreover, when cells were cultured for
10–12 days, a MT1 receptor of about 40–45 kDa was
detected, as shown in Fig. 2D. The mammalian MT1 con-
tains two glycosylation sites in its N-terminal [24] and it
may exist in more than one glycosylated form, as has been
reported for other G protein-coupled receptors [25,26].
Thus, the above cytochemical observations suggest that
newly synthesized immature MT1 receptors,which have
yet to undergo posttranslational modification and trans-
location to the plasma membrane, were detected in cells

cultured for 2 days in 1% FBS, whereas a mature glyco-
sylated receptor was present in cells grown for longer peri-
ods. Although the MT2 receptor transcript was not
detected under any of the conditions used in this study,
additional studies are required before the possibility of its
expression in these cells can be ruled out. It is possible
that MT2 mRNA may undergo rapid turnover/degrada-
tion, while a functional protein may still be present. This
is the first evidence that melatonin receptors are expressed
in neural stem or progenitor cells and raises the obvious
question of whether this hormone plays a role in neuro-
nal development. Although studies in this field are lim-
ited, there is increasing evidence that melatonin is
involved in the early development of vertebrates. For
example, melatonin is produced in chick embryos as early
as the 7th day of embryonic development [27], and a phys-
iological concentration of this hormone has been shown
to significantly enhance mouse embryogenesis in vitro [8].

Colocalization of the MT1 receptor with phenotypic markers in C17.2 NSCsFigure 4
Colocalization of the MT1 receptor with phenotypic markers in C17.2 NSCs. Cells were maintained in 10% FBS + 
5% HS for 9 days and then in 1% FBS for 3 days before seeding on coverslips in 1% FBS for 2 days. (A,B,C) Confocal images of 
MT1 (green), Nestin (red), and MT1 & nestin. (D,E,F) MT1 (green), GFAP (red) and MT1 & GFAP. (G,H,I) MT1 (green), β-tubulin 
III (red) and MT1 & β-tubulin III. Double-labeled cells exhibit yellow-orange fluorescence. Scale bars: A-F: 50 µm; G-I: 20 µm.
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Similarly, when sheep blastocysts were treated with mela-
tonin for 24 hr in vitro, there was a significant increase in
the percentage of embryonic survival [28]. Other studies
have shown that functional Gi protein-coupled melatonin
receptors, which mediate inhibition of the adenylate-
cyclase-cAMP pathway, are present in the embryonic (day
8) neural retina [29]. Melatonin receptor transcripts for all
the known Gi protein-coupled receptor subtypes have
been found in 24 hr-old embryos from Japanese quail
[30]. Various studies have detected melatonin receptors in
human fetal brain [31,32] and peripheral tissues [33].
Moreover, recent autoradiographic and in situ hybridiza-
tion studies indicate that the melatonin MT1 receptor is
expressed in diverse areas of the human fetal brain [9].
Thus, the presence of MT1 receptors in NSCs is in keeping
with the foregoing, and supports the view that melatonin
is involved in neurodevelopment. Colocalization evi-
dence that the MT1 receptor is present in both neural and
glial progenitor cells is consistent with a neurodevelop-
mental role for melatonin, and suggests that in addition
to the presence of the MT1 in mammalian neurons [34], it

may also be expressed in astrocytes, as observed in similar
cells from rat [6] and chick brain [35]. The detection of
nestin in some cells expressing the MT1 receptor is consist-
ent with its presence not only in neural progenitor cells
but also in GFAP positive glial progenitors [36]. Prelimi-
nary evidence that melatonin induces GDNF mRNA
expression in C17.2 NSCs, as we have observed previously
in C6 glioma cells [6], supports the foregoing as this
neurotrophic factor plays a critical role in both central and
peripheral neurodevelopment [37,38]. GDNF also exerts
neuroprotective effects in the CNS, including a potent role
in the survival of dopaminergic neurons in the midbrain
[39,40]. Therefore, modulation of GDNF expression may
be one of the mechanisms underlying physiological neu-
roprotection by melatonin in the CNS [6].

Conclusions
In summary, the NSCs utilized in this study exhibited an
intrinsic ability to express neurotrophins under various
cell culture conditions. This ability was not affected by
their morphological state, except in the case of GDNF
mRNA expression which was lower in cells undergoing
differentiation in FBS-supplemented media. Novel
evidence that neural stem/progenitor cells express MT1
receptors adds to the increasing evidence that NSCs can
respond to diverse modulators [41], and suggests an early
role for melatonin in CNS development. Moreover, since
melatonin induces GDNF expression in NSCs, its poten-
tial in vivo modulation of this and/or other neurotrophic
factors, via its G protein-coupled receptors in the brain or
on transplanted NSCs, could have important implications
for optimizing therapeutic strategies in neurodegenerative
disorders such as Parkinson's disease.

Methods
Cell culture
The C17.2 cell line was derived by retrovirus-mediated
oncogene (v-myc) transduction of cells from the external
germinal layer of neonatal mouse cerebellum [2]. C17.2
cells were grown on 10 cm Corning culture dishes (Fisher
Scientific Ltd., Nepean, ON, Canada) in DMEM supple-
mented with 2 mM glutamine and calf serum, fetal bovine
serum or horse serum (Invitrogen Canada Inc., Burling-
ton, ON) in the concentrations indicated. Cells were
maintained in a humidified 5% CO2 – 95% air incubator
at 37°C and routinely split at approximately 90% conflu-
ency [3].

RT-PCR
Total RNA was isolated from C17.2 cells with TRIzol as
described by the supplier (Invitrogen Canada Inc., Burl-
ington, ON). After DNase treatment, cDNA was synthe-
sized from 1–2 µg of total RNA using the Omniscript
reverse transcriptase kit (Qiagen Inc., Mississauga, ON)
and oligo dT primers. PCR was carried out using 1.5 µl (or

Induction of GDNF mRNA by melatonin in C17.2 NSCsFigure 5
Induction of GDNF mRNA by melatonin in C17.2 
NSCs. (A,B) Gel images of RT-PCR amplification of GDNF 
(643 bp) and GAPDH (237 bp). Lanes 1–4: Control, 0.05, 0.1, 
and 1 nM melatonin. M = markers. (C) Percentage values of 
GDNF/GAPDH optical density ratios as a function of mela-
tonin treatment. Data shown are the means ± s.e.m. from 2 
separate experiments. *p < 0.05 vs control.
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3 µl for melatonin MT1 and MT2 receptors) of the RT prod-
uct and the HotStarTaq master mix kit (Qiagen Inc., Mis-
sissauga, ON), together with appropriate primers (Table
1). Following a hot start at 95°C for 15 min, samples were
amplified for 36 cycles (or 38 cycles for MT1 and MT2) at
94°C for 30 s, 57°C for 30 s and 72°C for 1 min, followed
by a final incubation at 72°C for 10 min.

Treatment of C17.2 NSCs with melatonin
For semi-quantitative examination of the effects of mela-
tonin on GDNF mRNA expression, cells were grown in
10% FBS + 5% horse serum (HS) for 1 week. After
subculture, cells were kept in 10% FBS + 5% HS for 2 days
followed by another subculture to 1% FBS for 2 or 3 days.
The cells were then treated with vehicle (0.001% DMSO)
or melatonin (0.05, 0.1, and 1 nM) for 24 hours. Follow-
ing RNA extraction, RT-PCR was performed as described
above, except that an annealing Tm of 55°C was used and
samples were amplified for 30 cycles. Glyceraldehyde 3-
phosphate dehydrogenase (GAPDH), was amplified with
intron-spanning primers [42], in order to control for DNA
contamination.

Immunocytochemistry
After fixation for 15 minutes in 4% paraformaldehyde on
poly L-ornithine-coated glass cover slips, cells were incu-
bated overnight at 4°C with anti-melatonin MT1 receptor
serum (1:100; CIDtech Research Inc., Cambridge, ON).
Cells were washed three times with PBS and then incu-
bated with a fluorescein (FITC)-conjugated donkey anti-
rabbit IgG (1:100 dilution; Jackson ImmunoResearch
Labs. Inc.,West Grove, PA). In some experiments, the pri-

mary antibody was omitted or it was preincubated with
the corresponding peptide immunogen (CIDtech
Research Inc., Cambridge, ON), before use. In order to
examine cell marker expression, mouse monoclonal anti-
bodies against nestin (1: 500), β-tubulin III (1:200) or
GFAP (1:400; Chemicon International, Temecula, CA)
were used together with a FITC-conjugated donkey anti-
mouse IgG (1:100; Jackson ImmunoResearch
Labs.Inc.,West Grove, PA). For double- labeling studies of
the MT1 and cell markers, a rhodamine (TRITC)-conju-
gated donkey anti-mouse IgG (1: 100; Jackson Immu-
noResearch Labs. Inc.,West Grove, PA) was used to detect
nestin, GFAP and β-tubulin III. Digital images were
recorded on a Zeiss confocal microscope.

Western analysis
C17.2 NSCs were grown as described in Figure 2, and pro-
teins were extracted in a modified RIPA buffer (50 mM
Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% NP-40,
0.25% sodium deoxycholate) supplemented with PMSF
(1 mM), aprotinin (2 µg/ml), leupeptin (2 µg/ml), and
sodium orthovanadate (2 mM). Extracted proteins (80 µg
per lane) were separated by SDS- polyacrylamide gel elec-
trophoresis and transblotted to nitrocellulose mem-
branes. The blots were blocked with 5% nonfat dry milk
in TBS-T buffer (50 mM Tris-HCl, 150 mM NaCl, 0.1%
Tween 20; pH 8.5) for 1 hour at room temperature, and
then incubated overnight with a 1:100 dilution of rabbit
anti-MT1 antibody (CIDTech Research Inc., Cambridge,
ON) at 4°C. After washing, membranes were incubated
with a horseradish peroxidase-conjugated second anti-
body (1:1000; Santa Cruz Biotechnology, Inc., Santa

Table 1: Forward and reverse primers used for PCR amplification

Gene Primers (5'→3') Nucleotides Size(bp)

GDNF atgggatgtcgtggctgtctg 58–98 643
tctctggagccagggtcagat 700–680

BDNF ggatgaggaccagaaggttgc 2342–2362 390
ttgtctatgcccctgcagcct 2731-2711

NGF gcagacccgcaacatcactgt 484–504 517
agccttcctgctgagcacaca 1000-980

Nestin aggaaccaaaagagacaggtg 4141–4161 653
ttcctcagatgagaggtcaga 4793-4773

GFAP cctcaagaggaacatcgtggt 1119–1139 592
acactggagtcatcacctgga 1710-1690

β-Tubulin III tagtggagaacacagacgaga 600–620 442
ctgctgttcttactctggatg 1041-1021

MT1 tgagtgtcatcggctcgatat 1–21 397
tagtaactagccacgaacagc 397-377

MT2 tgctgcatctgtcatagtacc 4–24 297
acatggttaggaaactgcgca 346-326

GAPDH ttcaccaccatggagaaggc 1147–1166 237
ggcatggactgtggtcatga 1383-1364
Page 7 of 9
(page number not for citation purposes)



BMC Neuroscience 2004, 5:41 http://www.biomedcentral.com/1471-2202/5/41
Cruz, CA) for 1 hour. Following washing and exposure to
enhanced chemiluminescence (ECL) reagents (Amersham
Biosciences, Inc., Baie d'Urfé, Québec) for about 5 min-
utes, proteins were detected by autoradiography, as
described previously [43]. Buffer reagents and protease
inhibitors were obtained from Sigma- Aldrich Canada Ltd.
(Oakville, ON).
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