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Recent Research on Mechanisms of Feeding Regulation in Chicks
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Food intake affects poultry productivity. A complete understanding of these regulatory mechanisms provides new strate-
gies to improve productivity. Food intake is regulated by complex mechanisms involving many factors, including the central 
nervous system, gastrointestinal tract, hormones, and nutrients. Although several studies have been conducted to elucidate 
regulatory mechanisms in chickens, the mechanisms remain unclear. To update the current knowledge on feeding regulation 
in chickens, this review focuses on recent findings that have not been summarized in previous reviews, including spexins, 
adipokines, neurosecretory proteins GL and GM, and central intracellular signaling factors.
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Introduction

Food intake affects poultry productivity. For example, early 
post-hatch fasting inhibits skeletal muscle growth, resulting in 
lower body weight during the finishing period compared to that 
of chicks fed earlier[1–3]. Delaying post-hatching feeding im-
pairs meat and egg quality in chickens[4,5]. Therefore, in addi-
tion to the early initiation of feeding, neonatal chicks that start 
voluntary food intake early are preferable in the chicken industry. 
However, broiler chickens genetically selected for rapid growth 
and meat yield do not adequately regulate their voluntary food 
intake to meet their energy requirements[6]. Broiler chickens eat 
more than twice as much feed as layer chickens from 2 days of 
age[7]. Consequently, overconsumption of feed causes exces-
sive accumulation of abdominal fat, which is deemed an animal 
byproduct or waste[6,8]. Restricted feeding is a method used 
to control food intake; however, it also causes stress in broiler 
chickens. Collectively, these data highlight the need to develop 
a method to control voluntary food intake in chickens. However, 
the mechanisms underlying initiation of food intake and over-
feeding in chickens remain unclear.

Food intake is regulated by several factors, including the 

central nervous system, gastrointestinal tract, hormones, and 
nutrients[9–11]. Regulatory mechanisms are complicated, but 
fundamentally similar between vertebrates. However, several 
factors have different effects on the food intake of chickens and 
other vertebrates. For example, ghrelin, an orexigenic hormone 
found in mammals, inhibits food intake in chickens[12], whereas 
leptin, an anorexigenic hormone in mammals, is not involved in 
feeding regulation in chickens[13,14]. As it is not always pos-
sible to extrapolate the findings of mammalian studies to chick-
ens, studies on feeding regulation in chickens are required. To 
date, several studies have reviewed feeding regulation in chick-
ens[15–24] and many of these refer to neuropeptides and gut hor-
mones. In mammals, adipokines and cellular signaling pathways 
have been known to be involved in feeding regulation for two 
decades[9,25–31]. Similar studies have recently been reported in 
chickens. Moreover, novel food regulation factors, such as spex-
ins and neurosecretory proteins have been reported in chickens.

To update the current knowledge of feeding regulation in 
chickens, this review focuses on current information on spexins, 
adipokines, neurosecretory proteins, and cellular signaling path-
ways involved in the regulation of food intake in chicken. Ad-
ditionally, it suggests future perspectives for research in chicks.

Spexin

Spexin (SPX), also known as neuropeptide Q, was discov-
ered in 2007 using a bioinformatics search tool[32]. Later, its 
paralog, SPX2, was identified in non-mammals, including chick-
ens, using genome BLAST search information; consequently, 
the original SPX was identified as SPX1[33]. Phylogenetic and 
synteny analyses have revealed that the SPX family is closest to 
the galanin (GAL) family, followed by the kisspeptin family[33]. 
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The mature SPX1 peptide is composed of 14 amino acids and is 
evolutionarily conserved across vertebrates; it is identical in hu-
mans, mice, and chickens[34]. The mature peptide of SPX2 also 
contains 14 amino acids; however, its sequence differs from that 
of SPX1 at four positions[33]. Luciferase reporter assays have 
demonstrated that SPXs activate GAL receptors, GALR 2 and 
GALR3, but not GALR1 in humans, zebrafish[33], and chick-
ens[35,36]. Interestingly, the potency of SPXs against GALR2 
and GALR3 is similar to or greater than those of GAL in humans 
and zebrafish[33]. In contrast, the potency of SPX1 on GALR2 
is lower than that on GAL in chickens, whereas the potency on 
GALR3 is greater than that on GAL[36]. In addition, of the five 
GALR subtypes, chicken SPXs activate the GALR2-like recep-
tor (GALR2L) to the greatest extent. These findings indicate that 
SPXs are endogenous ligands of GALR2 (likely GALR2L in 
chickens) and GALR3 in vertebrates.

SPX mRNA is widely distributed in the central nervous system 
and peripheral tissues of chickens[34–36]. Fasting significantly 
increases the plasma SPX concentration[34] and hypothalamic 
mRNA levels of SPXs in chickens[35,36]. Generally, fasting 
upregulates orexigenic factors and downregulates anorexigenic 
factors; for example, the expressions of orexigenic neuropep-
tides such as neuropeptide Y (NPY) and agouti-related peptide 
(AgRP) are significantly increased by fasting in chicken hypo-
thalamus[37,38], whereas fasting significantly decreases those 
of proopiomelanocortin (POMC, the precursor of α-melanocyte 
stimulating hormone (α-MSH), an anorexigenic peptide) in the 
hypothalamus and gut hormone such as cholecystokinin (CCK) 
and peptide YY in chicken gastrointestinal tract[37–40]. How-
ever, intracerebroventricular (ICV) and intravenous injections 
of SPXs significantly decrease food intake in a dose-dependent 
manner in chicks[35,36,41], in contrast to GAL, an orexigenic 
peptide in vertebrates[24]. The decrease following ICV injection 
of SPX is attenuated by the co-injection of GALR3 antagonists, 
but not GALR2 antagonists, suggesting that SPX inhibits food 
intake via GALR3 in chicks[41]. Furthermore, SPXs control 
food intake via the gene expression of appetite-regulating neu-
ropeptides in the hypothalamus of chicks[35,36]. Intravenous 
injection of SPXs increases the mRNA levels of cocaine- and 
amphetamine-regulated transcript (CART, an anorexigenic neu-
ropeptide) in the hypothalamus of chicks, whereas those of AgRP 
decrease after injection, although no significant change is ob-
served in the levels of NPY and POMC[35,36]. These findings, 
including those from the luciferase reporter assay[35,36], sug-
gest that SPXs act in an endocrine manner to inhibit food intake 
by regulating hypothalamic AgRP and CART via GALR2L and 
GALR3 in chicks.

In mammals, SPX exerts various functions, such as inhibit-
ing food intake, lipid absorption, reducing body weight, and im-
proving insulin resistance[42]. However, there is no information 
regarding the function of SPXs in chickens other than feeding 
regulation. Similar to SPXs, GALR2 and GALR3 are widely ex-
pressed in peripheral tissues[34], suggesting that SPXs perform 
various functions in chickens and mammals. The expression 

of SPX and GALRs is regulated in a tissue-specific manner in 
chickens[34]. For example, SPX1 mRNA levels in the liver are 
significantly increased by fasting, whereas they are significantly 
decreased in adipose tissue and breast muscle[34]. Similarly, 
fasting significantly increases hepatic GALR2 mRNA levels, but 
decreases GALR3 mRNA levels in breast muscle[34]. These re-
sults raise the possibility that SPXs act in both an endocrine and 
autocrine/paracrine manners in chickens. Further in vitro studies 
using cells derived from peripheral tissues are required to eluci-
date the role of SPX in chickens.

Adipokines

“Adipokine” is a generic term for bioactive polypeptide se-
creted by adipose tissue. Several studies have elucidated the 
physiological roles of adipokines in appetite regulation, glucose 
and lipid metabolism, inflammation, and blood pressure control, 
particularly in mammals[25–27]. Several adipokines, such as 
apelin, leptin, nesfatin, and vaspin reduce food intake in mam-
mals[25–27]. A few studies have reported the effects of adipo-
kines on food intake in chickens.
Leptin

Bungo et al. (1999) have reported that ICV injection of mu-
rine leptin does not affect food intake in chicks[43]. However, 
studies using mammalian leptin have yielded conflicting opin-
ions[43–47]. In 2016, the chicken leptin mRNA sequence was 
identified[13] and it shares approximately 25% identity with 
mammalian amino acids[13]. In contrast to its almost exclusive 
expression in mammalian adipose tissue, leptin expression is 
barely detectable in chicken adipose tissue, providing strong evi-
dence that leptin is not an important adipokine in chickens[13]. 
Although leptin receptors are expressed in the hypothalamus 
of chickens, they are predominantly expressed in the pituitary 
gland[13]. The following year, ICV injection of a synthetic 
chicken partial leptin peptide, whose sequence corresponds to re-
gion 22-56 of human leptin, which inhibits feeding in rats when 
injected into the lateral ventricle, was reported to not affect food 
intake in chicks[14]. These findings suggest that leptin does not 
regulate food intake in chicks. However, further studies using 
full-length chicken leptin are required to confirm this hypothesis.
Adiponectin

Adiponectin is the most abundant adipokine in the plasma and 
is known to regulate insulin sensitivity, atherosclerosis, glucose 
uptake, and lipid metabolism in mammals[25,48]. Adiponectin 
concentrations in the plasma and cerebrospinal fluid significantly 
decrease after 12 h of fasting followed by 3 h of refeeding[49]. 
However, the effects of adiponectin on food intake in rodents are 
conflicting, and this discrepancy may be attributed to different 
feeding conditions. Central injection of adiponectin inhibits and 
promotes food intake under fasting and feeding conditions, re-
spectively[48]. Similar to mammals[48], adiponectin is highly 
expressed in chicken adipose tissues[50,51]. However, in con-
trast to mammals, the plasma concentration of adiponectin is sig-
nificantly higher in chicks refed for 2 h after 10 h of fasting than 
in those fasted for 12 h[50]. ICV injection of mouse adiponectin, 
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whose identity to chicken adiponectin is 60%[51], significantly 
increases food intake in a dose-dependent manner in chicks after 
fasting for 3 h[52]. Therefore, adiponectin is likely to regulate 
food intake in chicks in a direction opposite to that observed in 
mammals.
Other adipokines

In contrast to the adipokines described above, chemerin and 
apelin-13 reduce food intake in chicks[53,54] and rodents[55,56]. 
Daily intraperitoneal injections of recombinant chicken chemerin 
significantly decrease the food intake of chicks[53]. Central injec-
tion of mammalian apelin-13, whose sequence is different from 
that of chicken only at the first residue of the N-terminus[57], 
significantly decreases food intake in chicks. Interestingly, the 
inhibitory effects on food intake appear relatively late in both ro-
dents and chicks[53–56]; for example, ICV injection of apelin-13 
significantly decreases food intake at 8 h post-injection in rat un-
der ad libitum feeding condition[56] and at 4 h post-injection in 
chicks fasted for 3 h[54]. Therefore, these adipokines may not 
act directly on the central nervous system. Further studies are 
required to clarify the mechanisms by which these adipokines 
reduce food intake in chickens.

Interestingly, comparative omics analyses indicate more di-
rect crosstalk between chicken visceral fat and the reproductive 
system and lower involvement in the regulation of appetite, in-
flammation, and insulin resistance[58]. In this study, RNA-seq 
analysis reveals that the most prominent adipokines in mammals, 
including leptin, tumor necrosis factor α, interferon-γ, and inter-
leukin-6, are expressed at low levels in adipose tissue of both 
broiler and layer chickens[58]. However, several adipokines, 
such as adipolin, adiponectin, adipsin (complement factor D, 
CFD), retinol-binding protein 4, and visfatin (nicotinamide phos-
phoribosyl transferase, NAMPT, which has an orexigenic effect 
in chicks[59]), are expressed at much higher levels than those de-
scribed above[58]. In addition, qPCR analyses have revealed that 
fasting significantly reduces the expression of adipolin and adi-
ponectin in both types of chickens, and CFD in layer chickens, 
whereas NAMPT expression is significantly increased in layer 
chickens[58]. Therefore, these adipokines may regulate energy 
homeostasis, including appetite, in chickens.

Neurosecretory proteins GL and GM

Neurosecretory protein GL (NPGL) has been identified in the 
arcuate nucleus, formerly known as the infundibular nucleus, of 
chicks using a cDNA subtractive screening method[60]. A subse-
quent search of the genome database suggested the presence of a 
paralogous NPGL, named neurosecretory protein GM (NPGM)
[60,61]. Both proteins are conserved in vertebrates[60,61]. A pre-
vious study in mice showed that a single ICV injection of mu-
rine NPGL stimulates food intake and that NPGL expression in 
the mediobasal hypothalamus is upregulated during fasting[62]. 
Morphological analysis reveals that NPGL-immunoreactive 
fibers contact POMC neurons in the lateral part of the arcuate 
nucleus[62]. In rats, NPGL overexpression in the mediobasal 
hypothalamus increases daily food intake of normal chow and 

cumulative caloric intake in a high-calorie diet[63]. Similar to 
that in mice[62], fasting promotes NPGL expression in the me-
diobasal hypothalamus of rats[63] whereas intraperitoneal injec-
tion of insulin inhibits NPGL expression in the mediobasal hy-
pothalamus of rats[63]. These findings suggest that hypothalamic 
NPGL regulates food intake via POMC neurons in response to 
peripheral insulin concentration.

In chicks, chronic ICV injection of chicken NPGL stimulates 
food intake[64]. However, no significant changes in NPGL ex-
pression are observed in the mediobasal hypothalamus after fast-
ing[65]. In contrast, a single ICV injection of NPGM suppresses 
food intake in chicks[66] and fasting promotes NPGM expres-
sion in the mediobasal hypothalamus[65]. Therefore, it is likely 
that NPGM plays a physiologically important role in the regula-
tion of feeding in chicks.

Interestingly, overexpression and chronic injection of NPGL 
induces fat accumulation in chicks[67], mice[68,69], and 
rats[63,70]. NPGL also alters the expression of genes involved in 
lipid metabolism of the white adipose tissue; however, the altered 
genes have been inconsistently identified. Further studies are re-
quired to clarify the mechanism by which hypothalamic NPGL 
promotes abdominal fat accumulation.

Cellular signaling pathways

In the mammalian hypothalamus, cellular signaling path-
ways, such as insulin, protein kinase B (Akt), mammalian target 
of rapamycin, Janus kinase (JAK)/signal transducers and activa-
tors of transcription (STAT), and AMP-activated protein kinase 
(AMPK) contribute to the regulation of food intake[9,28–31]. 
These pathways are regulated by hormones (adiponectin, insu-
lin, and leptin) and nutrients (glucose and leucine) and control 
the gene expression of appetite-regulating neuropeptides, such as 
NPY, AgRP, and POMC. In vitro studies using hypothalamic cell 
lines suggest that α-MSH phosphorylates cyclic AMP response 
element binding protein via extracellular signal-regulated kinase 
(ERK) activation[71,72]. In addition to the hypothalamus, the 
hindbrain plays an important role in feeding regulation because 
it contains the nucleus of the solitary tract, where the vagal af-
ferent neurons that are activated by gastric distension and gut 
hormones terminate, and the area postrema, which receives vagal 
input and circulating signals[9,73–75]. Although few studies on 
the hindbrain have investigated the cellular signaling pathways 
involved in feeding regulation, ERK signaling in the dorsal vagal 
complex, which includes the area postrema, nucleus of the soli-
tary tract, and dorsal motor nucleus of the vagus, plays a key role 
in CCK and insulin-induced inhibition of food intake[76–80]. 
A previous study in rats suggests that the activation of the glu-
cagon-like peptide-1 receptor in the hindbrain suppresses food 
intake through protein kinase A-mediated suppression of AMPK 
and activation of ERK[81].

Recently, studies on chickens have suggested that central cel-
lular signaling pathways are involved in feeding regulation. For 
example, fasting increases the AMPK phosphorylation rate in 
the chicken hypothalamus[82] and an AMPK inhibitor attenu-
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ates dexamethasone-induced hyperphagia in chicks[83]. These 
findings suggest that hypothalamic AMPK activation stimulates 
food intake in chicks, similar to mammals. ICV injection of re-
combinant human transforming growth factor-β1 induces hypo-
thalamic Smad2 phosphorylation and suppression of food intake 
in chicks[84]. However, phosphorylated Smad2 is not detected 
under ad libitum feeding, fasting, and refeeding conditions in the 
hypothalamus of chicks[84]. These findings suggest that hypo-
thalamic Smad activation suppresses food intake in chicks, but 
may not occur in response to feeding conditions[84]. A recent 
study using a synthetic inhibitor suggests that JAK2/3 stimulates 
food intake in chicks[85]. However, it remains unclear whether 
hypothalamic JAK2/3 and its downstream factor, STAT, respond 
to feeding conditions and hormones in chickens. Further studies 
are required to clarify the physiological roles of hypothalamic 
JAK/STAT signaling in the regulation of feeding in chickens.

Interestingly, previous studies have shown that the central 
cellular signaling factors respond differently to feeding condi-
tions and hormones in broiler and layer chicks. ICV injection 
of porcine insulin and refeeding promotes hypothalamic Akt 
phosphorylation in both broiler and layer chicks and promotes 
Forkhead box O1 (FOXO1) phosphorylation in layer chicks, but 
not in broiler chicks[86,87]. FOXO1 is phosphorylated by Akt, 
which induces the nuclear export of FOXO1 and thus abrogates 
FOXO1-mediated inhibition of POMC expression[28]. Fur-
thermore, the ICV injection of insulin increases POMC mRNA 
levels in the hypothalamus of layer chicks, but not in broiler 
chicks[87]. ICV injection of insulin and refeeding lead to the 
phosphorylation of both Akt and ERK in the medulla oblongata 
of layer chicks[88], and the phosphorylation of Akt, but not ERK, 
in broiler chicks (unpublished data). These differences between 
broiler and layer chicks may be one of the causes of the differ-
ences in food intake.

Conclusions and future perspectives

Several studies have elucidated regulatory mechanisms un-
derlying food intake in chickens. However, research on adipo-
kines and intracellular signaling factors in the feeding regulation 
of chickens has been delayed compared to that of mammals, 
even though differences between mammals and chickens, and 
between broiler and layer chicks, have been reported. Further 
studies are required to clarify whether adipokines are physiologi-
cally involved in feeding regulation in chickens, which signaling 
pathways are activated or inhibited by appetite-regulating neu-
ropeptides and hormones, and how they contribute to the gene 
expression of neuropeptides, such as NPY, AgRP, and POMC.

Neonatal chicks (usually 4–8 days old) are preferred for stud-
ies on feeding regulation. Because the early initiation of feeding 
affects poultry production as described above, studies on neona-
tal chicks are required. However, the abdominal fat, an adipo-
kine-secreting site, is undeveloped in chicks during this period, 
because the tissue weight is extremely low and adipocyte size is 
small[89–91]. Similarly, the gastrointestinal tract, the peripheral 
site that secretes gut hormones, develops in chicks during the first 

week after hatching[92]. Therefore, it remains unclear whether 
the adipokines and gut hormones that regulate food intake are 
produced and secreted in neonatal chicks, even though central 
injection of these molecules affects food intake. Further studies 
are required to examine the production of adipokines and gut hor-
mones in peripheral tissues of neonatal chicks.

As commercially-available chicken biomolecules, including 
adipokines and cytokines, are extremely scarce, several studies 
have substituted mammalian biomolecules. A previous study 
reported that central injection of porcine and chicken insulin, 
but not human and bovine insulin, suppresses food intake in 
chicks[93], indicating that mammalian peptides/proteins cannot 
be necessarily substituted in chicken studies. Therefore, chicken 
peptides/proteins are preferable. However, when using mamma-
lian peptides/proteins, preliminary studies to examine whether 
these molecules activate or inhibit downstream pathways or gene 
expression, are required.

Many studies on central feeding regulation in chickens have 
adopted the method of ICV injection into chicks, which was de-
veloped by Davis et al. (1979)[94]. This method is simple and 
a successful injection is easy to verify (Fig. 1). In addition, the 
ICV injection does not affect food intake[95]. In this method, 
the solution is injected into the lateral ventricle and diffuses 
through the ventricle. Several studies have shown that responses 
to feeding conditions and hormones differ between neuronal nu-
clei[29,30,96] Therefore, simple methods for direct injection into 
the third and fourth ventricles (located in the center of appetite 
regulation) and the neuronal nucleus of chicks should be devel-
oped to expand this research field.

In conclusion, a complete understanding of the regulatory 
mechanisms underlying food intake in chickens will provide new 
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Fig. 1.    Representative successful and unsuccessful intra-
cerebroventricular injections in chick brain. Saline solution 
containing 0.1% Evans blue was injected using the method of 
Davis et al. (1979)[70]. Successful injection (the brain on the 
left) was verified by observing the presence of Evans blue in the 
lateral ventricle. In the brain on the right, no Evans blue was 
observed in the lateral ventricle, indicating that the injection had 
failed.
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strategies to improve production efficiency and quality in the 
poultry industry.
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