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Cheese maturation and flavor development results from complex interactions between
milk substrates, cheese microbiota and their metabolites. In this study, bacterial
16S rRNA-gene sequencing, untargeted metabolomics (gas chromatography-mass
spectrometry) and data integration analyses were used to characterize and differentiate
commercial Cheddar cheeses of varying maturity made by the same and different
manufacturers. Microbiota and metabolite compositions varied between cheeses of
different ages and brands, and could be used to distinguish the cheeses. Individual
amino acids and carboxylic acids were positively correlated with the ripening age for
some brands. Integration and Random Forest analyses revealed numerous associations
between specific bacteria and metabolites including a previously undescribed positive
correlation between Thermus and phenylalanine and a negative correlation between
Streptococcus and cholesterol. Together these results suggest that multi-omics
analyses has the potential to be used for better understanding the relationships between
cheese microbiota and metabolites during ripening and for discovering biomarkers for
validating cheese age and brand authenticity.

Keywords: cheese, 16S rRNA-based microbiota analysis, GC-MS untargeted metabolomics, cheese maturity,
integrative analysis

INTRODUCTION

In large-scale cheddar cheese manufacture, starter bacteria (normally selected strains of Lactococcus
lactis) together with adjunct bacteria (these may or may not be added and typically comprise strains
of Lactobacillus spp. and/or other bacteria) are inoculated into the milk (Fox et al., 2017). As these
bacteria grow, they produce lactic acid and break down milk proteins (caseins) to release peptides
and amino acids and also produce many diverse secondary metabolites that determine the final
quality and flavor of cheese (Fox et al., 2017). Cheese ripening is a highly complex and time-
dependent process that is necessary for full flavor development. Ripening involves successional
changes in microbial communities and in their associated enzymatic and biochemical reactions
that underpin the release of hundreds or thousands of flavorsome compounds (Blaya et al., 2018).
While it has long been established that balanced ripening is pivotal for optimum quality and
flavor development (Ochi et al., 2013), being able to consistently predict and control cheese
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maturation processes between batches during cheesemaking
remains a challenge, even for large-scale commercial operations.
Following production, cheeses are graded for quality and
those of lower quality are commonly diverted into processed
cheese manufacture, but at a reduced price. In recent years,
DNA sequencing has revealed that in addition to lactic
acid bacteria (LAB), other adventitious species may also be
present during ripening with their associated role in cheese
ripening less well-understood. These adventitious species or
taxa include Arthrobacter spp., Prevotella, Faecalibacterium
(Quigley et al., 2012), marine-associated γ-Proteobacteria (Wolfe
et al., 2014), coagulase-negative staphylococci, members
of the Enterobacteriaceae and other unclassified genera
(Yeluri Jonnala et al., 2018).

The application of high-throughput DNA sequencing and
metabolomics approaches combined with new computational
algorithms and data-analysis platforms (multi-omics) are now
providing significant advances in understanding of the complex
microbial and metabolic interactions involved in cheese ripening
(Walsh et al., 2020; Afshari et al., 2018; Wolfe et al., 2014).
Together, they have the potential to provide important new
understanding of cheese production and maturation processes
and the potential for identification and application of biomarkers
that could be used to predict, optimize and control cheese
ripening outcomes (Afshari et al., 2018). This is important as
the global consumption of cheese is projected to increase by
∼13% between 2016 and 2025 (OECD/FAO, 2016). Consumers
are increasingly demanding high-quality products with excellent
sensory properties at a reasonable cost (Braghieri et al., 2014).
In response, large cheese manufacturers typically map consumer
preferences in different geographical and demographic markets,
aiming for optimally targeted products within competitive sales
environments, for example as has been explored for Cheddar
cheeses of different maturities (Young et al., 2004). The provision
of improved tools to discriminate between cheese of varying
quality that could be incorporated into cheese manufacturing
processes during cheese ripening would aid manufacturers so
that their final products can increasingly and more consistently
closely match the preferences of consumers.

This research has applied a multi-omics approach combining
16S rRNA-based microbiota and untargeted metabolomics
[gas chromatography-mass spectrometry (GC-MS)] analyses in
combination with data integration analysis to investigate the
interrelationships between cheese microbiota and metabolomes
in Cheddar cheeses from different manufacturers and of varying
maturity (ripening age). The aims of this research were to identify
key microbiota and/or metabolites that are characteristic of
these cheeses and to determine interrelationships between these
microbiota and metabolites.

MATERIALS AND METHODS

Sampling
Cheddar cheeses produced by three Australian commercial
manufacturers were purchased from local supermarkets (these
three brands of cheddar were designated in this study as A,

B, and C). For each brand, cheeses of three or four different
maturities were available from each manufacturer. For brand A,
four types of cheese were purchased: “mild,” “tasty,” “extra tasty,”
and “vintage.” However, no specific ripening times were stated
on the packs. For Brand B, cheese was labeled as “tasty” (ripened
up to 12 months), “extra-tasty (ripened for up to 18 months)” or
“epicure” (ripened for up to 32 months). For brand C, each cheese
was labeled as “sharp” (ripened for up to 12 months), “extra-
sharp” (ripened for up to 20 months) or “special reserve” (ripened
for up to 32 months). For simplicity, in this study we have labeled
cheeses from all three brands using the same terminology (in
increasing order from minimum to maximum ripening level).
These definitions are “mild” (up to 6 months), “tasty” (up to
12 months), ‘extra-tasty’ (up to 18 months) and ‘vintage’ (up to
32 months). We have also assumed that the ripening times for
the four brand A cheeses are approximately similar to those of
the corresponding cheeses for brands B and C. For each brand
and level of ripening, four 250 g (approximate) commercially
packaged shrink-wrapped blocks were purchased and sampled
aseptically. Each individual sample was divided into two sub-
samples; one of these was frozen at −80 ◦C until subsequent
DNA-sequencing analysis, while the second was immediately
homogenized using a mortar and pestle with liquid nitrogen and
then freeze-dried for subsequent GC-MS metabolomics analysis.

16S rRNA-Based Cheese Microbiota
Analysis
Total DNA was extracted from 200 mg of each cheese sample
using a PowerSoil DNA Isolation Kit (MO BIO Laboratories,
Inc., Carlsbad, CA, United States) following the manufacturer’s
instructions. DNA purity and concentration were determined
and PCR amplification and DNA sequencing of bacterial 16S
rRNA genes were performed as described previously (Afshari
et al., 2020). Briefly, the V4 region of DNA was amplified using
primers 515F and 806R. PCR conditions consisted of 95◦C for
3 min, followed by 25 cycles of: 95◦C for 30 s, 55◦C for 30 s,
72◦C for 30 s and a final extension at 72◦C for 5 min. 16S rRNA
amplicons were purified and indexed using the Nextera XT DNA
library prep kit as according to the 16S Metagenomic Sequencing
Library Preparation instructions (Illumina, San Diego, CA,
United States). Indexed PCR amplicons were pooled in equal
concentrations and sequenced on an Illumina MiSeq platform
(Illumina, San Diego, CA, United States).

Raw Illumina fastq files were demultiplexed, quality filtered,
and analyzed using GHAP v2.1 (Greenfield Hybrid Amplicon
Pipeline, developed by Paul Greenfield at CSIRO, Canberra,
ACT, Australia) as described previously (Afshari et al., 2020).
The relative abundance of each taxon in each sample was
determined using the vegan package Rv.3.4.3. Beta diversity was
calculated based on a Bray-Curtis dissimilarity matrix using
Primer v7 (Primer-E, Plymouth, United Kingdom). A non-
metric-multi-dimensional scaling (nMDS) plot was generated
from the resulting distance matrix. Permutational multivariate
analysis of variance (PERMENOVA) with 999 permutations was
used to test the significant differences in phylogenetic diversity
between cheeses of different ages within and between each
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manufacturer based on a Bray-Curtis matrix. Since the number
of unique permutations was less than 50, the marginal p-value
which was significant in PERMANOVA was further tested by
Monte Carlo analysis.

Gas Chromatography-Mass
Spectrometry Metabolomics
Freeze-dried cheese (60 mg) was extracted as described by Afshari
et al. (2020). Briefly, 60 mg of cheese was extracted in 500 µL of
MeOH/H2O/CHCl3 (2.5:1:1, v:v:v). Internal standards (100 µL
of 13C6-sorbitol/13C5

15N-valine in water, 0.2 mg mL−1) were
then added to this mixture. The extract was homogenized using
a MP homogeniser (FastPrep) R© for 1 min at 4.5 m/s, then
incubated at 37◦C for 15 min in a thermomixer at 850 rpm,
centrifuged at 15700 g for 15 min and the supernatant was
then decanted into a new tube. The remaining pellet was mixed
with 500 µL of MeOH/H2O/CHCl3, centrifuged at 13000 rpm
for 15 min and the resulting supernatant was then combined
with the previous extract. Following extraction, 40 µL aliquots
were transferred into glass vial inserts and dried in vacuo for
subsequent trimethylsilyl (TMS) polar metabolite derivatization.
Online, chemical derivatization and acquisition were performed
as previously described by Afshari et al. (2020). This method
specifically enables the extraction of non-volatile compounds.

Resulting GC-MS data were analyzed using the Agilent Mass
Hunter Workstation software, Quantitative analysis, Version
B.07.01/Build 7.1.524.0 (Agilent Technology, Inc). Mass spectra
of eluted compounds were identified using the commercial
mass spectra library NIST 08,1 the public domain mass spectra
library of Max-Planck-Institute for Plant Physiology, Golm,
Germany,2 an in-house mass spectral library at RMIT University
and also by comparing their retention time to authentic
standards. Relative response ratios (area of analyte divided by
area of the internal 13C6-sorbitol standard and sample dry
weight) were calculated for each analyzed metabolite and used
for multivariate analysis. Principal component analysis (PCA)
was used to analyze the GC-MS data of cheeses between
and within each manufacturer. Principal component analysis
and PCA biplots were performed in SIMCA 15.0.1 (Umetrics
AB, Umea, Sweden).

Data Integration Analysis
Multifactorial analyses (MFA) were performed in R using the
FactoMineR package3 to assess variation with respect to cheese
maturity based on the microbiota and metabolite compositions
of cheeses and to find canonical correlation between metabolite
and microbiota profiles. Multifactorial analysis is a generalization
of PCA in which sample similarity is determined by multiple
different sets of variables (Escofier and Pages, 1994), in this case,
microbiota and metabolite profiles.

Random forest (RF) is a non-parametric machine learning
technique, where multiple regression or classification trees are
constructed using RF subsets of the data (Breiman, 2001).

1http://www.nist.gov
2http://csbdb.mpimp-golm.mpg.de/csbdb/dbma/msri.html
3http://factominer.free.fr/

While a linear regression would fit only a linear relationship
between the predictors and the outcome, RFs allow for any
type of relationship, including complex interactions. Random
forest analysis was used to predict associations between taxa and
metabolites (regression model) for each manufacturer. Over 500
trees were constructed using the RF package and a 10-fold cross-
validation was used to evaluate these RFs. Based on the mean
decrease in Gini-coefficient, the most ‘important’ parameters
were selected (Louppe et al., 2013). The variable with the highest
mean decrease in Gini index is considered the most important
variable in the optimized model. Random forest analysis does
not provide a regression coefficient; therefore, partial plots were
used to show the adjusted relationship between the taxa and
metabolites as other metabolites are held constant at their mean
observed value (Friedman, 2001). The PartialPlot function in R
was used to generate partial dependence plots for the five most
important variables.

RESULTS

Bacterial Community Structure in
Cheddar Cheeses of Different Brands
and Age
Sequencing of PCR-amplified 16S rRNA gene amplicons was
applied to investigate variation in the bacterial communities in
cheddar cheeses of different brands and ages. Across all samples,
a total of 115 operational taxonomic units (OTU) were identified
at 97% identity. At the phylum level, Firmicutes comprised
the highest proportion of detected OTUs (84% of all OTUs)
and more than 99% of all sequence reads (Figure 1). Twelve
genera dominated across the cheeses. For brand A, Lactococcus
and then Lactobacillus were most dominant (Figure 1A). For
brand B, Lactococcus and Streptococcus were most abundant
in tasty (up to 12-month ripened) and extra-tasty (up to 24-
month ripened) cheeses, while Lactococcus (only) was dominant
in vintage cheeses (up to 32-month ripened) (Figure 1B). For
brand C, the bacterial community was dominated by Lactococcus
and Lactobacillus in varying proportions in tasty and extra
tasty cheeses with Lactobacillus present in higher proportions
(over 90%) in vintage cheeses (Figure 1C). Within these cheeses
Streptococcus (presumably mostly Streptococcus thermophilus)
and Macrococcus (0.1% of total reads) were also present at low
abundance, except for brand B where Streptococcus constituted
up to more than 50% of the communities in the tasty and extra
tasty cheese (Figure 1B). Thermus was present at low abundance
in all brand A cheeses with a maximum of 2.5% of total reads in
Brand A vintage cheeses (Figure 1A).

The bacterial community composition in the cheeses differed
more between brands than within brands (Figure 2A), with
permutational multivariate analysis of variance confirming
that this variation between brands was statistically significant
(P< 0.001). Within each brand, the bacterial communities within
cheeses of different maturities all varied significantly from each
other (P < 0.05; Figures 2B–D) but with the exception of the
bacterial communities in tasty and extra tasty cheeses from
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FIGURE 1 | Variation in the relative abundance of bacterial genera in cheeses between brands and between cheeses of different maturity. Brands (A–C) are as
indicated. Only genera detected at >0.1% relative abundance are shown.

brand B in which there was no significant variation between these
communities (P = 0.12; Figure 2C).

Variation in Metabolome Profiles in
Cheddar Cheeses of Different Brands
and Ripening Age
Gas chromatography-mass spectrometry untargeted
metabolomics profiling revealed a total of 46 primary metabolites
across all cheese brands and maturities. These metabolites
comprised of 22 amino acids and amines, 11 carboxylic acids,
seven free fatty acids and steroids and six-sugar and -sugar
derivatives (Supplementary Table 1). Principal component
analysis showed that the variance between cheese samples based
on their metabolite profiles (Figure 3). The first two principal
components accounted for over 59% of the total variance (32.5
and 26.8% for PC1 and PC2, respectively) in the metabolome
data. PCA showed that the metabolite profiles of brand C cheeses
clustered separately from those of brands A and B (Figure 3A).
Within brands, metabolite profiles also varied between cheeses
of different maturities. Within brand A, metabolite profiles of
mild cheeses (shown as triangles) were distinct from those of the
more mature cheeses. Conversely, within brand B and C cheeses,
metabolite profiles of vintage cheeses (circles) were distinct from
those in tasty and extra-tasty cheeses. For all three brands, PC1
was the component which explained the largest proportion of
the variance and best characterized the level of cheese maturity.
To further investigate the relationships between individual
metabolites and cheese maturity, PCA biplots were generated
(Figures 3B–D).

The PCA biplot of brand A cheeses (Figure 3B) showed
that mild cheeses contained a higher relative abundance of
glycerol, lactose and mannose, whereas the mature cheeses (extra

tasty and vintage) had higher relative abundances of numerous
amino acids and carboxylic (such as citrate, malate, oxalate,
succinate, and hydroxy-glutaric acid), free fatty acids (such as
pentadecanoic acid, myristic acid, lauric acid, and palmitic acid)
and also one amine (piperidine). This might be expected as
the number of such metabolites would increase as ripening
progresses. In contrast and perhaps surprisingly, in brand B
cheeses (Figure 3C), these metabolites were present in higher
relative abundance in the tasty cheeses when compared to the
more mature extra tasty and vintage cheeses. More specifically,
a total of 16 amino acids,and four carboxylic acids (citrate,
oxalate, orotic, and uric acids) were more strongly associated with
the brand B tasty cheeses. In contrast, only seven metabolites
(GABA, glutamine, succinic acid, glycerate, octadecanoic acid,
inositol, and galactose) were found to be present in higher
abundance in the extra tasty cheeses while vintage cheeses were
highly associated with just two metabolites, urea and lactose
(Figure 3C). For brand C (Figure 3D), the relative abundance
of 19 amino acids and one amine (piperidine) were strongly
associated with the vintage cheeses, whereas (in contrast) leucine
was more strongly associated with the extra tasty cheeses and
glutamine with both tasty and extra tasty cheeses (Figure 3D).
The relative abundance of carboxylic acids and fatty acids were
also higher in the brand C vintage cheeses with the exceptions
of succinic acid which was more strongly associated with the
extra tasty cheese and of stearic acid which was present in similar
proportions in all brand C cheeses.

Overall, GC-MS untargeted metabolomics profiling showed
that there was an increase in the relative abundance of amino
acids and amines, carboxylic acids and free fatty acids (especially
malic acid, hydroxy-glutaric acid, citric acid, lauric acid, myristic
acid pentadecanoic acid and palmitic acid) for brands A and C
which correlated positively with increasing cheese age (PC1). For
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FIGURE 2 | Variation in bacterial community composition in cheese between brands and between cheeses of different maturity. Bray-Curtis non-metric
multi-dimensional scaling (nMDS) plots and PERMANOVA results are shown comparing (A) variation between cheeses from different manufacturers and (B–D)
variation between cheeses of different maturity for each manufacturer: brand A (B), brand B (C), and brand C (D). Different colors and shapes show different cheese
manufactures and different ages, as indicated. PERMANOVA results are shown; Pseudo-t = the Pseudo-t statistic, whereby higher values indicate greater differences
between the community structure of cheeses of the two groups compared; P (MC) = Monte Carlo P-value, with significant values (P < 0.05) indicated by an asterisk.

brand B this increase unexpectedly ceased after the cheese had
aged beyond 12 months (i.e., tasty).

Determining Relationships Between
Cheese Microbial Composition,
Metabolome Profiles, and Cheese
Maturity
Multifactorial analysis was used to determine the
similarity/dissimilarity between cheeses of different ages within
each brand based on the combined microbiota and metabolites
profiles (integrated multi-omics datasets). Multifactorial analysis
was also used to investigate relationships between cheese
microbiota, cheese metabolites and cheese age within each brand
and to identify correlations between individual bacterial taxa
and metabolites. The scatter plots visualized the cheeses into
a two-dimension space using the first two dimensions (Dims)
which captured 43.2, 60, and 88.3% of the total variability among
cheeses within brand A, B, and C, respectively (Figures 4A–C).
The scatter plots showed that cheeses of different ages made
by the same manufacturer could be separated based on the

combined microbiota (bacterial taxa) and metabolite profiles
(Figures 4A–C). Figures 4D–F identifies correlations between
variables (herein: microbiota, metabolites, and age) and
dimensions of MFA scatter plots for each brand. For brand
A, the coordinate of metabolites on Dim 1 is higher than for
microbiota, indicating the greater contribution of metabolites
compared to the microbiota to the separation of mild cheeses
from the other more matured cheeses (Figure 4D). For brand
B, the contribution of microbiota and metabolites to Dim 1 is
almost identical. However, on Dim 2 for which tasty and extra
tasty cheeses were separated from each other, the contribution of
microbiota was higher (Figure 4E). For brand C cheeses, both
microbiota and metabolites had identical contributions to Dim
1 and very similar contributions for Dim 2 (Figure 4F). This
could reflect the higher correlation that was obtained between
these two datasets (microbiota and metabolites) (RV = 0.73) for
cheeses of brand C when compared to other two brands (for
brand A, RV = 0.33; for brand B, RV = 0.57).

Numerous significant correlations were observed between
specific bacterial taxa and metabolites for brands B and C
(Figures 5B,C). For brand A cheeses, however, this correlation
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FIGURE 3 | Principal Component Analysis (PCA) of untargeted GC/MS metabolomics of cheeses made by different manufacturers. (A) PCA of untargeted GC/MS
metabolomics of cheeses made by different manufacturers. PC1 and PC2 account for 32.2% and 27.5% of the variance, respectively. (B–D) The biplot
superimposed on the scores and loadings of PCA analysis based on a correlation scaling method for cheeses for brand A (B), brand B (C), and brand C (D) Brands
and maturity of cheeses are as indicated. p(corr), t(corr) is a combined vector, p(corr) represents loading p scaled as correlation coefficient between X and t; t(corr)
represents score t scaled as correlation coefficient resulting in all points falling inside the circle with radius 1. Different colors represent different brands and different
classes of metabolites: black; brand A, cyan; brand B, red; brand C, green; amino acids and amines, blue; carboxylic acids, pink; fatty acids and sterols, orange;
sugar and sugar phosphates. Orn, ornithine; Tyr, tyrosine; GABA, gamma amino butyric acid; Lys, lysine; Gly, glycine; Val, valine; Ser: serine; Leu, leucine; Noreleu,
noreleucine; Thr, threonine; Pro, proline; Pip, piperedine; Asn, asparagine; AspA, aspartic acid; Glu, glutamic acid; Met, methionine; Arg, arginine; PDA,
pentadecanoic acid; HepA, heptadecanoic acid; LA, lauric acid (dodecanoic acid); PA, palmitic acid (hexadecanoic acid); STA, stearic acid (octadecanoic acid); MA,
myristic acid (tetradecanoic acid); Oxal, oxalic acid; Succ, succinic acid; GlyA, glyceric acid; Glt, glutaric acid; MalA, malonic acid; HGlt, hydroxy-glutaric acid; Citric,
citric acid; GalA, galactonic acid, Pglu, pyroglutamic acid; Oro, orotic acid; UA, uric acid; PhA, phosphoric acid; Mann, mannose; Gal, galactose; MI, inositol myo;
Lac, lactose; Gly3p, glycerol-3-phosphate.
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FIGURE 4 | Multifactorial analysis (MFA) of cheese microbiota and cheese metabolite profiles for cheeses of different maturities from different manufacturers (A, B,
and C). (A–C) MFA scatter plots for cheeses from brands A, B, and C, respectively. Ellipses representing the barycentre of the sample groups with 95% confidence.
Maturity (age) of chesses is as indicated. (D–F) MFA group representations to illustrate the relationships between variables (bacterial genus composition, metabolite
profiles, maturity of cheeses) and Dim 1and Dim 2 for brands A, B, and C, respectively.

was less pronounced (RV coefficient = 0.33) (Figure 5A). The
only notable exception was the positive correlation between
Thermus and relative abundance of phenylalanine (Figure 5A).
The relationship between age and metabolites for brand A
(RV coefficient = 0.65) was also stronger than the relationship
between age and microbiota profiles (RV coefficient = 0.57).
Similarly, for brands B and C cheeses, the relationships
between age and metabolites (RV coefficients = 0.81 and 0.77,
respectively) were stronger than the relationships between age
and microbiota (RV = 0.50 and 0.58, respectively). The MFA
correlation circle for brand B and specifically for brand C
revealed several positive microbiota-metabolite relationships.
These included, for brand B, relationships between both
Lactococcus and Acinetobacter (present at low abundance) and
medium chain fatty acids including lauric acid, myristic acid,
pentadecanoic acid and palmitic acid; and between Streptococcus
and the relative abundance of amino acids (Figure 5B). For
brand C, relationships were found between both Streptococcus
and Pediococcus (but not Lactococcus) and increased relative
abundances of amino acids which have sensory properties,
including pyroglutamate, tyrosine, and proline (Figure 5C). In
addition, Streptococcus was found to be associated with decreased
abundance of both cholesterol and urea in brand C.

Random Forest Analysis to Predict
Associations Between Cheese
Metabolites and Bacterial Genera
Random forest regression analysis was used to predict the
association between the dominant bacterial genera and the
cheese metabolites within each brand. For brand A cheeses, the
optimized model showed that the relative abundance of Thermus
was highly positively associated with phenylalanine (pseudo

R2 = 0.85; Table 1 and Supplementary Figure 1A), supporting
the results of MFA. The RF model did not identify any significant
association between the microbiota and other metabolites for
brand A. For brand B, the optimized model showed that the
relative abundance of Streptococcus was negatively associated
with the levels of urea and lactose (pseudo R2 = 0.93;
Table 1 and Supplementary Figure 1B) and conversely that
Lactococcus (presumably Lc. lactis added as the starter culture)
was positively associated with heptadecanoic acid (Table 1
and Supplementary Figure 1C). For brand C (Table 1 and
Supplementary Figures 1D–F), Streptococcus was associated
with decreased cholesterol and urea, whilst Lactococcus was
associated with decreased pyroglutamic acid and piperidine
levels, and increased urea (pseudo R2 = 0.96). Lactobacillus in
brand C cheeses was associated with decreased ornithine (not
present in casein) and glutamine levels and increased tyrosine.

DISCUSSION

This research demonstrates that similar commercial cheddar
cheeses of different maturity levels (ripening ages) made
by independent manufacturers can be differentiated by the
application of multi-omics-microbiota and metabolomics
analyses combined with data integration analysis. Notably,
GC-MS untargeted metabolomics identified metabolites that
were specific to cheeses of particular ages (maturity) and have
the potential for use as markers for monitoring cheese ripening
progression, validating cheese age, improving the quality and
efficiency of cheese ripening outcomes. The identification of
metabolites as diagnostic biomarkers further offers the potential
for their inclusion in the cheese grading process. Our research
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FIGURE 5 | Multifactorial analysis (MFA) showing correlations between bacterial genera and metabolites in cheese. The Correlation circle depicts correlations in
normalized abundance between cheese, bacterial genera (blue) and cheese metabolites (red) along the MFA axes for (A) brand A, (B) brand B, and (C) brand C
cheeses. Those metabolites and genera which are depicted together in the same direction along an axis indicate positive correlations; those which are depicted
together in the opposite direction indicate negative correlations; metabolites and genera depicted in different directions indicate no correlations. The strength of the
correlation is shown by the increasing distance from the center of the plot. To improve the readability of the plots, only the greatest correlations for metabolites in
each dimension are shown.

TABLE 1 | Adjusted associations between the bacterial genera and selected
metabolites in the Random forest model to predict associations between genera
and metabolites.

Brand Genus Selected
metabolites

Adjusted
association

Pseudo-R2

A Thermus Phe Positive 0.85

B Streptococcus Lac Negative 0.93

Urea Negative

Lactococcus HepA Positive 0.98

C Streptococcus Urea Negative 0.98

Cholesterol Negative

Pglu Negative

Lactococcus Urea Positive 0.96

Pip Negative

Orn Negative 0.83

Lactobacillus Gln Negative

Tyr Positive

Partial plots were used to determine the direction of the associations between
the genera and the metabolites (plots are not shown). See Figure 3 for
metabolite abbreviations.

has demonstrated that strong and significant associations
exist between cheese microbiota and metabolites. To our
knowledge, some of these associations have not been previously
described, such as the positive association between the levels
of phenylalanine and the presence of Thermus, while others
were consistent with the known biochemical characteristics of
bacterial species, such as the association between urease-positive
S. thermophilus and decreased levels of urea (Afshari et al., 2020).

Lactococcus was the dominant genus in cheeses from brands
A and B, presumably reflecting the growth of Lc. lactis derived
from the cheese starter culture (16S rRNA gene sequence data
from amplicons were most closely related to sequences from
Lc. lactis; data not shown), while Lactobacillus was present at
∼16–38% in brand A cheeses and <1% in brand B cheeses.

Brand C cheeses were dominated by Lactobacillus spp. and
Lactococcus spp., with the relative abundance of Lactobacillus
increasing in cheeses of increasing maturity (Figure 2C). This
is consistent with the standard cheese ripening model, which
predicts that numbers of starter lactococci, which are very high
at the start of ripening then decrease, accompanied by growth of
Lactobacillus spp. derived from added flavor adjunct cultures or
other adventitious microflora, or both (Fitzsimons et al., 2001;
Stefanovic et al., 2018). In contrast to brands A and C, cheeses
from brand B contained very low proportions of Lactobacillus,
potentially suggesting that Lactobacillus were not used as adjunct
cultures in the manufacture of brand B cheeses.

Streptococcus was present at high relative abundances (up to
∼50%) in both tasty and extra tasty cheeses from brand B, but not
in the vintage cheddar. This might be explained if S. thermophilus
was present in addition to Lc. lactis in the starter culture. While
not traditionally present in mesophilic (or “O”-type) DVS cheese
cultures (Blaya et al., 2018; Høier et al., 2010), some more
recent “O”-type cultures do contain added S. thermophilus in
order to enhance acid production at the cheddar cook stage (see
for example Christian Hansen DVS cataloge, 2014, pp. 11–134).
Alternatively, though less likely given such high levels in the
cheese itself, S. thermophilus may have been present as biofilms
in the downstream cooling side of the pasteurizer, some of which
may have sloughed off into the cheese milk during vat filling
(Bouman et al., 1982). Either way, S. thermophilus inoculated into
the cheese milk during vat filling would increase in numbers even
after the cook stage, but would then die off quickly once ripening
commenced. In contrast, communities in vintage cheeses from
brand B were dominated by Lactococcus (Figure 2B); whether
a different starter culture that did not contain S. thermophilus
was used to produce the vintage cheeses (brand B) is not known.
This comparison of cheeses from different brands and of differing

4Available at https://hjemmeriet.com/da/ChrHansen/Brochures/GlobalCheese
CultureCatalogue_EN-2014.pdf.
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maturities highlights that both intended or unintended variation
in cheese microbiota composition during dairy manufacturing
is a variable that needs to be considered and that is likely to
influence cheese quality and sensory characteristics, even within
cheeses of the same type.

In brand A cheeses, Thermus spp. were present at a relative
abundance of up to 2.5% but were absent from other brands
and their presence may have originated from hot water sources
in the factory (Quigley et al., 2016). Based on microbiome
DNA sequencing studies, Quigley et al. (2016) suggested that
Thermus may be the causative agent of pink discoloration in
cheese, a problem that has affected the dairy industry over many
years (Daly et al., 2012) and yet remains without a definitive
explanation. In our study, the presence of this genus was
associated with high levels of phenylalanine (Table 1), although
none of the cheeses in our study exhibited a pink discoloration
defect. This is consistent with the observations of Quigley et al.
(2016) who found no association between the presence of free
amino acids and the development of pink discoloration. Rather,
these authors have suggested that the defect may be due to a
microbially produced carotenoid when Thermus is present at a
higher relative abundance (up to 6% of the total 16S rRNA reads).

Cheese is known to contain many thousands of metabolites
present in varying abundance (Afshari et al., 2020). Although
the impact of metabolites found in low relative abundances
remains largely unexplored, there is evidence that some may have
significant impacts on cheese flavor and quality. For example,
esters present in very low amounts in cheese can be detected in
taste testing (Holland et al., 2005). GC-MS untargeted profiling
revealed differences in metabolite profiles between the three
different brands of cheddar as well as between cheeses of different
maturity and additionally, identified cheese metabolites that
were correlated with aging. These results are in agreement with
other research that suggests metabolome fingerprinting may
be a useful indicator of cheese maturity (Ochi et al., 2013;
Gan et al., 2016). As cheddar cheeses mature, proteolysis and
lipolysis results in release of peptides, amino acids, and free
fatty acids, all contributing to flavor (McSweeney, 2004). Our
research has shown progressive increases in the production of
seven carboxylic acids together with 16 amino acids and one
heterocyclic amine (piperidine) during cheese ripening in cheeses
from brand A and C cheeses. This is consistent with previous
studies that reported an increase in amino acids, especially lysine,
proline, glycine and pyroglutamic acid with ripening time (Ardo
et al., 2002; Zheng et al., 2018). The association of threonine
with aged cheddars (30 months ripening) and of isoleucine
and leucine with relatively younger (24 months ripening) hard
cheeses has also been reported (Consonni and Cagliani, 2008).
Mucchetti et al. (2000) also reported a linear correlation between
the concentration of pyroglutamic acid and ripening age with
the age of extensively ripened Italian Grana Padano cheese.
Furthermore, in contrast to brands A and C, the less mature tasty
cheeses from brand B were characterized by a higher relative
abundance of amino acids than in the more mature extra tasty
and vintage cheeses (Figure 3C). Such differences in amino
acid abundance between brands could be due to differences in
processing methods such as salt content, geography and the

microbial compositions of different cheeses made by different
manufacturers (Yvon and Rijnen, 2001; Masotti et al., 2010;
Moser et al., 2018).

Cheese is a complex ecosystem where many metabolites can
be re-metabolized or catabolized by multiple microbial species
(Irlinger and Mounier, 2009). In addition, enzymes released into
the curd even after cell death may continue to catalyze reactions.
This means that relationships between cheese microbiota and
metabolites are unlikely to be linear. A model which allows many
different types of relationships, including complex interactions,
is expected to be more accurate and versatile in predicting
associations between microbiota and metabolites. Hence, in
this study, the RF regression model (Breiman, 2001) was used
to predict such associations between cheese microbiota and
cheese metabolites. Similarly, MFA integrative analysis showed
that the overall (global) associations between microbiota and
metabolite composition in cheeses varied between brands. The
higher associations seen between bacterial taxa and metabolites
for brand C (RV = 0.73) as revealed by MFA analysis, may
be due to its different microbial community structure and/or
varying succession, since different microbes will possess different
enzymatic capacities affecting metabolite production. It is to be
noted that DNA sequencing of PCR amplified 16S rRNA genes (as
has been performed in this study) will detect both live and dead
cells (see Emerson et al., 2017) and not specifically identify those
cells that are active. There is a complex interplay between growth
of specific genera and subsequent death and lysis of cells, and
the subsequent production of metabolites in cheese, since many
enzymes such as peptidases released by bacterial autolysis remain
active after cell death. Indeed, some enzymes appear to be more
stable in the cheese environment than they are in intact stressed
cells (Crow et al., 1995). This makes validation of biomarkers
using more diverse and larger sample sets extremely important.
Furthermore, the RF regression modeling for brand C cheeses
showed that both cholesterol and urea were negatively associated
with the abundance of Streptococcus (S. thermophilus). The ability
of several strains of LAB, including Streptococcus thermophilus
(and also Lactobacillus) species to reduce cholesterol levels
in vitro and in cheese matrix has previously been demonstrated
(Albano et al., 2018; Belviso et al., 2009; Ziarno et al., 2007).
Understanding of this association between certain LAB and
reduced cholesterol levels offers opportunities to improve human
health in relation to cheese consumption.

In terms of other functional relationships between microbiota
and metabolites, the presence and abundance of Lactococcus was
associated with decreased levels of amino acids in brand C cheeses
(as shown by MFA and RF) and in particular, with pyroglutamic
acid and piperidine (a heterocyclic amine) both of which
have previously been reported in mature cheeses (Golovnya
et al., 1969). It has long been established that Lactococcus
lactis contributes to cheese flavor by metabolizing amino acids
and converting them into flavorsome compounds, for example,
by deamination to α-ketoacids and subsequent conversion
to amino acids to aldehydes, esters, alcohols and carboxylic
acids (Kieronczyk et al., 2003). However, the biochemistry
which underlies the negative association between piperidine and
Lactococcus warrants further investigation. The contribution of
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this amine to cheese flavor is unknown. The RF optimized model
also showed that the relative abundance of Lactobacillus was
inversely correlated with ornithine and glutamine in brand C
cheeses. Ornithine, produced by the decarboxylation activity
of LAB through the arginine deiminase (ADI) pathway, has
been shown to be physiologically active (Kurata et al., 2011;
Zúñiga et al., 2002). The ability of Lactobacillus paracasei
to convert a wide range of amino acids including glutamine
and ornithine, but not pyroglutamic acid in vitro has been
shown previously (Tammam et al., 2000). Similarly, for brand
B cheeses we determined the overall correlation of 57%
(RV = 0.57) between microbiota and metabolites composition
by MFA. Some of these correlations between microbiota
and metabolites were of interest; for example, a positive
association between a low -abundant taxa, Acinetobacter (a
common spoilage organism) (<0.1% of total reads) and
medium chain fatty acids. This association may be due to
the ability of this genus to produce lipase in the milk and/or
cheese (Pratuangdejkul and Dharmsthiti, 2000). However, the
effects of lipolysis on milk quality cannot be discounted
(Hickey et al., 2007).

While our findings cannot prove causation, they demonstrate
that the metabolome profiles of cheeses (and of individual
metabolites therein) which influence cheese quality and flavor
also may be a useful predictor of the microbial composition
of cheeses (Gallegos et al., 2017). This improved understanding
could additionally be applied to informing decision-making on
choice of “desirable” starter or adjunct cultures to optimize
cheese quality and flavor. Future targeted and controlled studies
involving more diverse and larger sample sets and whole
genome sequencing for differentiation of species and strains,
together with detailed profiling of volatile and non-volatile

metabolites and sensory analysis, are needed to validate the
associations between cheese microbiota and metabolomes and
identify potential biomarkers for monitoring cheese quality
and authenticity.
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