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Abstract 

Background: Measuring host gene expression is a promising diagnostic strategy to discriminate bacterial and viral 
infections. Multiple signatures of varying size, complexity, and target populations have been described. However, 
there is little information to indicate how the performance of various published signatures compare to one another.

Methods: This systematic comparison of host gene expression signatures evaluated the performance of 28 signa-
tures, validating them in 4589 subjects from 51 publicly available datasets. Thirteen COVID-specific datasets with 1416 
subjects were included in a separate analysis. Individual signature performance was evaluated using the area under 
the receiving operating characteristic curve (AUC) value. Overall signature performance was evaluated using median 
AUCs and accuracies.

Results: Signature performance varied widely, with median AUCs ranging from 0.55 to 0.96 for bacterial classification 
and 0.69–0.97 for viral classification. Signature size varied (1–398 genes), with smaller signatures generally performing 
more poorly (P < 0.04). Viral infection was easier to diagnose than bacterial infection (84% vs. 79% overall accuracy, 
respectively; P < .001). Host gene expression classifiers performed more poorly in some pediatric populations (3 
months–1 year and 2–11 years) compared to the adult population for both bacterial infection (73% and 70% vs. 82%, 
respectively; P < .001) and viral infection (80% and 79% vs. 88%, respectively; P < .001). We did not observe classifica-
tion differences based on illness severity as defined by ICU admission for bacterial or viral infections. The median AUC 
across all signatures for COVID-19 classification was 0.80 compared to 0.83 for viral classification in the same datasets.

Conclusions: In this systematic comparison of 28 host gene expression signatures, we observed differences based 
on a signature’s size and characteristics of the validation population, including age and infection type. However, 
populations used for signature discovery did not impact performance, underscoring the redundancy among many of 
these signatures. Furthermore, differential performance in specific populations may only be observable through this 
type of large-scale validation.
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Background
Infectious diseases caused an estimated eight million 
deaths worldwide and 420 million disability-adjusted 
life years lost in 2019 alone [1]. While most respiratory 
infections are caused by viral pathogens, up to 75% of all 
ambulatory care visits result in an antibiotic prescription 
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[2, 3]. This discrepancy is primarily due to a lack of fast 
and accurate diagnostic methodologies to distinguish 
bacterial from viral etiologies. Given these diagnostic 
limitations and the clinical significance of undertreat-
ing a bacterial infection, there is a substantial burden of 
inappropriate antimicrobial overuse. The high rates of 
antibiotic usage drive antimicrobial resistance, which 
the Centers for Disease Control and Prevention (CDC) 
deems as one of the greatest global public health chal-
lenges of our time [4–6].

Host gene expression biomarkers offer one solution to 
address this diagnostic uncertainty. Multiple research 
groups have described gene expression signatures that 
discriminate bacterial from viral infection [7–30]. Pub-
lished signatures vary in size, methods for discovery and 
validation, and the target clinical populations (e.g., illness 
severity, site of infection, age, etiology). However, to date, 
there has been no systematic comparison of these sig-
natures to each other. It is also unclear how these signa-
tures perform once stratified by various population-level 
differences.

In this study, we identified 28 published gene signa-
tures and validated them in 51 publicly available datasets 
comprised of 4589 patients [7–30]. This study had two 
primary aims. The first was to understand how the signa-
tures compare to each other with respect to composition 
and performance. The second was to define the impact of 
clinical and demographic characteristics on gene expres-
sion-based classification. In addition, thirteen COVID-
19-related datasets comprised of 1416 subjects were 
included to specifically assess signature performance for 
this infection.

Methods
Identification of gene signatures
Herein, we use the term “signature” to describe a set of 
differentially expressed genes that discriminate phe-
notypic groups. The term “model” is used to describe a 
mathematical equation incorporating gene expression 
data to assign subjects to a given phenotypic group. 
Since we used a uniform strategy to generate models for 
all signatures in this analysis, the terms “signature” and 
“model” may be used interchangeably.

A comprehensive search was performed to identify 
published host gene expression signatures that differ-
entiate bacterial and viral infection. The search was car-
ried out in PubMed using terms including (Bact* or Vir*) 
AND (gene expression OR host gene expression OR sig-
nature). The last search was performed on October 23, 
2021. The citations of any relevant manuscripts were 
used to identify additional signatures that were missed 
in the search. The search resulted in 24 publications 
[7–30], each with a unique list of genes comprising their 

signature. Four publications identified two gene lists, 
which were both evaluated.

Identification of validation datasets
Transcriptome studies, consisting of microarray or com-
plete RNA sequencing data, were systematically reviewed 
and selected from the Gene Expression Omnibus (GEO) 
and ArrayExpress with an approach similar to that out-
lined in the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA) statement 
(Additional file  1: Fig. S1). For standardization in the 
processing of RNA sequencing data, only studies with 
raw sequencing data available were included. To avoid 
incorporation bias, datasets used to develop a given gene 
expression signature were excluded from its validation in 
this study. Four of the identified studies used more than 
one microarray or RNA sequencing platform, so they 
were partitioned into multiple, single-platform datasets. 
This resulted in forty-nine microarray datasets and two 
RNA sequencing datasets.

Once the pool of relevant studies was identified, we 
manually reviewed each subject from each study. Sub-
jects were excluded from analysis for the following rea-
sons: gene expression data was not generated using either 
whole-blood or PBMCs, a clinical adjudication did not 
accompany data, the infectious process was not specified 
as bacterial or viral, co-infection, serial samples beyond 
the first time point, and samples from immunocompro-
mised individuals.

With limited publicly available COVID-19 gene 
expression datasets at the time these experiments 
were performed, the inclusion criteria were relaxed for 
COVID-specific analyses. Studies that sequenced naso-
pharyngeal swabs and tissue biopsies were included, 
as well as one study with fewer than ten subjects. RNA 
sequencing studies that did not provide raw sequencing 
data were also included.

Case definitions
Each subject was annotated with clinical phenotype, 
pathogen, age, race, ethnicity, and ICU status based on 
the metadata accompanying the entry in GEO or Array-
Express or as described in the accompanying published 
citation. Subjects were classified as one of four clinical 
phenotypes: bacterial infection, viral infection, healthy, or 
non-infectious illness [including Systemic Inflammatory 
Response Syndrome (SIRS)]. Subjects annotated as ICU 
patients were admitted to an ICU or critical care unit, 
or they were identified as receiving ECMO or mechani-
cal ventilation. The group of subjects annotated with 
“non-ICU” do not include subjects identified as healthy. 
Racial annotations were classified into four groups: 
Asian, Black, White, and others. Age was classified into 
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five distinct groups: ≤3 months (neonate), 3 months to 
2 years (infant), 2 years to 12 years (child), 12 years to 
18 years (adolescent), and >18 years (adult). Since there 
were only 60 cases of bacterial/viral co-infections, they 
were excluded from analysis. Standardized annotations 
for each subject in this study can be found in Additional 
file 2: Table S6.

Gene expression data processing
Pre-processed microarray data from the selected stud-
ies and samples were downloaded and parsed with vari-
ous open-source Python packages. Probes from each 
validation dataset were converted into Ensembl IDs 
using g:Profiler version e99_eg46_p14_f929183 [31] and 
matched with the gene IDs in each signature to generate 
signature-specific gene expression for each patient (Addi-
tional file 3: Table S7). Duplicate genes and the genes that 
could not be matched to an Ensemble ID were removed 
from the signatures validated in this study. Multiple 
probes for a given gene were left as distinct features in 
the model.

Raw RNA sequencing data from GEO datasets were 
processed and downloaded using GREIN [32]. For 
datasets not published in GEO or those that did not 
include raw data, count files were located and down-
loaded directly for normalization and analysis. All RNA 
sequencing datasets were normalized using trimmed 
mean of M value (TMM), followed by counts per million 
(CPM) in the edgeR package [33, 34].

Statistical analysis
Each gene signature was validated independently in all 
datasets as a binary classifier for bacterial vs. non-bac-
terial infection (viral, healthy, or non-infectious illness) 
and viral vs. non-viral infection (bacterial, healthy, or 
non-infectious illness). The entire gene panel of a signa-
ture was evaluated in each binary classifier. Models were 
fit for each signature in each dataset using logistic regres-
sion with a lasso penalty, and performance was evaluated 
using nested leave-one-out cross-validation in scikit-
learn [35]. In some cases, performance of the composite 
signature (“All”) in datasets with more than 300 subjects 
was evaluated using nested five-fold cross-validation to 
minimize compute time (GSE152075, GSE73461, and 
GSE61821). Creating dataset-specific models overcomes 
batch effects since each signature is optimized in each 
dataset. Coefficients of each logistic regression were 
recorded for analysis of relative gene importance. The 
code utilized for cross-validation is in Additional file 4.

Signature performance was characterized by the 
weighted mean of a signature’s area under the receiving 
operating characteristic curve (AUC) across all valida-
tion studies. Values were weighted based on the number 

of subjects in a validation dataset. Median AUC and IQR 
were used to summarize the distribution of weighted 
mean AUCs for subsets of validation studies. Dataset-
specific thresholds were used to measure signature accu-
racy and generate confusion matrices. Thresholds were 
determined by the maximization of Youden’s J-statistic 
[36]. 95% confidence intervals of weighted means, accu-
racies, positive predictive values (PPV), and negative pre-
dictive values (NPV) were generated by bootstrapping 
with 1000 iterations. Signature hierarchical summary 
receiving operating characteristic (HSROC) curves were 
generated using the Rutter and Gatsonis HSROC model 
in Stata’s metandi package [37, 38]. Sensitivity, specificity, 
and diagnostic odds ratio (DOR) values and confidence 
intervals were generated using the bivariate model in Sta-
ta’s metandi package [38, 39]. Heterogeneity in DOR val-
ues were measured using the Mantel-Haenszel method in 
the meta R package [40, 41].

Relative gene importance was determined by analysis 
of logistic regression coefficients from each fold of the 
composite signature’s leave-one-out cross-validation. 
Importance was characterized by the average of each 
gene’s coefficient in all models. For genes that mapped to 
multiple microarray probes, the coefficient with the larg-
est magnitude was used for the average.

Determinations of significance included Wilcoxon 
rank-sum and Kruskal-Wallis tests. Corrections for mul-
tiple testing and significance cutoffs were performed 
with the Benjamini/Hochberg method (α = 0.05) [42]. 
Determinations of significance between multiple patient 
groups were made using a reference group specific to the 
category: “Adult” for age comparisons, “All Bacterial” or 
“All Viral” for pathogen comparisons, “All Subjects” with 
race data for race comparisons, “Not Hispanic or Latino” 
for ethnicity comparisons, and “non-ICU” for infection 
severity comparisons. Correlation coefficients and their 
associated determinations of significance were computed 
with Pearson’s correlation.

Results
Gene expression signatures
We identified 28 [7–30] published gene expression sig-
natures that were shown to discriminate bacterial and 
viral infection. The study flow diagram in Fig.  1 depicts 
our methodology for validating these signatures. The 
signatures differed in size (1–398 genes by Ensembl ID) 
and the demographics of subjects used for signature dis-
covery (Table  1, Additional file  5: Table  S8). In twenty-
three cases, signatures were discovered in cohorts that 
included both bacterial and viral phenotypes. In the 
remaining five cases, the discovery cohorts did not 
include bacterial infections, but the validation cohorts 
did, so these signatures were included. Five published 
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signatures were each a subset of other, larger signatures, 
in which case both were included. In total, there were 864 
unique genes identified across all signatures.

While some signatures were generated to broadly dif-
ferentiate between bacterial and viral infection, many 
signatures were targeted for specific etiologies or patient 
populations. Twelve signatures were developed for 
respiratory illness, five for pediatric patients, eight to 
identify sepsis, four to identify influenza, and three to 
identify COVID-19. Most signatures were developed 
from peripheral whole blood; however, six utilized puri-
fied PBMCs in their discovery cohort, one used NP 
swabs, and another used isolated leukocytes. Finally, 
nine of the signatures were generated solely by analysis of 
publicly available data.

Validation datasets
To build a validation cohort, we performed a system-
atic search of publicly available gene expression datasets 
in GEO and ArrayExpress (Fig.  1, Additional file  1: Fig. 
S1). The search identified 506 potential records; however, 
only 47 studies met our inclusion criteria. The 47 stud-
ies comprised 4589 whole-blood samples that belonged 
to subjects with clinically adjudicated bacterial or viral 
infections and healthy or non-infectious illness con-
trols. Subjects varied by age, pathogen class, and infec-
tion severity (Additional file 6: Table S9, Additional file 1: 
Table S1).

Four of the validation studies contained samples from 
more than one microarray platform. These datasets were 
separated and treated independently, resulting in 51 total 
datasets. Thirty-one of these datasets included bacte-
rial infections and could be used to evaluate bacterial 

classification performance. Similarly, 37 included viral 
infections and could be used to evaluate viral classifica-
tion performance. Gene expression was measured by 
either commercially available microarrays (n=49) or by 
complete RNA sequencing (n=2).

Gene importance
All the signatures were developed or validated for their 
ability to discriminate bacterial and viral infection. How-
ever, other clinical groups were variably included in 
these studies, such as healthy controls or those with non-
infectious illness. We therefore generated two predictive 
models: bacterial vs. non-bacterial infection and viral 
vs. non-viral infection to accommodate all four clinical 
groups.

To identify genes that were most important to bacterial 
and viral classification, we first looked at the frequency 
with which each gene appeared in a signature’s gene list. 
After excluding five signatures that were subsets of larger 
signatures, we found 71 common genes that were pre-
sent in ≥2 signatures (Additional file 3: Table S7). IFI27 
was the most common, found in 12 of the 23 unique sig-
natures, followed by ISG15 in 8 signatures and RSAD2, 
OASL, and IFI44L in 7 signatures.

We then assessed the relative importance of each gene 
for bacterial and viral classification. To do so, we cre-
ated a composite signature comprised of the 864 unique 
genes identified in at least one published signature. In 
this composite signature, each gene would have equal 
representation in the model validation. The composite 
signature was then used to build predictive models for 
bacterial vs. non-bacterial classification and viral vs. non-
viral classification in each validation dataset. Based on 

Fig. 1 Study flow diagram. The performance of 28 published gene expression signatures and one composite signature was evaluated using 
leave-one-out cross-validation (LOOCV) in 51 publicly available datasets. LOOCV was performed for both bacterial vs. non-bacterial classification 
and viral vs. non-viral classification. LOOCV was also performed to measure the performance of signatures in 13 publicly available COVID-19 
datasets. Performance was then measured by area under the receiving operating characteristic curve (AUC) values and individual subject 
predictions. Relative gene importance was characterized by the relative gene weights in each generated model
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their average logistic regression coefficients, the five most 
important genes for bacterial classification were CEPT 
(+), RPGRIP1 (-), FCER1A (-), IFI27 (-), and PDE9A (-), 
where plus indicates upregulation and minus indicates 
downregulation for bacterial infection. Similarly, for viral 
classification, the five most important genes were IFI27 
(+), OTOF (+), FCER1A (-), LARP1 (+), and OAS1 (+) 
(Additional file 1: Table S2).

Comparison of gene expression signatures
Although various machine-learning methods were used 
to develop the 28 published signatures, we used a sin-
gle, standardized strategy to train and validate the mod-
els. Specifically, we performed nested, leave-one-out 

cross-validation on the 28 signatures for each of the 
51 validation datasets. Furthermore, there were four 
clinical phenotypes included in the validation datasets: 
bacterial infection, viral infection, healthy, and non-
infectious illness [including Systemic Inflammatory 
Response Syndrome (SIRS)]. We therefore developed 
two binary models: bacterial vs. non-bacterial etiolo-
gies and viral vs. non-viral etiologies.

We calculated the AUC for each signature in each 
of the validation datasets. For bacterial classification, 
the median AUC for all published signatures was 0.86 
(range across all signatures was 0.55–0.96). For viral 
classification, the median AUC was significantly higher 
at 0.89 (range across all signatures was 0.69–0.97) (P < 
0.001, Fig. 2a).

Table 1 Characterization of the 28 identified host gene expression signatures

Published host gene expression signatures varied in size and discovery cohort characteristics. Signatures were named using the first and last author’s initials, followed 
by the number of unique genes in the signature. Neonates include subjects <3 months of age; infants include subjects <3 years of age; Pediatrics includes subjects 
<18 years of age. aSignature is a subset of another published signature

Signature code Publication first author Publication last author Number 
of genes

Discovery age group Discovery phenotypes

TS1 [7] Tang Schughart 1 Adults Viral (influenza), healthy

HL2a [8] Herberg Levin 2 Pediatrics Bacterial, viral

LC2 [9] Lei Chen 2 All Bacterial, viral, healthy, SIRS

XW2 [10] Xu Wang 2 All Bacterial, viral, healthy, SIRS

GS3 [11] Gomez-Carballo Salas 3 All Bacterial, viral

LS3 [12] Li Sriskandan 3 Adults Viral (w/ COVID), bacterial, SIRS

SB4a [13] Sampson Brandon 4 All Viral, SIRS

SK7a [14] Sweeney Khatri 7 All Bacterial, viral, SIRS

SB8 [13] Sampson Brandon 8 All Viral, SIRS

RC10 [15] Ravichandran Chandra 10 All Bacterial, viral, healthy

SN10 [16] Sampson Noursadeghi 10 All Bacterial, viral, healthy, SIRS

SR10 [17] Suarez Ramilo 10 Adults Bacterial, viral, co-infection, healthy

AK11 [18] Andres-Terre Khatri 11 All Bacterial, viral, healthy, SIRS

BF11 [19] Bhattacharya Falsey 11 Adults Bacterial, viral

NC19 [20] Ng Chiu 19 Adults Viral (w/ COVID), bacterial, healthy

SL20 [21] Song Lei 20 All Bacterial, viral, healthy, SIRS

MW23 [22] McClain Woods 23 All Viral (w/ COVID), bacterial, healthy

ZG25a [23] Zaas Ginsburg 25 Adults Viral, healthy

MS29 [24] Mayhew Sweeney 29 All Bacterial, viral, healthy, SIRS

PT29 [25] Parnell Tang 29 Adults Bacterial, viral, healthy, SIRS

RC31 [26] Ramilo Chaussabel 31 Pediatrics Bacterial, viral

HS33 [27] Hu Storch 33 Infants Bacterial, viral, healthy

HL34 [8] Herberg Levin 34 Pediatrics Bacterial, viral

ZG48 [28] Zaas Ginsburg 48 Adults Viral, healthy

MR59 [29] Mahajan Ramilo 59 Neonates Bacterial, viral, healthy

TW96 [30] Tsalik Woods 96 Adults Bacterial, viral, SIRS

MW139 [22] McClain Woods 139 All Viral (w/COVID), Bacterial, healthy

AK398 [18] Andres-Terre Khatri 398 All Bacterial, viral, healthy, SIRS

All - - 864 - -
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A global comparison of signatures found statistically 
significant performance differences between the signa-
tures for bacterial classification (P < 0.001) and viral clas-
sification (P < 0.001) (Fig.  2b). We observed that larger 
signatures correlated with better performance for both 
bacterial classification (r = 0.417; P = 0.024) and viral 
classification (r = 0.416; P = 0.025) across the 29 signa-
tures evaluated (Fig. 2c). Additional signature-based per-
formance metrics are represented in Table 2, Additional 
file  1: Table  S3, and Additional file  1: Fig. S2. Dataset-
based performance metrics are presented in Additional 
file 1: Fig. S3 and Additional file 6: Table S9.

Overall signature performance in validation datasets
We next evaluated classification performance by strati-
fying the validation datasets based on pediatric vs. adult 
enrollment, the number of conditions being classified, 
and biological source (peripheral blood mononuclear 
cells vs. whole blood). This evaluation was performed for 
all published signatures and the composite signature.

Of the 51 validation datasets, 27 were restricted to 
pediatric subjects (<18 years) and 21 were restricted 

to adult subjects. Across the evaluated signatures, we 
observed significantly lower AUCs in pediatric-only stud-
ies as compared to adult-only studies (Table 3) (Fig. 3a). 
This difference was present in both bacterial (0.80 vs. 0.85 
median AUCs; P < 0.001) and viral classification (0.86 
vs. 0.92 median AUCs; P < 0.001), and it was not due to 
differences in platform, dataset size, or the phenotypes 
represented. We also investigated the possibility that 
signature discovery population impacted performance. 
For example, signatures discovered in a pediatric cohort 
might perform better in pediatric validation datasets as 
compared to signatures discovered in an adult cohort. 
However, this did not confer any improvement in classifi-
cation (bacterial: P = 0.747, Viral: P = 0.874).

Thirty-two validation datasets included only two phe-
notypic groups, which were some combination of bacte-
rial, viral, healthy, or non-infectious illness (e.g., bacterial 
and non-infectious illness or bacterial and viral). How-
ever, nineteen datasets included three or more of these 
phenotypes (e.g., bacterial, viral, and non-infectious 
illness). AUCs were higher when classifying only two 
clinical phenotypes compared to classification of more 

Fig. 2 Signature classification performance. A Box-plots were generated for each signature’s AUCs as measured across the validation datasets for 
bacterial vs. non-bacterial and viral vs. non-viral classification. B Signature AUC distributions were compared against each other with the Wilcoxon 
rank-sum test, and p-values were plotted in a heatmap for bacterial classification (top) and viral classification (bottom). P-values were corrected 
for multiple comparisons with the Benjamini/Hochberg method. * indicates p-value ≤ 0.05. C Linear regression was applied to the relationship 
between the number of genes in a signature (log-transformed) and the signature’s median AUC across the validation datasets for bacterial 
classification (left) and viral classification (right)
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Table 2 Summarized performance of gene signatures in bacterial and viral classification

Signature Bacterial vs. non-bacterial Viral vs. non-viral

Weighted 
Mean AUC 
(95% CI)

Sensitivity 
(95% CI)

Specificity 
(95% CI)

DOR (95% CI) Weighted 
Mean AUC 
(95% CI)

Sensitivity 
(95% CI)

Specificity 
(95% CI)

DOR (95% CI)

TS1 0.547 [0.445–
0.658]

0.825 [0.74–
0.887]

0.592 [0.473–
0.702]

7 [5–10] 0.826 [0.729–
0.892]

0.872 [0.813–
0.914]

0.867 [0.806–
0.911]

44 [25–79]

HL2 0.778 [0.667–
0.857]

0.812 [0.723–
0.877]

0.862 [0.787–
0.913]

27 [14–52] 0.861 [0.803–
0.903]

0.81 [0.74–
0.865]

0.905 
[0.84–0.945]

41 [21–80]

LC2 0.764 [0.652–
0.843]

0.873 [0.786–
0.928]

0.799 [0.706–
0.868]

27 [14–54] 0.641 [0.55–
0.737]

0.808 [0.709–
0.88]

0.7 [0.558–
0.812]

10 [6–17]

XW2 0.690 [0.608–
0.763]

0.741 [0.63–
0.828]

0.803 [0.711–
0.871]

12 [7–19] 0.851 [0.775–
0.894]

0.815 [0.747–
0.867]

0.874 [0.824–
0.911]

30 [17–53]

GS3 0.796 [0.655–
0.910]

0.836 [0.75–
0.897]

0.92 [0.852–
0.958]

58 [23–147] 0.843 [0.767–
0.901]

0.812 [0.735–
0.871]

0.876 [0.813–
0.92]

31 [15–62]

LS3 0.764 [0.692–
0.838]

0.778 [0.718–
0.829]

0.792 [0.705–
0.858]

13 [8–21] 0.831 [0.782–
0.876]

0.804 [0.752–
0.848]

0.849 [0.774–
0.903]

23 [13–41]

SB4 0.776 [0.662-
0.876]

0.83 [0.743-
0.892]

0.792 [0.707–
0.858]

19 [10–36] 0.868 [0.817–
0.914]

0.807 [0.76–
0.846]

0.896 [0.851–
0.929]

36 [22–60]

SK7 0.863 [0.812–
0.922]

0.861 [0.813–
0.898]

0.88 [0.821–
0.921]

45 [24–87] 0.901 [0.849–
0.936]

0.866 
[0.822–0.9]

0.883 [0.829–
0.922]

49 [26–91]

SB8 0.835 [0.734–
0.914]

0.86 [0.759–
0.923]

0.859 [0.778–
0.913]

37 [17–83] 0.884 [0.836–
0.924]

0.832 [0.788–
0.869]

0.884 [0.842–
0.915]

38 [23–63]

RC10 0.849 [0.708–
0.931]

0.886 [0.817–
0.931]

0.909 [0.817–
0.958]

78 [27–227] 0.922 [0.871–
0.955]

0.892 [0.85–
0.923]

0.901 [0.841–
0.939]

75 [35–161]

SN10 0.854 [0.758–
0.918]

0.868 [0.825–
0.901]

0.867 [0.786–
0.921]

43 [20–90] 0.897 [0.846–
0.937]

0.837 [0.787–
0.878]

0.915 [0.872–
0.944]

55 [30–103]

SR10 0.844 [0.759–
0.909]

0.843 [0.779–
0.891]

0.89 [0.839–
0.927]

43 [23–82] 0.915 [0.865–
0.950]

0.902 [0.86–
0.932]

0.903 [0.859–
0.934]

85 [42–171]

AK11 0.794 [0.708–
0.879]

0.794 [0.703–
0.862]

0.875 
[0.81–0.92]

27 [14–51] 0.887 [0.826–
0.923]

0.849 [0.784–
0.897]

0.862 
[0.813–0.9]

35 [19–66]

BF11 0.812 [0.742–
0.866]

0.85 [0.794–
0.892]

0.815 [0.746–
0.869]

25 [13–48] 0.801 [0.748–
0.843]

0.816 [0.768–
0.856]

0.768 [0.706–
0.82]

15 [10–22]

NC19 0.832 [0.753–
0.897]

0.864 [0.792–
0.914]

0.839 [0.784–
0.882]

33 [18–61] 0.885 [0.825–
0.921]

0.86 [0.819–
0.892]

0.858 [0.805-
0.899]

37 [21-66]

SL20 0.850 [0.748–
0.907]

0.84 [0.78–
0.886]

0.88 [0.83–
0.917]

38 [18–81] 0.915 [0.868–
0.948]

0.899 [0.858–
0.929]

0.889 [0.842–
0.924]

71 [37–136]

MW23 0.826 [0.732–
0.889]

0.874 [0.82–
0.914]

0.829 [0.738–
0.893]

34 [17–66] 0.894 [0.838–
0.933]

0.875 [0.826–
0.911]

0.885 [0.839–
0.919]

54 [28–105]

ZG25 0.817 [0.716–
0.889]

0.843 [0.767–
0.898]

0.849 [0.785–
0.896]

30 [15–60] 0.882 [0.815–
0.926]

0.86 [0.792–
0.909]

0.892 [0.849–
0.924]

51 [27–95]

MS29 0.873 [0.766–
0.938]

0.912 [0.855–
0.948]

0.883 [0.796–
0.936]

78 [30–206] 0.894 [0.826–
0.937]

0.826 [0.754–
0.881]

0.885 [0.827–
0.925]

37 [19–71]

PT29 0.810 [0.716–
0.889]

0.846 [0.769–
0.901]

0.837 [0.777–
0.884]

28 [15–55] 0.873 [0.821–
0.911]

0.827 [0.773–
0.87]

0.845 [0.797–
0.883]

26 [15–44]

RC31 0.842 [0.755–
0.903]

0.868 [0.804–
0.913]

0.849 [0.764–
0.907]

37 [17–79] 0.891 [0.836–
0.927]

0.857 [0.816–
0.89]

0.871 [0.815–
0.912]

40 [24–67]

HS33 0.854 [0.771–
0.913]

0.878 [0.812–
0.923]

0.864 [0.796–
0.912]

46 [21–98] 0.891 [0.820–
0.934]

0.861 [0.796–
0.908]

0.893 [0.838–
0.931]

52 [26–103]

HL34 0.814 [0.690–
0.895]

0.833 [0.752–
0.892]

0.871 [0.809–
0.915]

34 [17-67] 0.898 [0.831–
0.942]

0.871 [0.811–
0.915]

0.906 [0.858–
0.939]

65 [33–128]

ZG48 0.847 [0.760–
0.914]

0.912 [0.841–
0.953]

0.883 
[0.8–0.935]

78 [32–194] 0.876 [0.799–
0.928]

0.846 [0.79–
0.889]

0.886 
[0.84–0.919]

43 [23–77]

MR59 0.829 [0.724–
0.904]

0.909 [0.843–
0.949]

0.846 
[0.76–0.905]

55 [24–127] 0.864 [0.797–
0.918]

0.816 [0.746–
0.87]

0.881 [0.833–
0.916]

33 [18–61]

TW96 0.844 [0.757–
0.921]

0.908 [0.83–
0.952]

0.91 [0.843–
0.95]

99 [36–271] 0.871 [0.808–
0.935]

0.923 [0.867–
0.957]

0.898 [0.836–
0.938]

106 [39–284]

MW139 0.834 [0.750–
0.908]

0.906 [0.835–
0.949]

0.869 [0.788–
0.922]

64 [28–146] 0.871 [0.808–
0.923]

0.887 [0.841–
0.921]

0.884 [0.808–
0.932]

60 [26–138]
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Table 2 (continued)

Signature Bacterial vs. non-bacterial Viral vs. non-viral

Weighted 
Mean AUC 
(95% CI)

Sensitivity 
(95% CI)

Specificity 
(95% CI)

DOR (95% CI) Weighted 
Mean AUC 
(95% CI)

Sensitivity 
(95% CI)

Specificity 
(95% CI)

DOR (95% CI)

AK398 0.886 [0.820–
0.951]

0.939 [0.887–
0.968]

0.923 [0.868–
0.956]

184 [61–553] 0.896 [0.850–
0.946]

0.912 [0.867–
0.942]

0.932 [0.866–
0.966]

141 [51–392]

All 0.905 [0.842–
0.957]

0.927 [0.881–
0.956]

0.927 [0.875–
0.959]

162 [65–401] 0.933 [0.898–
0.965]

0.934 
[0.9–0.957]

0.92 [0.872–
0.951]

164 [73–369]

Weighted mean AUC, sensitivity, specificity, and diagnostic odds ratio (DOR) for each host gene expression signature are presented. Values were weighted based on 
the number of subjects in the validation dataset. Sensitivity, specificity, and DOR values and their confidence intervals were calculated using hierarchical summary 
ROC modeling.

Table 3 Overall signature classification performance stratified by dataset characteristics

AUCs were calculated for each of the 29 evaluated signatures and then stratified by different dataset characteristics. Mean AUCs were first generated for each 
signature across the datasets in the parameter group, weighted by the number of subjects in each validation dataset. The median of the weighted AUC values and IQR 
were then calculated and presented here. N represents the number of datasets for the specified cohort composition.

Parameter Bacterial vs. non-bacterial Viral vs. non-viral

Median AUC IQR p-value N Median AUC IQR p-value N

All datasets 0.832 [0.796–0.849] - 31 0.884 [0.864–0.896] - 37

Age - - - - - - - -

  Adult only 0.846 [0.826–0.870] - 14 0.916 [0.906–0.935] - 12

  Pediatric only 0.798 [0.756–0.818] < 0.001 15 0.860 [0.841–0.870] < 0.001 24

# of phenotypes - - - - - - - -

  2 phenotypes 0.871 [0.846–0.894] - 12 0.911 [0.880–0.923] - 22

  >2 phenotypes 0.819 [0.788–0.835] < 0.001 19 0.855 [0.838–0.874] < 0.001 15

Biological source - - - - - - - -

  Whole blood 0.838 [0.802–0.859] - 28 0.884 [0.865–0.900] - 32

  PBMC 0.705 [0.668–0.753] < 0.001 3 0.831 [0.791–0.882] 0.012 4

Fig. 3 Signature classification performance by age. A Weighted mean AUCs were generated for each signature’s classification of bacterial patients 
and viral patients across pediatric-only (red) and adult-only (blue) datasets. Values were weighted based on the number of subjects in a validation 
dataset. The distributions of such weighted mean AUCs were plotted, and significance was determined by the Wilcoxon rank-sum test. B After 
pooling samples across datasets, each signature’s accuracy was calculated and plotted for five age groups (<3 months, 3 months–1 year, 2–11 years, 
12–18 years, and adult). This plot shows the median and IQR of each signature’s accuracy in each age group for bacterial and viral classification. * 
indicates p < 0.05 as compared to the adult population
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than two groups for both bacterial (0.87 vs. 0.82 median 
AUCs; P < 0.001) and viral classification (0.91 vs. 0.85 
median AUCs; P < 0.001) (Table 3).

Peripheral whole blood was the source of gene expres-
sion data in 45 validation datasets. In contrast, five stud-
ies used peripheral blood mononuclear cells (PBMCs). 
We found that AUCs of the signatures were higher in 
datasets derived from whole blood compared to PBMCs 
in both bacterial (0.84 vs. 0.70 median AUCs; P < 0.001) 
and viral classification (0.88 vs. 0.83 median AUCs; P = 
0.01) (Table 3).

Overall signature performance in distinct patient 
populations
After evaluating the impact of dataset characteristics on 
classification, we next evaluated the impact of individual 
subject characteristics. To do this, we used annotations 
for each subject as provided by the dataset contributors. 
These annotations were limited and not available for all 
subjects in all datasets. However, the most commonly 
available information focused on subject age, micro-
biological etiology, race, ethnicity, or illness severity. We 
established dataset-specific thresholds for each signature 
and model. After applying these thresholds to each sub-
ject, we measured the percentage of signatures that cor-
rectly classified the subject. This accuracy metric was 
pooled across subjects based on age, severity, race, eth-
nicity, or microbiology.

After stratifying by age, we found that pediatric sub-
jects between 12 and 18 years of age exhibited similar 
performance to adults for both bacterial and viral classi-
fication (Table 4 and Fig. 3b). In contrast, subjects aged 
3 months to 11 years exhibited significantly lower accu-
racy for bacterial classification and viral classification (P 
< 0.001 for both comparisons) (Table 4). While subjects 
younger than 3 months of age also exhibited lower accu-
racy for viral classification, this was not true for bacte-
rial classification (Table  4 and Fig.  3b). We examined 
signature accuracy by pathogen, including those with 
sufficient representation across studies, and found sig-
nificant performance differences for some bacterial and 
viral pathogens (Table 4). Two bacterial pathogens were 
associated with significantly higher accuracies: Staphy-
lococcus (other than S. aureus) infections (91%, 95% CI 
88–94%) and Burkholderia pseudomallei infections (90%, 
95% CI 85–93%). Intracellular and extracellular bacterial 
infections were distinguished equally well from non-bac-
terial infection (83% and 84% overall accuracy, respec-
tively). For viruses, influenza infections were associated 
with higher accuracies (89%, 95% CI 87–90%), whereas 
adenovirus (74%, 95% CI 62–84%) and rhinovirus infec-
tions (74%, 95% CI 70–78%) were associated with lower 
accuracies.

We next evaluated signature performance by race and 
ethnicity. There were no significant differences due to 
race for viral classification. In contrast, there were racial 
differences in bacterial classification. Accuracies were 
higher for Asian subjects (84%, 95% CI 79–89%), they 
were similar to the population average for Black subjects 
(79%, 95% CI 75–82%), and they were lower for White 
subjects and other subjects (76%, 95% CI 73–78% and 
71%, 64–78%, respectively). We also found that accura-
cies were higher in Hispanic subjects for both bacterial 
and viral classification as compared to non-Hispanic sub-
jects (P < 0.001 for both comparisons; Table  4). Finally, 
we evaluated the impact of critical illness as defined by 
ICU admission on the ability of these signatures to iden-
tify the infection etiology but observed no significant 
performance difference in either bacterial or viral classifi-
cation (Table 4). PPV and NPV values were calculated for 
these various comparisons (Additional file 1: Table S4).

Certain phenotypes or subject characteristics may be 
prone to high rates of misclassification. To identify such 
scenarios, we examined subjects where >80% of signa-
tures classified the subject incorrectly (n=39 bacterial, 
n=70 viral). We could not identify any specific patterns 
with respect to age, pathogen, phenotype, or infection 
severity.

COVID-19
Though most of the 28 published gene signatures 
included in this analysis were developed prior to the 
COVID-19 pandemic, we evaluated their performance in 
thirteen recently published COVID-19 datasets. Focusing 
on viral vs. non-viral classification, host gene expression 
signatures classified subjects with COVID-19 as having a 
viral infection with a median AUC of 0.85, after weight-
ing for dataset size (Additional file 1: Table S5).

Four of the thirteen datasets included subjects with 
non-COVID viral and bacterial infections. Within these 
datasets, we evaluated each of the twenty-eight signa-
tures’ ability to differentiate COVID-19 from the other 
phenotypes (including non-COVID-19 viral infections, 
bacterial infections, and healthy subjects). This COVID 
vs. non-COVID classifier performed well across sig-
natures, with a median AUC of 0.80, after weighting 
for dataset size (Additional file  1: Table  S5). Signature-
specific performance is presented in Additional file  7: 
Table S10 and Additional file 8: Table S11.

Discussion
In recent years, host gene expression has emerged as 
a promising diagnostic method to identify the etiol-
ogy of suspected infectious diseases. However, to our 
knowledge, there has been no systematic comparison of 
these published host gene expression signatures. In this 



Page 10 of 14Bodkin et al. Genome Medicine           (2022) 14:18 

study, we evaluated 28 published gene expression sig-
natures for their ability to differentiate bacterial from 
non-bacterial disease and viral from non-viral disease. 
The validation cohort consisted of 47 studies, 51 data-
sets, and 4589 subjects. Most significantly, we found 
that performance improved with larger signatures, viral 
classification was easier than bacterial classification, 

and that performance was decreased in pediatric 
subjects.

It is generally accepted that gene expression signatures 
should be applied to the same populations as they were 
derived from [43]. The signatures included here derived 
from studies that varied in subject age, infection eti-
ologies, illness severity, and other unreported variables. 

Table 4 Overall accuracy of gene signatures in distinct patient populations

Average accuracies and 95% confidence intervals of bacterial and viral classification, stratified by different clinical parameters. Only groups with at least fifteen 
subjects across at least two datasets were evaluated. P-values represent statistical significance, comparing the group to its reference population. N is represented by 
the number of subjects/the number of datasets used for validation. The “Intracellular Bacteria” group includes subjects with B. pseudomallei, S. typhi, and Mycoplasma 
infection. The “Extracellular Bacteria” group includes all other subjects with bacterial infection for which an identified pathogen was available. For comparisons related 
to “Race,” the “All Subjects” group represents all subjects for which racial information was available. a Indicates the reference population used for determination of 
significance

Parameter Bacterial vs. non-bacterial Viral vs. non-viral

Accuracy (%) p-value N (subjects/studies) Accuracy (%) p-value N (subjects/studies)

All subjects 79 (78–80) - 2887/31 84 (83–85) - 3584/37

Pathogen - - - - - -

All  Bacteriala 81 (79–83) - 951/31 - - -

 Burkholderia pseudomallei 90 (85–93) 0.010 45/2 - - -

 Escherichia coli 84 (79–89) 0.972 64/7 - - -

 Staphylococcus aureus 83 (79–87) 0.972 118/8 - - -

 Staphylococcus, other 91 (88–94) < 0.001 58/4 - - -

 Streptococcus pneumoniae 83 (76–89) 0.972 39/6 - - -

 Streptococcus, other 82 (75–88) 0.972 43/8 - - -

 Intracellular bacteria 83 (79–88) 0.178 100/4 - - -

 Extracellular bacteria 84 (81–86) 0.173 415/17 - - -

All  Virala - - - 82 (80–83) - 1679/37

 Adenovirus - - - 74 (62–84) 0.030 30/2

 Enterovirus - - - 84 (76–89) 0.937 58/3

 Influenza - - - 89 (87–90) < 0.001 431/19

 Rhinovirus - - - 74 (70–78) < 0.001 209/9

 RSV - - - 81 (79–84) 0.083 406/13

Age - - - - - -

Adulta 82 (80–83) - 1183/18 88 (86–89) - 1268/14

12–18 years 82 (78–85) 0.299 132/6 88 (84–92) 0.631 95/6

2–11 years 70 (67–73) < 0.001 373/7 79 (76–82) < 0.001 352/10

3 months–1 year 73 (69–77) < 0.001 183/8 80 (78–82) < 0.001 576/17

<3 months 85 (82–88) 0.002 320/8 81 (79–84) < 0.001 547/16

Race - - - - - -

All  Subjectsa 77 (76–79) - 1389/12 80 (78–81) - 1157/12

 Asian 84 (79–89) 0.007 87/9 84 (76–91) 0.277 33/7

 Black 79 (75–82) 0.059 311/11 77 (73–81) 0.277 254/12

 White 76 (73–78) 0.028 684/11 80 (78–82) 0.784 686/12

 Other 71 (64–78) 0.010 72/5 74 (67-82) 0.277 79/6

Ethnicity - - - - - -

Not Hispanic or  Latinoa 75 (73–77) - 407/4 79 (77–81) - 474/5

Hispanic or Latino 80 (77–84) < 0.001 302/9 85 (81–88) < 0.001 220/11

Severity - - - - - -

Non-ICUa 73 (66–79) - 43/2 83 (79–86) - 117/3

ICU 69 (66–73) 0.279 182/8 86 (82–90) 0.105 107/7
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However, we showed that signatures, particularly larger 
ones, can be retrained to classify more heterogeneous 
populations. Larger gene signatures encompass a larger 
swath of the relevant biology, are more adaptable, and 
therefore can be better tuned to a more diverse set of 
patient populations. This was consistent with our finding 
that performance increased with the number of genes in 
a signature.

This study compared each signature’s performance to 
the others, but this should not imply that any one signa-
ture is the best to use for clinical applications. For exam-
ple, one might advocate for the largest and most accurate 
signature. Practical considerations might arise in meas-
uring such signatures, although technologies continually 
evolve, enabling an ever-increasing degree of multiplex-
ing while still offering rapid and precise measurements. 
For example, the BioFire system has been used to meas-
ure up to 45 host gene expression targets in about 45 min 
[44]. There are other considerations in choosing a “best” 
signature. The pre-test probability of bacterial infection 
will impact the utility of any given signature and how 
many false positives and false negatives one might expect. 
Patient characteristics are also important. For example, 
a mildly ill outpatient could tolerate a higher error rate 
since many are already managed with a “watch and wait” 
strategy. In this scenario, a NPV of 89% (the average NPV 
for bacterial classification) might be sufficient to withhold 
treatment. In contrast, the threshold to treat critically ill 
patients with antibacterials is lower. Here, a NPV of 89% 
may be inadequate while a PPV of 65% (average PPV for 
bacterial classification) is likely sufficient to start antibac-
terial therapy in an untreated patient. Patient and pro-
vider preferences are also relevant parameters in deciding 
whether a particular signature is sufficiently accurate to 
be clinically useful. Among the next steps is a real-world 
implementation study assessing a signature’s utility in 
the full spectrum of clinical illness. Doing so would also 
inform how the test might help patients whose diagnosis 
remains indeterminate despite adjudication.

While we found significant performance differences 
between individual gene signatures, we also identi-
fied patient characteristics that impacted classification 
accuracy. These performance differences were most 
pronounced when comparing pediatric and adult sub-
jects where accuracy was lower in children, specifically 
those <12 years. Based on the available data, it is not 
possible to explain this lower performance in pediat-
ric subjects. It is unlikely to be due to an outlier study 
since the effect was observed across multiple stud-
ies. One possibility is that children are known to have 
high rates of asymptomatic viral shedding compared to 
adults [45]. Consequently, children may have been clas-
sified as viral based on carriage when in fact, they had 

a non-viral etiology. In this scenario, the error would be 
in the clinically adjudicated phenotype rather than gene 
expression misclassification.

Our analyses also showed pathogen-related differences. 
These pathogen-specific performance differences may 
be caused by biological differences in the host immune 
response. The host response relies on the activation of 
multiple pathogen recognition receptors, each associated 
with a different type of pathogen [46]. Thus, some patho-
gens induce variable or alternative host transcriptional 
responses. The observed pathogen differences could 
also be due to differential rates of incorrect clinical adju-
dications. Subjects adjudicated as having a rhinovirus 
infection, which is a frequent colonizing microbe, may 
actually have had non-viral infections leading to errors in 
the clinical label [45]. Finally, the more severe infections 
associated with influenza and B. pseudomallei may create 
a more pronounced host response that is easier to detect. 
We were unable to control for severity of illness within 
pathogen groups since this information was not available 
in most cases. Whereas we were unable to identify a rela-
tionship between pathogen and severity, we found that 
bacterial/viral discrimination was similar in critically ill 
patients as it was in a less ill population. This is consistent 
with multiple signatures developed to distinguish sepsis 
from SIRS [13, 14, 21, 24].

We observed performance differences due to race and 
ethnicity that were consistent with ancestry-based vari-
ation in the immune response [47, 48]. However, they 
could also be due to other confounding variables includ-
ing dataset-specific factors, such as clinical adjudication 
accuracy. Future studies should aim to enroll a heteroge-
neous population with stratification by race and ethnicity 
to support ongoing inquiry into this question.

In addition to subject-specific characteristics, we also 
identified analytical and technical variables that impacted 
performance. Signature performance was significantly 
decreased when discriminating more than two pheno-
types (e.g., bacterial, viral, and SIRS) compared to only 
two phenotypes. This is likely due to the high biological 
variation in those datasets. However, the lower accu-
racy in classifying more complex scenarios needs to be 
weighed against the greater clinical utility such tests may 
offer. For example, discriminating bacterial, viral, and 
non-infectious illness simultaneously is more clinically 
useful than focusing only on bacterial or viral infection. 
The latter case requires an a priori assumption that an 
infection is present. This is reasonable in many cases but 
does limit generalizability. We also observed higher accu-
racies when validating in datasets derived from periph-
eral whole blood as compared to PBMCs. This difference 
could be explained by additional transcriptional infor-
mation included in those cells that are removed during 
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PBMC processing or perhaps changes in transcription 
that occur during PBMC processing [49, 50].

Finally, we showed that host gene expression classifiers 
developed prior to the SARS-CoV-2 pandemic correctly 
identified COVID-19 infections as viral. Furthermore, 
the same signatures could be trained to discriminate 
COVID-19 from other viral and bacterial infections, sim-
ilar to published COVID-specific signatures [51]. Such 
signatures could be utilized as a supplement to RT-PCR 
testing to increase the clinical sensitivity of COVID-19 
detection [52].

Overall, our analyses were limited by the accuracy and 
breadth of annotations provided in the publicly avail-
able validation datasets. Focusing only on subjects with 
a definitive diagnosis excludes a large number of people 
with an indeterminate diagnosis. Though there is no evi-
dence that host response would differ in these subjects, 
the signatures’ accuracies cannot be accurately assessed 
in the absence of a reliable reference standard in these 
cases. The significant heterogeneity between validation 
studies may have also limited our findings. We assumed 
that this heterogeneity would “average out” after pool-
ing patients together; however, this may not have been 
the case. Future studies validating host gene expression 
signatures should consider stratifying by the variables we 
showed to impact test performance. It is important to 
note that the original studies that described the 28 evalu-
ated signatures often used other methodologies for their 
validation experiments. For example, some signatures 
rely on the calculation of a “diagnostic score” which is 
then used for subject classification. Because of the dif-
ferences in methodology, we do not expect our results to 
perfectly match those in the original publications. Addi-
tionally, we did not seek to maximize the performance 
of any given signature. Rather, we chose one method for 
processing and validation that could be applied equally 
to all signatures. This allowed us to make comparisons 
within the context of this study.

Conclusions
This analysis validated 28 previously described host gene 
expression signatures in a common validation cohort 
comprised of 4589 subjects in addition to 1416 subjects 
in thirteen COVID-19-related datasets. These signatures 
have not been systematically reviewed and compared to 
one another. To our knowledge, this type of summary 
review of published gene expression signatures has not 
been performed for any other clinical application. With 
such an analysis, we found that the performance of pub-
lished host gene expression signatures does not differ 
dramatically, underscoring that many signatures may 
exist to answer the same clinical question. However, we 
found that signature performance differed based on age, 

specific pathogen, sample type, and the cohort’s hetero-
geneity. It is unlikely that these performance differences 
could have been discovered in a single validation cohort 
or when evaluating just one signature. These findings will 
be critical for the development and translation of host 
gene expression signatures into clinical practice.
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