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Despite experimental data linking HIF-1α dysfunction to inflammatory airway conditions,
the effect of single nucleotide polymorphisms within the HIF1A gene on these conditions
remains poorly understood. In the current study, we complete a phenotype wide
association study to assess the link between SNPs with known disease associations
and respiratory phenotypes. We report two SNPs of the HIF1A gene, the intronic
rs79865957 and the missense rs41508050. In these positions the A and the T allele
are significantly associated with allergic rhinitis and acute bronchitis and bronchiolitis,
respectively. These findings further support the role of HIF-1α in inflammatory pulmonary
conditions andmay serve as a basis to refine our understanding of other HIF-1α associated
phenotypes.
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INTRODUCTION

Hypoxia inducible factor (HIF) is central in the mammalian response to hypoxia. (Majmundar et al.,
2010) HIF-1 is a nuclear factor that consists of a Hypoxia inducible factor 1α (HIF-1α) and a Hypoxia
inducible factor 1β (HIF-1β) subunit. (Wang and Semenza, 1993; Gladek et al., 2017) While HIF-1β
is stable regardless of the oxygen concentration, HIF-1α is rapidly degraded under normoxic
conditions. (Yu et al., 1998; Gladek et al., 2017) Under hypoxic conditions however, HIF-1α is
stabilized, leading to formation of HIF-1. (Ke and Costa, 2006; Slemc and Kunej, 2016) HIF-1 then in
turn acts as a transcription factor, affecting over 98 target genes associated with up to 20 biological
pathways. (Ke and Costa, 2006; Slemc and Kunej, 2016) Given this central role, it comes as no
surprise that variations within the highly conserved HIF1A gene have been associated with a wide
array of pathologic conditions. (Majmundar et al., 2010) Apart from playing an important role in
normal lung development, HIFs have been shown to play a central role in the development of
multiple pulmonary conditions, including pulmonary hypertension, Chronic obstructive pulmonary
disease (COPD) and lung cancer angiogenesis. (Shimoda and Semenza, 2011) Despite this, within
pulmonology, to date, variations within the HIF1A gene have only been associated with COPD and
lung cancer. (Chan et al., 2017; Gladek et al., 2017; Paradowska-Gorycka et al., 2018; Wang et al.,
2018; Hoang et al., 2019; Huang et al., 2020) Our current study sets out to examine the association
between single nucleotide polymorphisms (SNPs) in theHIF1A gene and respiratory phenotypes. By
starting with SNPs of interest, the Phenotype Wide Association Study (PheWAS) design flips the
direction of inference commonly used in genome-wide association studies (GWAS). (Bush et al.,
2016) To do so, it integrates data captured from patient’s electronic health records (EHRs) with their
genetic information. The major benefit of this approach is that it allows us to focus our efforts
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specifically on SNPs with known disease associations within this
master regulator gene, improving the likelihood that found
associations are based on molecular mechanisms that are
relevant to the disease phenotypes uncovered.

METHODS

Single Nucleotide Polymorphisms Selection
SNPs were selected from enriched literature review, including
recently completed review by Gladek et al. (Gladek et al., 2017)
All studies identified with keywords “HIF1a” and “variant”
published after their literature review was completed, were

reviewed. SNPs significantly associated with human disease
were included in the current study (Table 1).

Population
Subjects were drawn from The Children’s Hospital of
Philadelphia (CHOP) biorepository at the Center for Applied
Genomics (CAG). The pediatric samples included in this
biorepository are linked to subjects’ EMRs. All subjects have
consented to both genomic analysis and EMR mining
(Gottesman et al., 2013).

Genotype Imputation
Genotype data were generated by the Center for Applied
Genomics on patients recruited from CHOP and were
acquired on four major genotyping arrays
(HumanHapMap550, 610Q, OMNI2.5M and the GSA array).
Where possible, data from similar arrays were merged. Data were
filtered for genotype missingness (geno 0.1), individual
missingness (0.02), and minor allele frequency (MAF) (0.01)
using PLINK v1.9. (Chang et al., 2015) Data were imputed
using the TOPMed v2 reference panel on the TOPMed
Imputation Server. (Fuchsberger et al., 2015; Das et al., 2016;
Taliun et al., 2021) Imputed genotypes were filtered on
combinations of Rsq (imputation quality metric) and MAF
[(MAF ≥ 0.05 and Rsq > 0.3) OR (MAF < 0.05 and Rsq >
0.5)] using BCFTools v1.10.2, and only SNPs that remained in
85% of samples were retained for use in PheWAS analysis
(Danecek et al., 2021).

Ancestry Identification
Subjects in the PheWAS cohort were separated by ancestry based
on the results of principal component analysis (PCA). PCA was
performed using flashpca on approximately 2.4 million imputed
SNPs with MAF >0.01 that had been pruned for linkage
disequilibrium using PLINK v1.9 (Abraham and Inouye, 2014;
Chang et al., 2015) The first three principle components were
plotted, and ancestry designation was performed by comparison
to the reference genotypes from the HapMap consortium.
(Altshuler et al., 2010) The complete dataset contained 71,600
individuals: 34,410 Caucasians, 31,507 African Americans, 2644
Hispanics, and 3039 East Asians.

PheWAS
A PheWAS was conducting using the published PheWAS R
package from Carroll et al. (v0.99.5-5). (Carroll et al., 2014)
International Classification of Diseases 9 (ICD-9) codes were
obtained from an anonymized extraction of the Children’s
Hospital of Philadelphia diagnosis database that contained
subjects that had been recruited into the patient collection of
the Center for Applied Genomics. Counts of the occurrence of
each ICD-9 code for each subject were generated, and the
resulting table was converted into the PheWAS phenotype
table by a function in the R package. Subjects were included
in the case group for each PheWAS phenotype if they possessed
two or more occurrences of any of the ICD-9 codes that
composed the phenotype in question. Subjects were listed as
controls for the PheWAS phenotype if they lacked the case-

TABLE 1 |Minor allele frequency for all SNPs included in the current study, unless
otherwise indicated the data was pulled from the genome aggregation
database (Karczewski et al., 2020).

SNP ID Substitution MAF

rs1957757 T>C 0.326–0.952
rs12434438 G>A 0.117–0.841a

rs10873142 C>T 0.338–0.914
rs41508050 C>T 0.000292–0.0189
rs2301113 C>A 0.188–0.881
rs11549465 C>T 0.0366–0.155
rs11549467 G>A 0.000574–0.0431
rs199775054 G>C 0.000–0.001b

rs113182457rs60361955 insGT Unavailable
rs2057482 T>C 0.658–0.939
rs2783778 C>T 0.184–0.870
rs7148720 T>C 0.00575–0.151
rs1535679 A>C 0.185–0.872
rs28708675 A>T 0.000218–0.370
rs1319462 G>A 0.682–0.944
rs1957755 G>A 0.000–0.075
rs41362550 T>C 0.0283–0.0755
rs7143164 G>C 0.0485–0.523
rs1951795 A>C 0.227–0.913
rs12435848 A>G 0.249–0.912
rs2301104 G>C 0.000344–0.0147
rs10129270 G>A 0.0311–0.373
rs8005745 T>A 0.369–0.952
rs779897997 C>A Unavailable
rs4899056 T>C 0.262–0.948
rs11158358 G>C 0.655–0.928
rs2301111 G>C 0.222–0.902
rs966824 T>C 0.717–0.977
rs41492849 C>T 0.0000648–0.00207
rs34005929 G>A 0.000459–0.00943
rs61755645 A>T 0.00161–0.0150
rs4902080 T>C 0.654–0.977
rs4902082 C>T 0.226–0.862
rs17099207 G>A 0.237–0.399
rs142179458 G>A 0.000574–0.0282
rs12434439 G>C 0.110–0.506
rs76308410 C>T 0.0621–0.149
rs74481028 A>G 0.0759–0.226
rs7161527 T>C 0.686–0.939
rs10147275 T>G 0.680–0.939
rs2301108 A>G 0.379–0.952
rs79865957 G>A 0.000230–0.00210

aData from the Allele Frequency Aggregator (Phan Yj et al., 2020).
bData from the 1000 Genomes Project (Auton et al., 2015).

Frontiers in Genetics | www.frontiersin.org September 2021 | Volume 12 | Article 7566452

Kelchtermans et al. HIF-1a PheWAS

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


defining ICD-9 codes, as well as ICD-9 codes corresponding to
closely related phenotypes. Conversion from ICD-9 codes to
PheWAS phenotypes was performed using the default
translation table included in the R package. Phenotypes were
analyzed in the PheWAS if they were represented by 20 or more
cases in the cohort. The subject’s sex and age were included as
covariates in the analysis, as were the 10 flashpca generated
principle components and a variable representing the group in
which genotyping array had been imputed. Genotypes were
extracted from the imputed data as allele dose information to
preserve some information regarding genotype probability, and
the allele doses were used as the genotype inputs to the PheWAS.
The PheWAS analysis was performed individually on each PCA-
defined ancestry, and then a meta-analysis was performed
combining all four ancestries using the PheWAS-meta
function provided in the PheWAS R package. For the
association test, a logistic regression model, adjusted for age
and sex was used. For defining significance in this study, we
set a FDR threshold of 0.05. As a total of 2146 traits were
analyzed, the over-conservative significance threshold based on
Bonferroni correction was p � 2.3 × 10–5.

In Silico Validation
SNP’s significantly associated with respiratory disease were
validated in an independent cohort by querying the publicly
available Open Target Genetics database. (Ghoussaini et al., 2021)
The Ensembl VEP was then used to assess the likely effect of these
variants. (McLaren et al., 2016) To assess chromatin state and
regulatory potential associated with the locations of the SNPs,
other publicly available databases including Haploreg and Encode
were queried.

RESULTS

We found 42 SNPs that have been previously associated with
different medical conditions, including various cancers,
cardiovascular diseases, metabolic disorders and (auto)
immune diseases. This includes the 34 SNPs identified by
Gladek et al. (Gladek et al., 2017) In addition, eight more
SNPs were identified in studies published after their literature
review was completed (Chan et al., 2017; Paradowska-Gorycka
et al., 2018; Wang et al., 2018; Hoang et al., 2019; Huang et al.,
2020).

Of the 42 SNPs included in our PheWAS, nine were
significantly associated with at least one disorder. Table 2
summarizes the data for all the SNP-phenotype associations
passing False Discovery Rate (FDR) or Bonferroni test. Most
of the detected associations were from cohorts with less than
500 cases. However, the A allele of SNP rs79865957 was
found to be significantly associated with allergic rhinitis
(Figure 1) in a European cohort of 4,348 cases and 18,794
controls with an allele frequency of 0.08%. The OR was 2.86,
Beta 1.05, SE 0.25 and p-value 3.48E−05. The second,
rs41508050, the T allele was significantly associated with
acute bronchitis and bronchiolitis (Figure 2) in an African
American cohort of 2,234 cases and 21,463 controls with anT
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allele frequency of 0.18%. The OR was 0.32, Beta 1.21, SE 3.36
and p-value 0.0001.

Using the Open Target Genetics database rs79865957, the A
allele was found to have been previously positively associated with

both chronic airway obstruction (OR 1.94, p-value 0.0019, Beta
0.663) and asthma (OR 1.34, p-value 0.033, Beta 0.292). It has also
been negatively associated with paternal chronic bronchitis/
emphysema (OR 0.75, p-value 0.0069, Beta −0.293). Using

FIGURE 1 | PheWAS results for rs79865957.

FIGURE 2 | PheWAS results for rs41508050.
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Ensemble Variable Effect Predictor (VEP), it was found to be a
likely intron variant for HIF1A. For rs41508050, the T allele was
previously negatively correlated with “Bring up phlegm/sputum/
mucus on most days” (OR 0.72, p-value 0.0026, Beta −0.328) and
is a missense variant for HIF1A.

The publicly available HaploReg tool was queried for both
SNPs. SNP rs79865957 has four SNPs in linkage disequilibrium
(r2 ≥ 0.8), two of which (rs76269977 and rs142660658) are
intronic in the HIF1A gene. It is located in a regulatory region
but not in a constrained sequence. It has histone H3K4me1_Enh
enhancer marks in a lung carcinoma line and both
H3K4me1_Enh and H3K27ac in a fetal lung fibroblast line. It
is also a DNAse hypersensitivity site in a fetal lung fibroblast line.
SNP rs41508050 has no other SNPs in linkage disequilibrium, is
in a regulatory region and in a constrained sequence both by
Genomic Evolutionary Rate Profiling and SiPhycons. It has
histone H3K27ac_Enh marks in both lung fibroblast and lung
carcinoma lines and is a DNase hypersensitivity site in a lung
carcinoma cell line. Looking at Encode it had RFX5 bound in the
GM12878 lymphoblastoid cell line. (Table 3)

DISCUSSION

We present the results of a HIF-1α PheWAS analysis focused on
association with respiratory phenotypes. We identified two SNPs
that are significantly associated with respiratory disease. Given the
allele rarity in our patient population, the Open Target Genetics
database was queried in further support. This resource integrates
knowledge derived from the UK Biobank with published data from
other sources and provides an independent cohort to validate our
findings. (Baumann and Cabassa, 2020) The prior associations
with allergic airway disease in the form of asthma for rs79865957
and association with bringing up phlegm/sputum/mucus for
rs41508050 are consistent with the respective associations with
allergic rhinitis and acute bronchitis and bronchiolitis in our
cohort, suggesting the association may be driven by the
underlying biological “inflammation” process which is the
central driver across all these phenotypes involving different
organs. To address the likely impact of these variants we used
the Ensembl VEP and the publicly available HaploReg tool (Ward
and Kellis, 2012; McLaren et al., 2016), both of which underscore
the possible significance of both variants. Adding to the evidence
supporting a functional impact are the previously published
associations between rs79865957 and diabetic kidney disease
and between rs41508050 and angina versus myocardial

infarction as initial presentation of coronary disease (Hlatky
et al., 2007; Huang et al., 2020).

Previously, variations within the HIF1A gene have been
associated with COPD, lung cancer and a host of non-
pulmonary conditions. (Gladek et al., 2017) Both the SNPs
reported here had prior significant disease associations. First,
rs79865957 was previously associated with diabetic kidney
disease in a Han Chinese population. (Nava-Salazar et al.,
2011) While to our knowledge the functional consequences of
this SNP have not been eluded, the authors hypothesized that in a
high glucose environment HIF1A transcription may be
stimulated. Additionally, rs41508050 has a known association
with the development of stable angina as opposed to myocardial
infarction as initial presentation of coronary artery disease.
(Hlatky et al., 2007) In vitro studies have previously linked
this variant with a higher transcriptional activity. (Nava-
Salazar et al., 2011) However, to our knowledge, the current
study is the first to report on the association between SNPs of the
HIF1A gene and allergic rhinitis, acute bronchitis and
bronchiolitis. The reported association with allergic rhinitis is
consistent with previously published experimental data
highlighting the role of HIF-1α in allergic airway pathology. In
an allergic airway disease model, HIF-1α inhibition decreased
Th2 inflammation as measured by reduced IL-4, IL-5 and IL-13.
(Kim et al., 2010) Beyond this, in a mouse model downregulation
of HIF-1 or blockade of HIF-1α reduced cellular infiltrate in
peribronchial lung tissues, thickness of smooth muscle and
eosinophil infiltration. (Huerta-Yepez et al., 2008) Likewise,
the role of HIF-1α in bronchiolitis is supported by
experimental data on the consequences of HIF-1α stabilization
by the Respiratory Syncytium Virus. (Kilani et al., 2004)

Traditionally, GWAS identify SNPs significantly associated
with human disease. These findings are then used to guide animal
studies aiming to prove a causal link between the SNP and the
disease. As briefly discussed above, the PheWAS design flips this
process. It allowed us to look specifically at a highly conserved
gene known to play a central role in the diseases of interest. In
doing so, we were able to narrow down the list of SNPs within the
HIF1A gene that play a potential role in respiratory pathology.
Beyond this, we were able to detect significant effects of rare allelic
variants. Conversely, this study design by definition excludes
variants on other genes. While this is a limitation of the current
study, given the hypoxemia dependent stabilization of HIF-1α
and the experimental data supporting a role of HIF-1α in
pulmonary conditions as outlined above it seemed reasonable
to focus on HIF1A. Future studies may expand on the current

TABLE 3 | Summary of chromatin state and regulatory potential associated with the locations of the SNPs.

Location rs79865957 rs41508050

Reference allele G C
Varriant allele A T
Regulatory region? Yes Yes
Constrained sequence? No Yes
DNAse hypersensitivity site? In fetal fibroblast line In lung carcinoma cell line
Associated Histone markers H3K4me1_Enh and H3K27ac H3K27ac_Enh
Encode No proteins bound RFX5 bound
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work by including other members of the HIF family.
Furthermoree, knowing that SNPs within the HIF1A gene are
associated with respiratory diseases future studies can now refine
our understanding of the associated phenotypes by looking at
differences between patients with and without these SNPs.
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