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Abstract Motoneurons are traditionally viewed as the output of the spinal cord that do not

influence locomotor rhythmogenesis. We assessed the role of motoneuron firing during ongoing

locomotor-like activity in neonatal mice expressing archaerhopsin-3 (Arch), halorhodopsin (eNpHR),

or channelrhodopsin-2 (ChR2) in Choline acetyltransferase neurons (ChAT+) or Arch in LIM-

homeodomain transcription factor Isl1+ neurons. Illumination of the lumbar cord in mice expressing

eNpHR or Arch in ChAT+ or Isl1+ neurons, depressed motoneuron discharge, transiently decreased

the frequency, and perturbed the phasing of the locomotor-like rhythm. When the light was turned

off motoneuron firing and locomotor frequency both transiently increased. These effects were not

due to cholinergic neurotransmission, persisted during partial blockade of gap junctions and were

mediated, in part, by AMPAergic transmission. In spinal cords expressing ChR2, illumination

increased motoneuron discharge and transiently accelerated the rhythm. We conclude that

motoneurons provide feedback to the central pattern generator (CPG) during drug-induced

locomotor-like activity.

DOI: 10.7554/eLife.26622.001

Introduction
Motoneurons, whose primary function is to produce muscle contraction, are among the most widely

studied cells of the nervous system (for review see Stuart et al., 2011). In addition to their connec-

tions with muscle, motoneurons also project within the spinal cord to synapse with inhibitory

Renshaw cells (Renshaw, 1941, 1946). In turn, Renshaw cells project back to motoneurons forming

a negative feedback circuit (Eccles et al., 1954). The central effects of motoneuron discharge have

been mostly considered in terms of this negative feedback circuit and have included decorrelation of

motoneuron activity (Maltenfort et al., 1998) and motoneuron gain control (Hultborn et al., 1979).

However, Renshaw cells also project to each other, to Ia inhibitory interneurons and to ventral spino-

cerebellar neurons (Lundberg and Weight, 1971; Jankowska and Hammar, 2013). Accordingly,

motoneuron discharge could have much wider effects on spinal circuit function than has been previ-

ously acknowledged. Invertebrate motoneurons are critically involved in rhythmogenesis in several

systems including leech swimming (Hashemzadeh-Gargari and Friesen, 1989), the crab stomato-

gastric system (Weimann et al., 1991), drosophila larval locomotion (Matsunaga et al., 2017) and

nematode locomotion (Chalfie et al., 1985). Among vertebrates, motoneuron activity can regulate

swimming in the adult zebrafish (Song et al., 2016), initiates spontaneous rhythmic motor activity in
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the developing chick (Wenner and O’Donovan, 2001) and mouse (Hanson and Landmesser, 2003)

spinal cords and regulates fictive vocalization in Xenopus Laevis (Lawton et al., 2017). In mammals,

motoneurons are not thought to be part of the spinal locomotor generator (Rybak et al., 2015)

although they can modify their output through activation or inhibition of their intrinsic membrane

properties (Hounsgaard et al., 1984, 1988). However, in the in-vitro neonatal mouse spinal cord,

stimulation of motor axons can trigger a bout of locomotor-like activity (Mentis et al., 2005). In

addition, a brief burst of ventral root stimuli can entrain disinhibited bursting in the neonatal rat

(Machacek and Hochman, 2006) and mouse spinal cords (Bonnot et al., 2009). Furthermore, in the

neonatal rat spinal cord, ventral root stimulation can increase the frequency of drug-induced loco-

motor activity if noradrenaline is present in the bath (Machacek and Hochman, 2006). Collectively,

these findings suggest that motoneuron activity can access the circuitry of the locomotor central pat-

tern generator. For these reasons, we decided to investigate whether motoneuron firing could influ-

ence the locomotor CPG during locomotor-like activity induced by bath application of NMDA and

serotonin (5-HT) in the neonatal mouse spinal cord. To accomplish this, we expressed archaerhodop-

sin or halorhodopsin - light-gated proton (Chow et al., 2010) and chloride (Zhang et al., 2007)

pumps respectively - that can hyperpolarize neurons or channelrhodopsin, a light-gated channel that

can depolarize neurons (Boyden et al., 2005) in ChAT+ neurons, and archaerhodopsin in Isl1+ neu-

rons. While they are not specific markers of motoneurons, Isl1 and ChAT are both expressed in

motoneurons as well as in other neurons (Pfaff et al., 1996; Bui et al., 2013). We then used light to

modify the firing of motoneurons and established the resultant effects on the drug-induced locomo-

tor rhythm. Some of this work has appeared in abstract form (Falgairolle et al., 2016).

Results

Experiments in animals expressing archaerhodopsin-3 in cholinergic
neurons
We first established which neurons expressed Arch-GFP using immunocytochemistry for GFP and

ChAT. As shown in Figure 1, all neurons expressing ChAT immunoreactivity expressed the fusion

protein Arch-GFP. As expected, GFP expression was seen in motoneurons (Figure 1C1), pregangli-

onic autonomic neurons, ChAT+ neurons surrounding the central canal (Figure 1C2), dorsal choliner-

gic neurons (Figure 1C3) and, cholinergic interneurons scattered throughout the ventral gray matter

in both L1/2 and L5/L6 segments (n = 3 for each) and along the length of the lumbar cord (data not

shown).

Effects of green light on the pattern of locomotor-like activity recorded
from the ventral roots and individual motoneurons in ChAT-Arch
animals
In previous work, it was shown that dopamine blocked the ability of ventral root stimulation to acti-

vate the locomotor rhythm (Humphreys and Whelan, 2012). For this reason, our experiments were

performed using only NMDA and serotonin to produce locomotor-like activity. To activate archaer-

hodopsin, we used a green light that illuminated most, if not all, of the lumbar spinal cord (see

Materials and methods). Figure 2 shows the effects of the light on the locomotor rhythm in a ChAT-

Arch spinal cord. To assess whether the light itself had any effect on the rhythm we repeated the

experiments on wild type (WT) cords, which are devoid of opsins. To statistically compare the effects

of light on WT cords and on those expressing opsins, we generated time series of the changes in

phase, frequency and integrated motoneuron firing for both the experimental and wild type animals.

We then performed a bootstrap t-test on the time series (see Materials and methods) and plotted

the results with colors coding for the statistically significant differences between the genetically mod-

ified and the wild type cords (Figure 2B–D). For the ChAT-Arch cords, we found that the frequency

of the rhythm was transiently slowed (Figure 2C, p<0.0001 at the minimum) and this was accompa-

nied by a transient change in the phase relationships of the activity (Figure 2B, p<0.01). Notice that

the changes in frequency and phase at the beginning of the light occur just before the onset of the

light. This is because the wavelet analysis produces a temporal smearing that depends upon the fre-

quency components in the signal; the lower the frequency the greater the smearing (Torrence and

Compo, 1998). While the light slightly increased motoneuron firing in the WT cords (Figure 2—

Falgairolle et al. eLife 2017;6:e26622. DOI: 10.7554/eLife.26622 2 of 29

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.26622


figure supplement 1), it produced a strong inhibition of motoneuron firing in the ChAT-Arch cords

(Figure 2D, p<0.0001). The inhibition was greater in the extensor-dominated versus the flexor-domi-

nated ventral roots during the 60 s exposure to the light (first 10 s of the light �78.16 ± 7.13%,

�63.06 ± 11.19%, Last 10 s of the light: �51.41 ± 6.65%, �40.55 ± 7.94% for extensor and flexor

roots respectively, n = 25, 2-way ANOVA, light status: F(3,192) p<0.0001, root F(1,192): p<0.0001,

interaction F(3,192): p<0.0001). The frequency decrease in the bilateral flexor roots versus the ipsi-

lateral flexor/extensor roots was not significantly different (p=0.86, 2-way ANOVA, light status: F

(3,192) p=0.9934, pair of roots F(1,192): p<0.0001, interaction F(3,192): p=0.8469). The light-

induced change in phasing was greatest for the ipsilateral flexor/extensor roots (46.87 ± 33.96˚,

Figure 1. Archaerhodopsin is expressed in all ChAT-positive neurons. (A–B–C) Z-stack projection of 10X images (2.05 mm) of a 60 mm section of the L2

segment of a P3 ChAT-Arch mouse spinal cord showing archaerhodopsin (green, A and C) and ChAT-positive (red, B and C) neurons and the merged

image (C). The white scale bars represent 100 mm. Insets from the white rectangles in the merged image show that motoneurons (C1), sympathetic pre-

ganglionic neurons (C2) and dorsal cholinergic neurons (C3) all express archaerhodopsin and ChAT (1 mm optical section). The white scale bars

measure 20 mm. (D–E–F) 10X z-stack projection (4 mm) of a 60 mm section in the L6 segment of a P3 ChAT-Arch mouse hemi-cord showing

archaerhodopsin (green, D–F) and ChAT-positive (red, E–F) neurons and the merged image (F). The white scale bar is 100 mm.

DOI: 10.7554/eLife.26622.002
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20.07 ± 12.47˚ ipsilateral and bilateral roots respectively; p<0.0001; n = 25, 2-way ANOVA, light sta-

tus: F(3,192) p<0.0001, pair of roots F(1,192): p<0.0001, interaction F(3,192): p=0.0002). The fre-

quency of the rhythm returned to control values during the light and then transiently increased when

the light was turned off (Figure 2C, Last 10 s of the light: 0.7 ± 6.3%, first 10 s after the light: 8.37 ±

Figure 2. Light-induced hyperpolarization of cholinergic neurons transiently decreases the frequency and alters the phasing of drug-induced

locomotor-like activity. (A) Locomotor-like activity recorded from the right L2 and left L2 and L5 ventral roots (black traces) of a P1 isolated spinal cord

of a ChAT-Arch mouse. The superimposed green traces are the slow potentials obtained by low pass filtering the raw signals. Locomotor-like activity

was evoked by applying 5 mM NMDA and 10 mM 5-HT. The duration of the light (60 s) is indicated by the green bar. (B–C) Time series showing the

change in absolute phase (B) and frequency (C) averaged for all experiments for the bilateral flexor (B1–C1) and the ipsilateral flexor/extensor roots

(B2–C2). (D) Change (%) in the averaged integrated ventral root discharge (Change in MN firing) for the ipsilateral flexor (D1) and extensor (D2) ventral

roots. The statistics were obtained using a bootstrap t-test between ChAT-Archaerhodopsin (n = 25) and wild type cords (n = 28) and are color-coded

as indicated in the box below the records.

DOI: 10.7554/eLife.26622.003

The following figure supplements are available for figure 2:

Figure supplement 1. Effect of green light on drug-induced locomotor-like activity in wild type cords.

DOI: 10.7554/eLife.26622.004

Figure supplement 2. Effect of varying the green light intensity on the integrated firing of the right L2 ventral root and on the frequency of the

locomotor-like rhythm in ChAT-Arch cords.

DOI: 10.7554/eLife.26622.005

Falgairolle et al. eLife 2017;6:e26622. DOI: 10.7554/eLife.26622 4 of 29

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.26622.003
http://dx.doi.org/10.7554/eLife.26622.004
http://dx.doi.org/10.7554/eLife.26622.005
http://dx.doi.org/10.7554/eLife.26622


5.46%; p<0.0001). Motoneuron firing also increased transiently after the light was turned off

(Figure 2D, Last 10 s of the light: �40.55 ± 7.95%, first 10 s after the light: 27.16 ± 16.35%;

p<0.0001). Similar, but smaller and briefer, light-induced changes were observed in frequency and

phase of the rhythm in the WT cords (Figure 2—figure supplement 1). These results suggested that

the light itself had some non-specific effects on the rhythm and that a component of the changes

observed in the ChAT-Arch cords are due to the light probably because of an increase in tempera-

ture. We measured the temperature under the light probe, and found that it increased locally by

about 2 to 3˚C. We then performed experiments to test whether decreasing the intensity of the light

would circumvent the problem. We found that, in the ChAT-Arch cords, as the light intensity

decreased, the suppression of motoneuron firing was reduced and the changes in the frequency of

the locomotor rhythm were smaller and more variable (see Figure 2—figure supplement 2). When

the light intensity was reduced to 20–25%, motoneuron firing was reduced by ~25–30% (p<0.05)

and this was similar whether the cord was illuminated ventrally or dorsally (probably because of light

reaching motoneuron dendrites). Therefore, we decided to use the maximum illumination intensity.

The light-induced changes in frequency and phase are not due to
alterations in extracellular or intracellular pH
Recent studies have shown that both local extracellular and intracellular pH are affected by archaer-

hodopsin activation (Zeng et al., 2015; El-Gaby et al., 2016; Mahn et al., 2016). Because these

changes can potentially affect the rhythm (Beg et al., 2008; Zeng et al., 2015; Jalalvand et al.,

2016), we repeated the experiments in spinal cords expressing the light-activated chloride pump

halorhodopsin (eNpHR; n = 12, Figure 3A) and activated the opsin with the same green light. As

described for the ChAT-Arch cords, light suppressed the ventral root firing especially in the extensor

roots (Figure 3E), transiently reduced the frequency, and altered the phasing of the rhythm

(Figure 3C and D). The light-induced changes in phase were greater in the ipsilateral flexor/extensor

roots than in the bilateral flexor roots (Figure 3C). After the light was turned off, a rebound in fre-

quency and motoneuron spiking was also observed (Figure 3D).

To compare statistically the light-induced changes in the variables between the different groups

(WT, ChAT-Arch, ChAT-eNpHR) we calculated their mean value 10 s before light (control), the first

10 s of the light (Start Light), the last 10 s of the light, and the first 10 s after the light (After Light).

For the quantitative analysis, we focused on the behavior of the bilateral flexors because the phasing

of the flexor/extensor roots was susceptible to light-induced changes in phase caused by the mem-

brane potential becoming lower than the chloride equilibrium potential (see below and Figure 3—

figure supplement 1).

The frequency of the control rhythm (before the light, Figure 3B) was significantly faster in the

ChAT-Arch cords compared to the wild type cords (WT: 0.43 ± 0.066 Hz, ChAT-Arch: 0.48 ± 0.077

Hz, p=0.0159) but not in the ChAT-eNpHR cords compared to the wild type cords (0.46 ± 0.06 Hz).

During the light, both ChAT-Arch and ChAT-eNpHR cords exhibited significant light-induced

decreases in motoneuron firing compared to control levels (p<0.0001) with ChAT-Arch cords being

silenced more than ChAT-eNpHR cords (Figure 3H; ChAT-Arch: �63.06 ± 11.19%, ChAT-eNpHR:

�53.75 ± 12.01%, p=0.0030). A small light-induced increase in motoneuron firing was observed in

the wild type cords when the light was turned on (5.62 ± 12.21%, Figure 2—figure supplement

1D). We next compared the light-induced changes in frequency (%) to the control frequency (Start

Light, Figure 3G). Both ChAT-Arch and ChAT-eNpHR cords exhibited significant, transient

decreases in frequency (�7.78 ± 3.96% p=<0.0001, �4.46 ± 6.75% p=0.0263 respectively) during

the light compared to the control period, whereas the wild type cords did not (�0.69 ± 5.1%

p=0.8959). During the first 10 s of the light, the mean ChAT-Arch and ChAT-eNpHR frequencies

were statistically different from the wild type (p<0.0001, p=0.0039; respectively) but they were not

statistically different from each other (p=0.0936).

We then compared the changes (%) in motoneuron firing and the frequency of the rhythm 10 s

immediately following the cessation of the light to the values during the last 10 s of the light (After

Light, Figure 3G). Both ChAT-Arch and ChAT-eNpHR cords showed a significant increase in moto-

neuron firing (27.16 ± 16.35%, p<0.0001, 13.16 ± 5.56%, p<0.0001 respectively, data not shown),

whereas only the ChAT-Arch cords showed a significant increase in frequency when compared to

the frequency during the last 10 s of the light (Figure 3G; ChAT-Arch: 8.37 ± 8.46 % p<0.0001,

ChAT-eNpHR: 7.21 ± 5.01%, p=0.4331). However, the post-light increase was significantly different
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Figure 3. The light-induced decrease in the frequency of the rhythm and the phase changes are not due to changes in pH. (A) Locomotor-like activity

recorded from the right and left L2 and the left L5 ventral roots (black traces) in a P1 ChAT-eNpHR animal. The superimposed green traces are the slow

potentials obtained by low pass filtering the raw signals. The activity was evoked by applying 6 mM NMDA and 8 mM 5-HT and the green bar indicates

the duration of the light (60 s). (B) Bar plot showing the average locomotor-like frequency in wild type (n = 28, black circles), ChAT-Arch (n = 25, light

Figure 3 continued on next page
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from the control frequency before the light was turned on for both ChAT-Arch and ChAT-eNpHR

cords (p<0.0001, p=0.0021; respectively, data not shown).

There was also a small but significant light-induced change in phase between the bilateral flexors

in all cords (Figure 3F; WT: 13.3 ± 9.11˚, p=0.0035, ChAT-Arch: 20.07 ± 12.47˚, p<0.0001, ChAT-
eNpHR: 19.33 ± 12.44˚, p=0.0051). The light-induced phase changes were significantly greater in the

Chat-Arch and ChAT-eNpHR cords compared to the wild type cords (ChAT-Arch: p=0.0008, ChAT-

eNpHR: p=0.0167). The light-induced phase changes were larger in the ipsilateral flexor/extensor

ventral roots (data not shown), and were greater in the ChAT-eNpHR cords than in the ChAT-Arch

cords (ChAT-Arch: 46.87 ± 33.96˚, ChAT-eNpHR: 74.79 ± 43.2˚, p<0.0001). One possible explanation

for the larger phase changes in the flexor/extensor roots and in the ChAT-eNpHR cords is that the

extensor rhythmic drive is predominantly inhibitory whereas that to the flexors is mostly excitatory

(Endo and Kiehn, 2008). Thus, under illumination, the membrane potential of extensor motoneurons

may be hyperpolarized below the chloride equilibrium potential resulting in inhibitory drive poten-

tials becoming depolarizing (See Figure 3—figure supplement 1). This may also explain the larger

phase changes in the ChAT-eNpHR versus the ChAT-Arch cords because the chloride reversal

potential is depolarized with the activation of the chloride pump (Raimondo et al., 2012).

Intracellular recordings from flexor and extensor motoneurons reveal
light-induced changes in rhythmic drive potentials
Our conclusions about the light-induced changes in the locomotor rhythm have been based on

recordings of the rhythmic slow potentials extracted from the ventral root recordings. In many previ-

ous studies these have been shown to correspond to the timing of locomotor-drive potentials

recorded intracellularly (Kremer and Lev-Tov, 1997; Whelan et al., 2000); nevertheless, we wanted

to confirm the effects of the light on the rhythm with intracellular recordings. In the next set of

experiments, we examined the effects of light on the firing, the intracellularly recorded rhythmic

drive potentials and the intrinsic properties of individual flexor and extensor motoneurons in ChAT-

Arch cords.

Figure 3 continued

green circles) and ChAT- eNpHR (n = 12, dark green circles) cords before the light (ANOVA, p=0.0533, two-stage linear step-up procedure, *:

p=0.0141). (C–D) Time series of the change in absolute phase (C) and frequency (D) averaged for all experiments for the bilateral flexor (C1–D1) and

ipsilateral flexor-extensor roots (C2–D2). (E) Averaged integrated ventral root discharge (Change in MN firing) for the ipsilateral flexor (E1) and extensor

(E2) ventral roots. The statistics are obtained using a bootstrap t-test between ChAT- eNpHR (n = 12) and wild type cords (n = 28). The statistics are

color-coded as indicated in the box below the records. The green rectangles indicate the duration of the light (60 s). (F–G–H) Bar plots showing the

average change in the absolute phase (F), frequency of the bilateral flexors (G) for the 10 s just before and just after the light is turned on (Start Light,

circles) and the 10 s just before and just after the light is turned off (After Light, squares) for wild type (black), ChAT-Arch (light green) and ChAT-

eNpHR (dark green) animals. (H) Bar plots showing the average change of the ipsilateral flexor root for the 10 s just before and just after the light is

turned on (Start Light, circles). Using a two-way ANOVA, we calculated the statistical differences between the three groups of animals (genetic Identity,

shown above the bars) and the differences between light on and light off (light status; shown below the bars). The results of the ANOVA for the

frequency changes were (Light status: F(3, 248) p<0.0001, Genetic identity F(2,248) p=0.0276, Interaction F(6,248): p<0.0001), for the absolute phase

changes were (Light status: F(3, 248) p<0.0001, Genetic identity F(2,248) p<0.0001, Interaction F(6,248): p=0.8341), and for the changes in motoneuron

firing were (Light status: F(3, 248) p<0.0001, Genetic identity F(2,248) p<0.0001, Interaction F(6,248): p<0.0001*p<0.05, **p<0.01, ***p<0.001,

****p<0.0001.

DOI: 10.7554/eLife.26622.006

The following source data and figure supplement are available for figure 3:

Source data 1. Source data for Bar plots in Figure 3B.

DOI: 10.7554/eLife.26622.007

Source data 2. Source data for Bar plots in Figure 3F.

DOI: 10.7554/eLife.26622.008

Source data 3. Source data for Bar plots in Figure 3G.

DOI: 10.7554/eLife.26622.009

Source data 4. Source data for Bar plots in Figure 3H.

DOI: 10.7554/eLife.26622.010

Figure supplement 1. Effect of dopamine of the light-induced effects during drug-induced locomotor-like activity in ChAT-Arch animals.

DOI: 10.7554/eLife.26622.011
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We first tested whether motoneuronal input resistance changed in green light under control con-

ditions and in the drug-cocktail (Figure 4—figure supplement 1A1). We found that while there was

a significant increase in input resistance after adding the drugs (control resistance: 44.8 ± 26.8 MW,

NMDA-5-HT resistance: 76.38 ± 67.2 MW, p=0.0437), the resistance of the cells did not change in

the light (p=0.1541, p=0.7171, respectively). The hyperpolarization induced by the light was greater

in the presence of the drug cocktail (hyperpolarization control: 3.188 ± 1.5 mV, hyperpolarization

NMDA-5-HT: 5.285 ± 3.8 mV, t-test p=0.0352, Figure 4—figure supplement 1A2) which was proba-

bly due to the increased input resistance in the drugs.

We recorded from 14 motoneurons (eight extensor, four flexor, two unidentified) in the L2 and

the L5 segments. In the four flexor motoneurons, the light depressed the firing to 44.8% of the con-

trol value (measured over 60 seconds - pre-light spike number: 230 ± 102, light spike number:

103 ± 74). After the light, the flexor motoneuron firing increased by 9.1% (251 ± 122) compared to

the pre-light control value. For the eight identified extensor motoneurons, the light decreased the

firing of the motoneurons to 29.2% of the control firing level before the light was turned on (spike

numbers: pre-light 342 ± 178, light 100 ± 120). Once the light was turned off the firing increased by

14.3% (391 ± 153) compared to the value before the light. The spike counts were made from trials in

which the membrane potential ranged from �40.1 to �62.1 mV (mean value for 8 extensors

�48 ± 4.6 mV; for 4 flexors �48.4 ± 5 mV). Figure 4—figure supplement 2 illustrates motoneuron

behavior during stable locomotor-like activity.

In both neurons illustrated in Figure 4, the intracellularly recorded rhythmic drive potentials dis-

appeared or were greatly reduced in amplitude for 10–20 s after the light was turned on. When the

flexor neuron (Figure 4A1), receiving primarily excitatory drive (Endo and Kiehn, 2008), was held at

�50 mV, the light hyperpolarized the membrane potential to �55 mV and the rhythmic drive poten-

tial disappeared for approximately 10 s (Figure 4A2, red trace). The absence of synaptic drive was

not due to a change in the amplitude of the locomotor drive potentials because when the cell was

held at �61 mV, the amplitude of the drive potentials was similar to those recorded at �50 mV

(Figure 4A2, green trace). These results strongly suggest that the rhythmic drive to the motoneuron

has stopped. However, for the extensor motoneuron receiving predominantly inhibitory rhythmic

drive (Figure 4B1), it is important to show that the decreased amplitude or the absence of drive

potentials during hyperpolarization was not due to the membrane potential reaching the chloride

equilibrium potential. This was not the case as shown in Figure 4B2. The effect of membrane hyper-

polarization on the drive potentials is shown in the pre-light control portion of the records; from �48

to �68 mV, there is a reduction in the amplitude of the potentials without a change in frequency.

However, during the light, the drive is absent or its frequency greatly reduced at all the holding

potentials. This result confirms that this silencing was not due to the neuron reaching the chloride

reversal potential when hyperpolarized, but rather to a loss of rhythmic synaptic inputs. In all

recorded motoneurons, regardless of the nature of their synaptic inputs, the form and timing of the

drive potentials were similar to the slow potentials recorded in the parent ventral root .

We were also concerned that the light-induced hyperpolarization might influence active mem-

brane conductances that could contribute to the changes in the locomotor drive potentials. To

show that the light-induced membrane potential change was not responsible for the decrease in fre-

quency, we performed experiments in which the light was restricted to the caudal thoracic and ros-

tral lumbar segments (Figure 4—figure supplement 3) so that the L5 segment was only minimally

illuminated. In this configuration, motoneuron firing was barely affected in L5 (Figure 4—figure sup-

plement 3A and E) compared to the substantial reduction that occurred during illumination of the

whole cord (Figure 4—figure supplement 3B and E, dotted grey traces, p<0.0001 in L5). Neverthe-

less, the changes in frequency were similar in both L2 and L5, indicating that they were not due to

changes in the behavior of the motoneurons themselves. However, the phase change in the flexor-

extensor root pairs (Figure 4—figure supplement 3C2) was much less marked than when the entire

lumbar cord was illuminated. As we discussed earlier, this is because the light can cause the drive

potentials in L5 motoneurons to reverse if the hyperpolarization moves the membrane potential

below the chloride equilibrium potential.

For both sets of experiments, the reduction in frequency was similar, which is perhaps surprising

because the decrease in the firing of lumbar motoneurons as a population will be greatest when the

whole lumbar cord is illuminated. However, because of the relatively low number of rostrally illumi-

nated experiments (n = 7) and the high inter-animal variability, it is not possible to conclude
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Figure 4. Light-induced hyperpolarization of cholinergic neurons affects the rhythmic synaptic drive to motoneurons. (A1) Locomotor-like activity

recorded from the left L1 and the right L2 and L5 ventral roots together with a flexor motoneuron in the left L1 segment (black traces). The

superimposed green traces are the slow potentials obtained by low pass filtering the raw signal. (A2) Low pass filtered records of the membrane

potential of the same motoneuron held at two different membrane potentials (�50 mV - red trace; �61 mV - green trace) show that the locomotor drive

potentials transiently disappeared for ~10 s after the light. (B1) Locomotor-like activity recorded from the left L2 and the right L2 and L5 ventral roots

together with an extensor motoneuron in the right L5 segment (black traces). The superimposed green traces are the slow potentials obtained by low

pass filtering the raw signals. (B2) Low pass filtered records of the membrane potential of the same motoneuron held at three different membrane

potentials (�48 mV - red trace; �54 mV - green trace; �68 mV – yellow trace) show that the locomotor drive potentials transiently disappeared for 10–

15 s after the light. The green bar below the intracellular recording indicates the duration of the light.

DOI: 10.7554/eLife.26622.012

The following source data and figure supplements are available for figure 4:

Figure supplement 1. Properties of Motoneurons in ChAT-Arch mice.

Figure 4 continued on next page

Falgairolle et al. eLife 2017;6:e26622. DOI: 10.7554/eLife.26622 9 of 29

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.26622.012
http://dx.doi.org/10.7554/eLife.26622


definitively that more limited illumination is as effective at reducing the locomotor frequency as the

whole lumbar cord illumination. Nevertheless, we suggest that the effects of reduced motoneuron

firing may be most prominent in the rostral lumbar segments because these have been shown to be

the most rhythmogenic (Cazalets et al., 1995; Kjaerulff and Kiehn, 1996; Kremer and Lev-Tov,

1997).

Experiments in animals expressing channelrhodopsin-2 in cholinergic
neurons
The experiments with ChAT-Arch and ChAT-eNpHR revealed that reducing firing in cholinergic inter-

neurons and motoneurons slowed the locomotor rhythm. In the next set of experiments, we investi-

gated whether increasing the discharge of cholinergic neurons would accelerate the rhythm. To

achieve this, we used animals in which channelrhodopsin-2 was expressed in cholinergic neurons.

We examined the effects of exciting cholinergic neurons with a train of blue light pulses (100 Hz) on

the locomotor-like activity induced by NMDA and 5-HT in ChAT-ChR2 cords and compared the

effects of the same protocol applied to animals in which EGFP was expressed in ChAT+ neurons. We

used a train of pulses because continuous blue light damaged the cord, probably due to excessive

heating. ChAT-EGFP animals were used as controls because EGFP is excited by blue light and could

potentially have non-specific, light-dependent effects on the rhythm. However, the ChAT-EGFP

cords showed minimal effects to blue light exposure (n = 8; Figure 5—figure supplement 1). By

contrast, blue light produced a significant increase in motoneuron firing in the ChAT-ChR2 cords

(n = 15; Figure 5E, Figure 5—figure supplement 2) that was greater in the extensor-dominant ven-

tral roots than in the flexor-dominant roots (Extensor: 121 ± 60.29%; Flexor: 81.07 ± 34.89%,

p=0.0002; 2-way ANOVA (see Materials and methods), light status: F(3,112) p<0.0001, root: F

(1,112): p=0.0008, interaction F(3,112): p=0.0039). Concomitantly, we observed a significant increase

in the frequency of the locomotor rhythm (Figure 5D; 2-way ANOVA, light status: F(2,63) p=0.0069,

genetic identity F(1,63): p=0.0402, interaction F(2,63): p=0.0156). The maximum frequency occured

at different times in individual experiments. When averaged across experiments, it increased by

13.34 ± 8.94%, in the ChAT-ChR2 cords, compared to 4.94 ± 4.43% (p=0.0006) in the ChAT-EGFP

cords.

The light-induced increase in frequency had a slower time course than the decrease in frequency

observed in the ChAT-Arch/eNpHR cords, with the maximum frequency for the averaged time series

occurring at ~30 s after the light was turned on (Figure 5D). We also observed a small, but signifi-

cant change in the phasing (Figure 5C) compared to the ChAT-EGFP controls, when motoneurons

were depolarized at the beginning of the light for the bilateral flexors (ChAT-EGFP: 12.04 ± 5.38˚,
ChAT-ChR2: 27.38 ± 13.68˚, p=0.0003; 2-way ANOVA, light status F (3,84): p=0.1943, genetic iden-

tity F(1,84): p=0.0004, interaction F(3,84): p=0.4827) and the ipsilateral flexor/extensors (ChAT-

EGFP: 13.67 ± 5.94˚, ChAT-ChR2: 24.34 ± 13.2˚, p=0.0320, 2-way ANOVA, Light Status F(3,84):

p=0.0233, genetic identity F(1,84): p<0.0001, interaction F(3,84): p=0.1084).

The locomotor frequency was slower in the ChAT-ChR2 spinal cords when compared to ChAT-

EGFP cords (Figure 5B, frequency in ChAT-EGFP mice: 0.53 ± 0.07 Hz, frequency in ChAT-ChR2

mice: 0.42 ± 0.03 Hz, t-test p<0.0001).

Figure 4 continued

DOI: 10.7554/eLife.26622.013

Figure supplement 1—source data 1. Input resistance MN ChAT-Arch spinal cords.

DOI: 10.7554/eLife.26622.014

Figure supplement 1—source data 2. Intracellular hyperpolarization MN ChAT-Arch spinal cord.

DOI: 10.7554/eLife.26622.015

Figure supplement 2. Green light suppresses the firing of individual flexor and extensor motoneurons in ChAT-Arch cords.

DOI: 10.7554/eLife.26622.016

Figure supplement 3. The light-induced changes in the locomotor-like rhythm are not due to light-induced membrane potential changes on

the intrinsic motoneuron properties in ChAT-Arch cords.

DOI: 10.7554/eLife.26622.017
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Figure 5. Light-induced depolarization of cholinergic neurons alters the frequency and phasing of drug-induced locomotor-like activity. (A) Locomotor-

like activity recorded from the right L2 and the left L2 and L5 ventral roots (black traces) of a P1 isolated spinal cord from a ChAT-ChR2 mouse. The

superimposed blue traces are the slow potentials obtained by low pass filtering the raw signal. Locomotor-like activity was evoked by applying 5 mM

NMDA and 10 mM 5-HT. Activation of channelrhodopsin was achieved using a train of blue stimuli (1 ms at 100 Hz) for 60 s as indicated by the blue bar

under the traces. (B) Bar plot showing the average locomotor-like frequency in Chat-EGFP (n = 8, grey circles) and ChAT- Channelrhodopsin (n = 15,

blue circles) before the light. Note, that the frequency of the rhythm is significantly slower in the ChAT-ChR2 cords (t-test, ****p<0.0001). (C–D) Time

course of the changes in phase (C) and frequency (D) averaged for all experiments for the bilateral flexors (C1–D1) and ipsilateral flexor-extensors (C2–

D2). (E) Averaged integrated neurograms (Change in MN firing) for the ipsilateral flexor (E1) and extensor (E2) ventral roots. The statistics are obtained

using a bootstrap t-test between ChAT-ChR2 and ChAT-EGFP cords and are color-coded as indicated in the box below the traces. The blue rectangles

indicate the duration of the light (60 s).

DOI: 10.7554/eLife.26622.018

The following source data and figure supplements are available for figure 5:

Source data 1. Source data for Bar plots in Figure 5B.

DOI: 10.7554/eLife.26622.019

Figure supplement 1. Effect of blue light on drug-induced locomotor-like activity in ChAT-EGFP cords.

DOI: 10.7554/eLife.26622.020

Figure supplement 2. Blue light increases the firing of motoneurons during locomotor-like activity in a ChAT-ChR2 cord.

DOI: 10.7554/eLife.26622.021
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The light-induced disruption of locomotor-like activity in the ChAT-Arch
animals persists in the presence of cholinergic blockade
It is not clear from these data, whether the effects of light on the locomotor-like rhythm are due to

changes in the firing of motoneurons, of cholinergic interneurons, or of preganglionic neurons, all of

which express the opsins when driven by the ChAT promoter. Our previous work showed that stimu-

lation of motoneuron axons can evoke an episode of locomotor-like activity in the presence of cho-

linergic antagonists (Mentis et al., 2005). If the light-induced effects on the drug-induced rhythms

engage a similar mechanism, then they should persist in the presence of the cholinergic antagonists.

To test this hypothesis, we compared the effects of light in the ChAT-Arch spinal cords on the 5-HT-

NMDA induced rhythm in the presence and absence of a cocktail of atropine, mecamylamine and

dihydo-b-erythroid hydrobromide (dhbe). These antagonists degraded the locomotor-like rhythm

(Figure 6A) under control conditions and this was reflected by a decrease in its frequency

(Figure 6B) in both the wild type (n = 10, WT 0.45 ± 0.06 Hz, WT + antagonists: 0.34 ± 0.028 Hz,

p<0.0001) and the ChAT-Arch cords (n = 6, ChAT-Arch: 0.53 ± 0.02 Hz, ChAT-Arch + antagonists:

0.39 ± 0.03 Hz, p<0.0001). In addition, there was also a change in phase between the bilateral flex-

ors in the cholinergic blockers (Figure 6C, Figure 6—figure supplement 1, WT: 7.86 ± 2.59˚, WT +

antagonists: 27.96 ± 11.45˚, p<0.0001; ChAT-Arch: 10.38 ± 5.66˚, ChAT-Arch + antagonists:

23.74 ± 10.74˚, p<0.0001).
In the presence of the cholinergic antagonists, the ChAT-Arch preparations showed a significant

light-induced decrease in motoneuron firing compared to the wild type cords (WT: 6.36 ± 8.67%,

WT + antagonists: 8.85 ± 7.39%, ChAT-Arch: �57.92 ± 12.76%, ChAT-Arch + antagonists: �59.12 ±

9.06%, p<0.0001, Figure 6E). The light-induced slowing of the locomotor-like rhythm persisted in

the presence of the cholinergic antagonists (Figure 6D, Start Light). Under control conditions (no

cholinergic antagonists) the light-induced change in frequency was �7.98 ± 3.9% and it increased to

�12.75 ± 1.96% in the presence of the antagonists although not significantly (p=0.0914). Similarly,

the light-induced phase change in the bilateral flexor motoneurons (WT: 11.5 ± 6.6˚; ChAT-Arch:
15.46 ± 6˚) significantly increased for both wild type and ChAT-Arch cords in the presence of the

antagonists (WT: 29.76 ± 16.38˚; ChAT-Arch: 47.25 ± 14.19˚; p=0.0002; Figure 6C). The cholinergic

antagonists did not block the rebound in frequency after the light was turned off (ChAT-Arch: 7.19 ±

5.61%, ChAT-Arch + antagonists: 12.7 ± 6.76%, p=0.0519). Collectively, these data indicate that the

light-dependent effects are mediated by a non-cholinergic pathway, and are consistent with the ear-

lier results showing that ventral root stimulation can activate the locomotor CPG in the presence of

cholinergic antagonists (Mentis et al., 2005). They further suggest that cholinergic interneurons and

preganglionic autonomic neurons are unlikely to be responsible for the light-induced slowing and

the disruption of the rhythm.

Light-induced hyperpolarization of Isl1-Arch cords slows the locomotor
rhythm
To obtain additional evidence that the light-induced changes in frequency and phase were due to

changes in the firing of motoneurons rather than some other neuronal class, we repeated the experi-

ments in cords in which Arch was expressed in Isl1+ neurons. Isl1 is expressed in primary afferents,

dI3 interneurons, motoneurons, and sympathetic motoneurons (Figure 7A1-3; Tsuchida et al.,

1994; Pfaff et al., 1996; Bui et al., 2013; Huber et al., 2013). We hypothesized that if light-induced

changes in motoneuron firing regulate the decreased locomotor frequency in the ChAT-Arch cords

then we should observe similar effects in the Isl1-Arch cords. Consistent with this notion, light dis-

turbed the locomotor rhythm and reduced its frequency (Figure 7B,D). In addition, there was a

rebound increase in motoneuron firing (Figure 7E) and frequency (Figure 7D) when the light was

turned off. The light-induced changes in frequency were not statistically different from those in the

ChAT cords (Start light: �9.31 ± 13.92%, p=0.5474, End Light: 1.67 ± 13.83%, p=0.7287, After Light:

12.16 ± 9.5%, p=0.1434; 2-way ANOVA, Light status: p<0.0001, Genetic identity: p=0.2731, Interac-

tion: p<0.0001; data not shown). Furthermore, in five additional Isl1-Arch cords, we removed the

dorsal part of the cord over L1 to L5 (Dyck and Gosgnach, 2009; Dougherty and Kiehn, 2010;

Zhong et al., 2010) to eliminate some of the Isl1+ di3 neurons. We found that the effects of light on

the locomotor rhythm were similar to those in the intact Isl1-Arch cords except that the decrease in

frequency was maintained during the light (Figure 7—figure supplement 1).
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Figure 6. The light-induced disruption of the locomotor-like rhythm is exacerbated in the presence of cholinergic antagonists. (A) Ventral root

recordings (Right L2, and Left L2 and L5) showing the effect of light on the locomotor-like rhythm evoked by 5 mM NMDA and 10 mM in the presence of

50 mM mecamylamine, 50 mM dhbE, and 5 mM atropine. The superimposed orange traces are the slow potentials obtained by low pass filtering the raw

signal. The green bar indicates the duration of the light (60 s). (B–E) Comparison between WT (black, brown), ChAT-Arch (green, orange) cords in the

absence or presence of cholinergic antagonists. (B) Bar plot showing the average locomotor-like frequency in WT (n = 10) and ChAT-Arch (n = 6) cords

under control conditions (no light) in the absence or presence of cholinergic antagonists (ANOVA, p<0.0001). (C–E) Bar plots showing the average

change in the absolute phase (C), frequency (D) of the bilateral flexors for the 10 s just before and just after the light is turned on (Start Light, circles)

and the 10 s just before and just after the light is turned off (After Light, squares). (E) Bar plot showing the averaged integrated neurogram (Change in

MN firing) of the ipsilateral flexor root for the 10 s just before and just after the light is turned on (Start Light, circles) for WT (black, brown), ChAT-Arch

(green, orange) cords in the absence or presence of cholinergic antagonists. Using a two-way ANOVA we calculated the statistical differences between

the three groups of animals (genetic Identity, shown above the bars) and the differences between light on and light off (light status, shown below the

bars). The results of the ANOVA for the changes in the variables were: absolute phase (Light status: F (3,112) p<0.0001, Genetic identity/Drug

treatment: F(3,112) p<0.0001, Interaction F(9,112) p=0.0017), frequency (Light status: F (3,112) p<0.0001, Genetic identity/Drug treatment: F(3,112)

p=0.3073, Interaction F(9,112) p<0.0001), and motoneuron firing (Light status: F (3,112) p<0.0001, Genetic identity/Drug treatment: F(3,112) p<0.0001,

Interaction F(9,112) p<0.0001). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

DOI: 10.7554/eLife.26622.022

The following source data and figure supplement are available for figure 6:

Source data 1. Source data for Bar plots in Figure 6B.

DOI: 10.7554/eLife.26622.023

Source data 2. Source data for Bar plots in Figure 6C.

Figure 6 continued on next page
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Collectively, this set of experiments further emphasizes that motoneurons are the most likely neu-

rons responsible for the disruption of the rhythm in both the ChAT-Arch and Isl1-Arch cords.

The light-induced changes in the locomotor-like rhythm in ChAT-Arch
cords persist during partial blockade of gap junctions by carbenoxolone
In the next set of experiments, we investigated whether the light-induced effects might be mediated

by gap junctions. In the adult zebrafish, motoneurons and V2a interneurons are connected by hybrid

chemical/electrical synapses. Manipulating motoneuron membrane potential can influence firing of

the V2a interneurons and alter the swimming rhythm (Song et al., 2016). In the larval Drosophila, it

was shown recently that motoneurons also regulate the locomotor activity through gap junctions

(Matsunaga et al., 2017). To establish whether gap junctions mediated the effects of light on the

rhythm in the ChAT-Arch cords, we first determined the effect of bath-applied carbenoxolone

(CBX, 100 mM) on the electrical connections between motoneurons (Figure 8A–C). Using whole-cell

recordings from motoneurons, we recorded the antidromically-evoked short-latency depolarizations

at intensities subthreshold for the antidromic action potential (Figure 8A–B, Personius et al., 2007)

or during collision of orthodromic and antidromic action potentials (Chang et al., 1999; Tresch and

Kiehn, 2002).The voltage-independence of the amplitude of these short latency depolarizations

confirms that they are mediated by gap junction coupling (Figure 8B). Using the collision protocol,

we compared the amplitude of the evoked short latency depolarizations, before and after applying

carbenoxolone (Tresch and Kiehn, 2000). The first significant effect appeared after 10 min in the

drug, when the amplitude of the depolarizations had decreased to 71% of the pre-drug level (n = 5,

p<0.05). At 30 min in the drug, the amplitude was further reduced to 41% of the pre-drug level

(p<0.001). The reduction in the amplitude of the short latency depolarizations was not due to a cor-

responding reduction in the membrane resistance of the motoneurons because the resistance was

unchanged after 40 min in the drug (control 20 MW, 40 min 18.4 MW, p>0.9999, n = 5 motoneurons).

Because the locomotor-like rhythm becomes highly unstable after 40 min in carbenoxolone, we

examined the effects of light on the rhythm between 20 to 40 min after drug application. Assuming

that any putative gap-junctions between motoneurons and interneurons will be depressed with a

similar time course to the short-latency depolarizations in motoneurons these experiments were

performed with an incomplete block of gap junctional communication.

Under control conditions (no light), carbenoxolone decreased the frequency of the

rhythm (Figure 8E) in both wild type (Figure 8—figure supplement 1, 0.45 ± 0.05 Hz, CBX:

0.29 ± 0.04 Hz, p=0.0003, n = 5) and ChAT-Arch cords (Figure 8D, 0.42 ± 0.07 Hz, CBX: 0.28 ± 0.04

Hz, p=0.0002, n = 6). In the ChAT-Arch cords, the light-induced depression of motoneuron firing

was similar with or without carbenoxolone (Figure 8H; ChAT-Arch: �66.7 ± 9.6%, ChAT-Arch +

CBX: �74 ± 17.9%, p=0.3102). By contrast, the light-induced change in phase was significantly

greater in the presence of carbenoxolone (Figure 8F; ChAT-Arch: 32.88 ± 19.54˚; ChAT-Arch +

CBX: 55.77 ± 27.22˚, p<0.0001). The decrease in frequency induced by the light still occurred but

was not significantly smaller in the presence of carbenoxolone in the ChAT-Arch cords (Figure 8G;

ChAT-Arch: �6.36 ± 1.8%; ChAT-Arch + CBX: �9.4 ± 3.4%, p=0.3215). After the light, the rebound

in frequency was still observed but it was smaller than when the drug was not present (ChAT-Arch:

15.62 ± 12.21%, ChAT-Arch + CBX: 7.89 ± 3.95%, p=0.0145). These results suggest that carbenoxo-

lone-sensitive gap junctions do not mediate the light-dependent effects.

Figure 6 continued

DOI: 10.7554/eLife.26622.024

Source data 3. Source data for Bar plots in Figure 6D.

DOI: 10.7554/eLife.26622.025

Source data 4. Source data for Bar plots in Figure 6E.

DOI: 10.7554/eLife.26622.026

Figure supplement 1. Effect of green light during drug-induced locomotor-like in wild type cords in the presence of cholinergic blockers.

DOI: 10.7554/eLife.26622.027
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Figure 7. Light-induced hyperpolarization of Isl1 neurons alters the frequency and phasing of locomotor-like activity. (A) Z-stack projection of 10X

images (4 mm) of a 60 mm section of the L5 segment of a P2 Isl1-Arch mouse spinal cord showing archaerhodopsin (green, A1 and A3) and ChAT-

positive (red, A2 and A3) neurons and the merged image (A3). The white scale bars represent 100 mm. (B) Locomotor-like activity recorded from the left

L2 and the right L2 and L5 ventral roots (black traces) of a P1 isolated spinal cord from an Isl1-Arch mouse. The superimposed red traces are the slow

Figure 7 continued on next page
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In ChAT-Arch animals, the effects of light on the locomotor-like rhythm
are attenuated in the presence of the AMPA-receptor antagonist
NBQX
Motoneurons release glutamate or a glutamate-like neurotransmitter onto Renshaw cells

(Mentis et al., 2005; Nishimaru et al., 2005) and activation of the locomotor CPG by ventral root

stimulation is blocked by glutamate antagonists (Mentis et al., 2005). For this reason, we examined

the effects of the AMPA-receptor antagonist NBQX on the rhythm. As shown previously

(Talpalar and Kiehn, 2010), NBQX does not block the drug-induced locomotor-like rhythm but it

does reduce its frequency. In agreement with this work, we found that NBQX decreased significantly

the locomotor-like frequency in both wild type (Figure 9—figure supplement 1; WT: 0.44 ± 0.071,

WT+ NBQX: 0.30 ± 0.049, p=0.0008, n = 6) and ChAT-Arch cords (Figure 9A–B; ChAT-Arch:

0.50 ± 0.082, ChAT-Arch + NBQX: 0.36 ± 0.03, p=0.0002, n = 7). When the light was turned on in

the presence of NBQX, motoneuron firing transiently increased in the bilateral flexor ventral roots of

the wild type cords (Figure 9E; WT: 2.6 ± 9.6%, WT+NBQX: 13.75 ± 11.9%, p=0.0213; Figure 9—

figure supplement 1). However, in the ChAT-Arch cords the presence of NBQX depressed moto-

neuron firing further (ChAT-Arch: �61.54 ± 10.94%, ChAT-Arch + NBQX: �77.15 ± 8.58%,

p<0.0001). While there was a small light-induced phase change in the wild type cords in the pres-

ence of NBQX, (Figure 9C; WT: 11.73 ± 3.46˚, WT + NBQX: 28.19 ± 14.96˚, p=0.0203), the light-

induced changes were similar in the ChAT-Arch cords with and without NBQX (ChAT-Arch:

18.73 ± 5.587˚, ChAT-Arch + NBQX: 26.39 ± 15.79˚, p=0.2378). In wild type cords, light increased

the locomotor frequency in the presence of NBQX (Figure 9D; WT: �2.11 ± 2.26% WT + NBQX:

6.07 ± 4.49%, p=0.0021) consistent with the increase in motoneuron firing (Figure 9E). By contrast,

the light-induced decrease in the frequency of the Chat-Arch cords (p<0.001) was attenuated in the

presence of NBQX (ChAT-Arch �6.41 ± 3.81%, ChAT-Arch + NBQX: �1.49 ± 5.49%, p=0.0418).

After the light was turned off, the rebound in frequency was also blocked in the presence of NBQX

(ChAT-Arch: 4.29 ± 5.6%, ChAT-Arch + NBQX: �1.49 ± 5.49%, p=0.0176). These results show that

the AMPA-receptor blocker NBQX can substantially inhibit the light-induced effects on the locomo-

tor-like rhythm in ChAT-Arch spinal cords and suggest that the effects are mediated, in part, by a

glutamatergic mechanism.

Discussion
We have shown that manipulating the firing of motoneurons during drug-induced locomotor-like

activity is associated with changes in the frequency, phase and stability of the locomotor-like rhythm.

Decreased motoneuron firing is accompanied by slowing of the rhythm whereas increased discharge

is associated with an accelerated rhythm. Both effects were transient and decayed before the end of

the 60 s light step or pulse train. In the ChAT-Arch cords there was also a transient increase in moto-

neuron firing and frequency once the light was turned off. Concomitant with the changes in fre-

quency was a change in the absolute phase difference between the coupling of the bilateral flexor-

dominated and the ipsilateral flexor/extensor ventral root slow potential activity. These results con-

firm that mammalian motoneurons in the neonatal period can access the locomotor rhythm genera-

tor and that motoneuron firing can regulate both the frequency and the phasing of locomotor-like

activity.

Figure 7 continued

potentials obtained by low pass filtering the raw signal. Locomotor-like activity was evoked by applying 5 mM NMDA and 10 mM 5-HT. The timing of the

green light (60 s) is indicated by the green bar below the traces. (C–D) Time series of the change in absolute phase (C) and frequency (D) averaged for

all experiments for the bilateral flexor (C1–D1) and ipsilateral flexor-extensor (C2–D2) roots. (E) Averaged integrated signals (Change in MN firing) for

the ipsilateral flexor (E1) and extensor (E2) ventral roots. The statistics are obtained using a bootstrap t-test between Isl1-Arch (n = 8) and wild type

cords (n = 28) and are color coded as indicated in the box below the records. The timing of the light (60 s) is indicated by the green rectangles.

DOI: 10.7554/eLife.26622.028

The following figure supplement is available for figure 7:

Figure supplement 1. The light-induced perturbation of the locomotor-like rhythm is similar in dorsal-shaved and intact preparations of Isl1-

Arch cords.

DOI: 10.7554/eLife.26622.029
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Figure 8. The light-induced disruption of the locomotor-like rhythm is maintained in the presence of the gap junction blocker carbenoxolone. (A)

Superimposed intracellular responses of a motoneuron in a ChAT-Arch mouse to increasing intensity of antidromic stimulation (arrow) of the ventral

Figure 8 continued on next page
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Contribution of preganglionic autonomic neurons and spinal
interneurons to the light-induced changes in the frequency of the
locomotor-like rhythm
One of the major limitations of the present work is that there are no specific markers for motoneur-

ons. We chose to study ChAT and Isl1 animals because motoneurons express both markers. How-

ever, cholinergic autonomic preganglionic neurons also express Isl1 (Tsuchida et al., 1994) so that

the effects of light could be attributable to silencing of their firing in addition to, or instead of, the

silencing of motoneurons. Preganglionic neurons in the inter-mediolateral nucleus can exhibit oscil-

latory activity in spinal cord slices (Logan et al., 1996; Spanswick et al., 1996) and NMDA can

induce coupled somatic motor and sympathetic rhythmic activity in an arterially perfused spinal cord

preparation (Chizh et al., 1998). Furthermore, in the spinal cat, rhythmic activity can be recorded

from sympathetic nerves that is coupled with the activity of hindlimb muscle nerves in response to

L-DOPA administration (Schomburg et al., 2003). Little is known about the mechanisms responsible

for this coupling, but it has been suggested to be due to a common input to sympathetic and

somatic motoneurons from the locomotor central pattern generator (Chizh et al., 1998; Deu-

chars, 2007). Chizh et al. (1998) showed that synchronized rhythmic activity recorded from sympa-

thetic postganglionic neurons was abolished by the nicotinic cholinergic antagonist hexamethonium

consistent with their cholinergic phenotype. Our observation that the optogenetically-induced

changes in frequency in the ChAT-Arch animals was preserved in the presence of nicotinic and mus-

carinic antagonists suggests therefore that the preganglionic sympathetic neurons are not responsi-

ble for the effects of light on the locomotor rhythm in the Chat-Arch animals. This result is consistent

Figure 8 continued

root. Each trace is the average of 20 trials. The antidromic action potential is shown in black, the short-latency depolarizations (also shown in the inset)

are colored and were evoked at stimulus intensities subthreshold for the action potential. (B) The amplitudes of the short-latency depolarizations are

independent of membrane potential. The motoneuron was held at different membrane potentials by injecting hyperpolarizing or depolarizing current

and a subthreshold stimulus was given every 500 ms (arrow). Each trace is an average of 20 trials. (C) Amplitude of the short latency depolarization in

five motoneurons in control (before the drug) and 5, 10, 20, 30 and 40 min after applying 100 mM carbenoxolone. (D) Ventral root recordings (Right L2,

and Left L2 and L5) showing the effect of light on the locomotor-like rhythm evoked by 5 mM NMDA and 10 mM 5-HT in the presence of 100 mM

carbenoxolone. The superimposed blue traces are the slow potentials obtained by low pass filtering the raw signal. The green bar indicates the

duration of the light (60 s). (E) Bar plot showing the average locomotor-like frequency in WT (n = 5) and ChAT-Arch (n = 6) cords under control

conditions (no light) in the absence or presence of carbenoxolone. Note that in both the WT and the ChAT-Arch animals the frequency is significantly

lower in the presence of carbenoxolone. ANOVA, p<0.0001. (F–H) Bar plots showing the average change in the absolute phase (F) and frequency of the

bilateral flexors (G) for the 10 s just before and just after the light is turned on (Start Light, circles) and the 10 s just before and just after the light is

turned off (After Light, squares). (H) Bar plot showing the averaged integrated neurogram (Change in MN firing) of the ipsilateral flexor root for the 10 s

just before and just after the light is turned on for WT (black, dark blue), ChAT-Arch (light green, light blue) cords in the absence or presence of

carbenoxolone. Using a two-way ANOVA, we calculated the statistical differences between the different groups of animals (genetic Identity, shown

above the bars) and the differences between light on and light off (light status; shown below the bars). The results of the ANOVA for the changes in the

phase were (light status: F (3,72) p<0.0001, Genetic identity/Drug treatment: F(3,72) p<0.0001, Interaction F(9,72) p=0.0379), for the frequency were: F

(3,72) p<0.0001, Genetic identity/Drug treatment: F(3,72) p=0.004, Interaction F(9,72) p<0.0001) and for the change in motoneuron firing were: (Light

status: F (3,72) p<0.0001, Genetic identity/Drug treatment: F(3,72) p<0.0001, Interaction F(9,72) p<0.0001). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

DOI: 10.7554/eLife.26622.030

The following source data and figure supplement are available for figure 8:

Source data 1. Source data for Bar plots in Figure 8C.

DOI: 10.7554/eLife.26622.031

Source data 2. Source data for Bar plots in Figure 8E.

DOI: 10.7554/eLife.26622.032

Source data 3. Source data for Bar plots in Figure 8F.

DOI: 10.7554/eLife.26622.033

Source data 4. Source data for Bar plots in Figure 8G.

DOI: 10.7554/eLife.26622.034

Source data 5. Source data for Bar plots in Figure 8H.

DOI: 10.7554/eLife.26622.035

Figure supplement 1. Effect of green light on drug-induced locomotor-like activity in wild type cords in the presence of carbenoxolone to block gap

junctions.

DOI: 10.7554/eLife.26622.036
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Figure 9. The light-induced disruption of the locomotor-like rhythm is attenuated in the presence of the AMPA-receptor antagonist NBQX. (A) Ventral

root recordings (Right L2, and Left L2 and L5) showing the effect of green light on the locomotor-like rhythm evoked by 5 mM NMDA and 10 mM 5-HT

in the presence of 10 mM NBQX. The superimposed light purple traces are the slow potentials obtained by low pass filtering the raw signal. The green

bar indicates the duration of the light. (B) Bar plot showing the average locomotor-like frequency in WT (n = 6) and ChAT-Arch (n = 7) cords under

control conditions (no light) in the absence or presence of NBQX. For both WT and ChAT-Arch animals the frequency of the rhythm is significantly

slower in the presence of NBQX. ANOVA, p<0.0001 (C–E) Bar plots showing the average change in the absolute phase (C) and frequency (D) of the

bilateral flexors for the 10 s just before and just after the light is turned on (Start Light, circles) and the 10 s just before and just after the light is turned

off (After Light, squares). (E) Bar plot showing the averaged integrated neurogram (Change in MN firing) of the ipsilateral flexor root for the 10 s just

before and just after the light is turned on for WT (black, dark purple), ChAT-Arch (green, light purple) cords in the absence or presence of NBQX.

Using a two-way ANOVA, we calculated the statistical differences between the different groups of animals (genetic identity, shown above the bars) and

the differences between light on and light off (light status; shown below the bars). (B–C–D–E) Comparison between WT (black, dark purple), ChAT-Arch

(green, light purple) cords in the absence or presence of NBQX. The results of the ANOVA for the changes in the phase were (Light status: F (3,88)

p=0.2436, genetic identity/Drug treatment: F(3,88) p<0.0001, interaction F(9,88) p=0.3893), for the frequency were (Light status: F (3,88) p=0.0630,

Genetic identity/Drug treatment: F(3,88) p=0.1335, interaction F(9,88) p<0.0001) and for the motoneuron firing were (Light status: F (3,88) p<0.0001,

Genetic identity/Drug treatment: F(3,88) p=0.0001, interaction F(9,88) p<0.0001). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

DOI: 10.7554/eLife.26622.037

The following source data and figure supplement are available for figure 9:

Source data 1. Source data for Bar plots in Figure 9B.

DOI: 10.7554/eLife.26622.038

Source data 2. Source data for Bar plots in Figure 9C.

Figure 9 continued on next page
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with our earlier finding that activation of the locomotor-like rhythm by stimulation of motor axons in

the sciatic nerve (Mentis et al., 2005), which engages neither preganglionic nor cholinergic spinal

neurons, persists in the presence of cholinergic antagonists.

In the ChAT-Arch cords, light will also affect the firing of a recently identified population of V0-

derived interneurons that express the transcription factor Pitx-2 (Zagoraiou et al., 2009). These neu-

rons fire either tonically or rhythmically during drug-induced locomotor-like activity and depolarize

motoneurons by blocking their calcium-dependent potassium channels and reducing their after-

hyperpolarization (Miles et al., 2007). However, normally phased locomotor activity was observed

when the gene for ChAT was eliminated in these neurons (Zagoraiou et al., 2009) indicating that

hyperpolarizing these neurons is unlikely to be responsible for the light-dependent changes in the

locomotor rhythm. Furthermore, they do not appear to co-release glutamate because neither

VGluT1 nor VGluT2 were expressed in the ChAT-deleted neurons (Zagoraiou et al., 2009).

A potential confound to the interpretation of our experiments arises because some cholinergic

interneurons may also release glutamate in addition to acetylcholine. In the developing Xenopus tad-

pole, Li et al. (2004) described a class of caudally projecting interneurons that co-release glutamate

and acetylcholine at their monosynaptic projections to motoneurons and premotor interneurons.

Similarly, Liu et al. (2009) identified cholinergic terminals that co-expressed VGluT2 in Lamina VII of

the ventral horn of adult rats, although it was not established where the cell bodies of the parent

neurons were located. Moreover, no evidence was provided, in either case, that the co-release of

glutamate by the cholinergic neurons had any influence on the locomotor CPG. Nevertheless, our

data do not allow us to exclude some contribution from cholinergic interneurons that co-release

glutamate.

In addition to motoneurons and preganglionic autonomic neurons, Isl1 is expressed by primary

afferents and glutamatergic di3 interneurons (Bui et al., 2013, 2016). Hyperpolarizing primary affer-

ents is unlikely to modify the locomotor rhythm because they are cut and are presumably inactive.

The glutamatergic di3 neurons project monosynaptically to motoneurons and receive monosynaptic

inputs from VGluT1+ afferents. Furthermore, although the di3 neurons are in the pathway from affer-

ents to the locomotor CPG, eliminating their VGluT2 expression resulted only in subtle alterations in

over-ground locomotion (Bui et al., 2013). As a result, suppressing their firing by light should not

account for the light-induced changes in locomotor function that we observed. Consistent with this

hypothesis, when we removed the dorsal part of the spinal cord containing some of the Isl1+ inter-

neurons in 5 Isl1-Arch preparations, we found that the light depressed the frequency of the locomo-

tor rhythm by a similar amount as in the intact spinal cord (Figure 7—figure supplement 1).

Mechanism of the light-induced changes in the locomotor-like rhythm
and the post-light rebound
The simplest hypothesis to account for the actions of motoneurons on the locomotor rhythm is that

they are mediated through motoneuronal projections to Renshaw cells, by exerting disinhibitory

effects on 1a inhibitory interneurons or ventral spino-cerebellar cells (Hultborn et al., 1971;

Lundberg and Weight, 1971; Jankowska et al., 1975). However, several lines of evidence argue

against the participation of this pathway in the excitatory effects of motoneurons on the locomotor

CPG. First, the effects of motoneuron activity are enhanced and not blocked in the presence of mus-

carinic and nicotinic antagonists. Second, the excitatory effects of ventral root stimulation persist in

the presence of the inhibitory antagonists bicuculline and strychnine. Bonnot et al. (2009) and

Machacek and Hochman (2006) showed that ventral root stimulation could entrain disinhibited

bursting in the neonatal mouse and rat spinal cords. In the mouse, the effect persisted in cholinergic

Figure 9 continued

DOI: 10.7554/eLife.26622.039

Source data 3. Source data for Bar plots in Figure 9D.

DOI: 10.7554/eLife.26622.040

Source data 4. Source data for Bar plots in Figure 9E.

DOI: 10.7554/eLife.26622.041

Figure supplement 1. Effect of green light on drug-induced locomotor-like activity in wild type cords in the presence of NBQX.

DOI: 10.7554/eLife.26622.042
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antagonists and was enhanced by the AMPA desensitization blocker cyclothiazide, suggesting a glu-

tamatergic mechanism. Finally, ventral root stimulation can activate the locomotor rhythm when V1

neurons are hyperpolarized optogenetically (Falgairolle and O’Donovan, unpublished results).

An alternative possibility is that motoneurons synapse with an undiscovered class of excitatory

interneuron that has access to the locomotor CPG. Machacek and Hochman (2006) reported that

noradrenaline unmasks a recurrent excitatory pathway from motoneurons and attributed this to the

recurrent activation of excitatory interneurons. Consistent with this idea, earlier reports described

antidromic activation of glutamatergic EPSPs in motoneurons of neonatal rats (Jiang et al., 1991;

Ichinose and Miyata, 1998). In the Ichinose and Miyata study, the latency of EPSPs was slightly but

not significantly longer (6.9 ms vs 5.8 ms) than that of the disynaptic IPSP (assumed to be from

Renshaw cells) suggesting that the excitatory EPSP probably originated disynaptically. If these puta-

tive excitatory interneurons also project to the locomotor CPG it could provide a mechanism linking

motoneuronal firing to the CPG circuitry. Alternatively, it is possible that motoneurons release gluta-

mate or another excitatory amino acid from their soma or dendrites that could excite spinal networks

non-specifically. Calcium-dependent vesicular dendritic release of glutamate has been described for

cerebellar Purkinje cells (Duguid and Smart, 2004; Duguid et al., 2007; Shin et al., 2008) and

could, in principle, mediate the excitatory effects of motoneurons on the rhythm. A glutamatergic

effect is consistent with the ability of the AMPA-receptor antagonist NBQX to partially block the

effects of motoneuron firing on the rhythm and to abrogate activation of the locomotor CPG by

motor axon stimulation. Because glutamate is essential for locomotor-like activity, we could not test

the effect of blocking both NMDA and AMPA receptors on the light-dependent effects.

Caldeira et al. (2017) recently showed that knocking out VGluT2 in ChAT+ neurons did not alter the

locomotor-like rhythm. This raises the possibility that the effects seen in our study were not medi-

ated by motoneurons co-releasing acetylcholine and glutamate, but rather through a glutamatergic

effect on the network itself. Alternatively, motoneurons might release glutamate or another excit-

atory amino acid (Richards et al., 2014) through a non-VGluT2 mechanism.

In ChAT-Arch, ChAT-eNpHR, and Isl1-Arch animals, we observed a transient increase in the firing

of motoneurons and in the locomotor frequency when the light was turned off. This long-lasting

effect (more than 10 s) could be due to intrinsic properties of motoneurons, a network effect or

both. One possibility is that the recovery of the locomotor frequency that occurs during the light

reflects a homeostatic compensation that is mediated by an increase in the excitatory interneuronal

input to the CPG. When the light is turned off, the motoneuronal input is restored and together with

the increased interneuronal input results in a transient increase in the locomotor frequency. Interest-

ingly, NBQX blocked the rebound increase in frequency but not the rebound increase in motoneuron

firing consistent with the idea that it uncouples the effects of motoneuron firing from the locomotor

frequency.

Comparison with other species
For many years, it was assumed that motoneurons transmitted the output of the vertebrate locomo-

tor central pattern generator to muscles, without directly affecting the generator itself. Work in the

Xenopus tadpole, however, revealed that rhythmically active premotor neurons, presumed to be

part of the swimming CPG, received rhythmic cholinergic inputs that the authors argued originated

from motoneurons (Perrins and Roberts, 1995). However, this conclusion is less certain now that it

has been shown that glutamatergic spinal neurons also release acetylcholine (Li et al., 2004). Work

in developing chick (O’Donovan et al., 1994; Wenner and O’Donovan, 2001) and mouse

(Hanson and Landmesser, 2003) embryos established an important function for motoneuronal activ-

ity in the genesis of spontaneously occurring episodes of rhythmic motor activity. Calcium imaging

of spinal neurons showed that fluorescent activity at the beginning of a spontaneous episode

occurred within the lateral motor column and then spread dorso-medially and mediolaterally to

encompass the whole cord (O’Donovan et al., 1994). Later experiments revealed that the initial

activity in motoneurons is communicated to the rest of the network via the avian equivalent of

Renshaw cells – R-interneurons (Wenner and O’Donovan, 2001).

Experiments in the adult zebrafish have shown that activity in motoneurons can modulate the

activity of excitatory premotor excitatory V2a interneurons through hybrid chemical and electrical

synapses (Song et al., 2016). Membrane potential changes in motoneurons can therefore influence

the firing and transmitter release from the V2a neurons that have been implicated in
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rhythmogenesis. Recently, it was also shown that in the Drosophila larvae, the activity of motoneur-

ons regulates the frequency of the peristaltic crawling via a mechanism that depends on electrical

coupling (Matsunaga et al., 2017). However, in the mammalian cord, electrical coupling between

limb-moving motoneurons and interneurons has not been reported. Although mixed electrical/

chemical synapses have been described in the adult rat cord (Rash et al., 1996), such

hybrid synapses expressing connexin-36 do not appear in the rat or mouse cord until after the sec-

ond or third neonatal week (Bautista et al., 2014), suggesting that they are probably not mediating

the excitatory effects of motoneurons on the rhythm. Consistent with this idea, we found that the

effects of hyperpolarizing ChAT+ neurons on the locomotor rhythm were maintained in the presence

of carbenoxolone even though gap-junctional coupling was only partially blocked (Figure 8).

Function of motoneuron feedback to the CPG
The regulation of rhythmogenesis by motoneuronal discharge raises the question of its function dur-

ing normal locomotion. It is difficult to generalize about the function of motoneuronal feedback

onto the locomotor CPG because our experiments were performed in the isolated spinal cord in the

absence of the descending and afferent inputs that normally accompany locomotion. One possibility

is that feedback from motoneurons constitutes an efference copy of the motoneuron output that

could be compared to ongoing motor commands and relayed to higher centers including the

cerebellum. For a discussion of internal models of the motor system see Wolpert and Miall (1996).

A second possibility is that the output of motoneurons provides excitatory drive to the CPG that

supplements the drive derived from interneurons. In some mice, the primary effect of reducing

motoneuron discharge was a slowing of the rhythm (Figure 2 and Figure 4—figure supplement 2:

motoneurons 3 and 5) whereas in others the rhythm was transiently interrupted as shown by the lack

of rhythmic slow potentials in the ventral root recordings (Figure 4B1) or by the absence of rhythmic

drive potentials in the intracellular recordings (Figure 4B2; Figure 4—figure supplement 2: moto-

neurons 4, and 7). Under this latter condition, we suggest that the sudden removal of the excitatory

input from motoneurons led to a brief cessation of the output of the CPG to motoneurons. The

effect was transient either because of the recovery of motoneuron firing or because the reduced

excitatory input to the CPG from motoneurons was rapidly compensated by excitatory inputs from

other sources. We are not suggesting that the excitatory input from motoneurons is essential for the

operation of the CPG but rather that it may be important in regulating the excitability of the CPG.

The excitatory effects of motoneuron activity onto the locomotor CPG represent a form of posi-

tive feedback because increasing motoneuron activity will accelerate the locomotor rhythm which in

turn will increase motoneuron activity. Such a system is potentially unstable and we hypothesize that

the excitatory motoneuronal input to the CPG is opposed by inhibitory input originating from the

motoneuronal projections to Renshaw cells. According to this model, the feedback control of the

CPG by motoneuron activity is regulated by the balance between recurrent excitation and recurrent

inhibition. The ability of recurrent inhibition to inhibit the locomotor rhythm was demonstrated in

the VGluT2 knockout mouse where ventral root stimulation terminated rhythmic activity by a cholin-

ergic mechanism (Talpalar et al., 2011). This hypothesis may help to explain why the excitatory

effects of motoneurons onto the CPG have been difficult to study systematically (Bonnot et al.,

2009; Machacek and Hochman, 2006; Humphreys and Whelan, 2012) and why there is consider-

able inter-animal variability in the excitatory effects of motoneurons. Furthermore, this hypothesis

provides a potential mechanistic explanation for the corelease of glutamate and acetylcholine from

motoneurons whereby the excitatory input to the CPG is regulated by glutamatergic motoneuronal

function and the inhibitory pathway by cholinergic function.

Materials and methods

Animals and dissection
Experiments were performed on Swiss Webster wild type (Taconic Laboratory) transgenic mice

between the day of birth to post-natal day 3 (P0-P3). We used the following transgenic lines

obtained from Jackson Laboratories: floxed archaerhodopsin-GFP (Arch, B6;129S-Gt(ROSA)

26Sortm35.1(CAG-aop3/GFP)Hze/J, stock# 012735), floxed archaerhodopsin-T-EGFP (ArchT, B6.Cg-Gt

(ROSA)26Sortm40.1(CAG-aop3/EGFP)Hze/J, stock #021188), floxed halorhodopsin-EYFP (eNpHR, B6;129S-
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Gt(ROSA)26Sortm39(CAG-hop/EYFP)Hze/J, stock# 014539), floxed channelrhodopsin-EYFP (ChR2,

B6;129S-Gt(ROSA)26Sortm32(CAG-COP4*H134R/EYFP)Hze/J, stock# 012569), and floxed EGFP (EGFP, Gt

(ROSA)26Sortm1.1(CAG-EGFP)Fsh/Mmjax, MMRRC stock# 32037-JAX) . We crossed these mice with a

ChAT-Cre (B6;129S6-Chat (tm1cre)Lowl/J, stock# 006410) line to obtain animals in which the optoge-

netic proteins were expressed in cholinergic neurons. In addition, we crossed the floxed archaerho-

dopsin lines with Isl1-Cre mice (Isl1tm1(cre)Sev/J, stock# 024242). We have combined the results of the

Arch-and ArchT animals, and we refer to them in the text as Arch.

Mouse pups were decapitated and then eviscerated. The preparations were then placed in a dis-

section chamber and continuously superfused with artificial cerebrospinal fluid (ACSF; concentrations

in mM: 128 NaCl, 4 KCl, 1.5 CaCl2, 1 MgSO4, 0.5 NaH2PO4, 21 NaHCO3, 30 D-glucose) bubbled

with 95% O2–5% CO2. A ventral laminectomy was performed and the spinal cord together with the

dorsal and ventral roots were removed from the body and placed in a recording chamber super-

fused with oxygenated ACSF at room temperature.

To remove the dorsal part of the spinal cord (Figure 7—figure supplement 1), the lumbar dorsal

pia was removed. The spinal cord was then pinned dorsal up onto a strip of beeswax mounted on a

small piece of plexiglass. The preparation was then transferred to the vibratome chamber containing

a chilled oxygenated K-gluconate based solution (concentrations in mM: 130 K-Gluconate, 15 KCl,

0.05 EGTA, 20 Hepes, 25 D-glucose, 1 mM Kynurenic acid, 2 mM Na-pyruvate, adjusted to pH 7.4

with KOH). The vibratome was then used to remove the dorsal part of the lumbar spinal cord (at

least 250 mM, or until the central canal was visible). The cord was then transferred to a recording

chamber at room temperature and allowed to recover for at least 30 min. All experiments were car-

ried out in compliance with the National Institutes of Neurological Disorders and Stroke Animal Care

and Use Committee (Animal Protocol Number 1267–12 and 1267–15).

Locomotor-like activity was elicited with N-Methyl-D-Aspartic acid (NMDA, 5–6 mM) and serotonin

creatinine sulfate monohydrate (5-HT, 8–10 mM). In one set of experiments (Figure 3, Figure 3—fig-

ure supplement 1), we used NMDA (5 mM), 5-HT (10 mM), and dopamine hydrochloride (DA, 50

mM). Cholinergic receptors were blocked by using 5 mM atropine methyl bromide salt, 50 mM meca-

mylamine hydrochloride and 50 mM dihydo-b-erythroid hydrobromide (dhbe). We used carbenoxo-

lone disodium salt (CBX, 100 mM) as a non-specific, broad-spectrum blocker of gap junctions, and

NBQX disodium salt (5–10 mM) to block AMPA receptors. NMDA, 5-HT, Dopamine, mecamylamine,

atropine, and carbenoxolone were obtained from Sigma-Aldrich (St. Louis, MO), while dhbe and

NBQX were obtained from Tocris (Minneapolis, MN).

Activation of opsins
The protocol for activating the opsins was a control period of 60 s in the absence of light, 60 s with

the light turned on and a recovery period of 60 s. Spinal cords expressing archaerhodopsin or halor-

hodopsin were stimulated with continuous green light (540–600 nm) applied from a 3 mm diameter

light guide connected to a light emitting diode (X-Cite, Excelitas Technologies) positioned over the

ventral surface of the cord to illuminate all the lumbar segments. In one set of experiments (Fig-

ure 4—figure supplement 3), we applied the green light to the rostral lumbar and caudal thoracic

segments (leaving the L5 segment unilluminated). In another set of experiments (Figure 2—figure

supplement 2), the light intensity was varied and the cord was illuminated from either the dorsal or

the ventral side. Animals expressing channelrhodopsin were stimulated with a 60 s train (1 ms at 100

Hz) of blue light (415–475 nm) delivered using the same apparatus. We also used the same protocols

on wild type and ChAT-EGFP cords to establish whether the light itself exerted any effects on the

locomotor-like rhythm.

Electrophysiological recordings and analysis
We recorded the activity of at least three lumbar ventral roots (L1, L2, L5, or L6) using tight-fitting

plastic suction electrodes connected to a high gain amplifier. The signals were amplified (1000 X),

band-pass filtered between 0.1 Hz and 3 KHz and digitized at 5 or 10 KHz (Digidata 1322A, 1440A;

Molecular Devices Sunnyvale, CA) and stored for further analysis. When the green light was turned

on or off, transient artifacts were introduced into the ventral root signals which were corrected man-

ually using the adjust baseline feature of Clampfit (Molecular Devices). In addition, each blue light

pulse introduced a small artifact in the ventral root recordings. These were reduced or eliminated by
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averaging the artifacts for the duration of the trial for each root and then subtracting the averaged

artifact from each artifact. Each trial lasted 3 min (60 s pre-light, 60 s in the light, 60 s post-light). 5 s

at the beginning and at the ends of the recordings were removed to align all signals in all trials to

the beginning of the light (length of the signal was set to 170 s). The recorded signals were then

quantified using wavelet analysis originally introduced by Mor and Lev-Tov (2007) for electrophysio-

logical analysis and implemented here with custom Matlab (Mathworks, Natick, MA) scripts (https://

github.com/avinashpujala/Spectral-Analysis (Pujala, 2017a) and https://github.com/avinashpujala/

General (Pujala, 2017b), Pujala et al., 2016; copies are archived at https://github.com/elifesciences-

publications/Spectral-Analysis and https://github.com/elifesciences-publications/General respec-

tively). We either analyzed the integrated neurograms or the slow locomotor drive potentials. The

ventral root discharge was integrated by first low pass filtering the records at 200 Hz, followed by

high pass filtering at 10 Hz, rectification and then low pass filtering at 5 Hz. The slow potentials were

extracted by low pass filtering the ventral root signals at 200 Hz, followed by band pass filtering

from 0.01 to 5 Hz. Wavelet spectrograms (3200 points along the time dimension) were then gener-

ated from 3 to 5 trials of optical stimulation (see below). From these spectra, we extracted time

series for the frequency and phase between the bilateral flexor-dominated roots (L1/2) and between

the ipsilateral flexor-dominated (L1/2) and extensor-dominated (L5/6) roots. As the wavelet analysis

produces artifacts (edge effects), we clipped 10 s at the beginning and the end of the time series

when plotting the results. For each experiment the time series were averaged. Whenever the fre-

quency dropped to zero (before the light or during the light), the trial was discarded. This can occur

if the power of the signal is too low resulting in a discontinuity in the time series. We then consid-

ered experiments that had a minimum of three valid trials to perform the analysis. From these, we

calculated the mean value of the phase and frequency for every trial under control conditions (before

the light was turned on). These variables were then normalized to the control level to compare their

values across trials and between experiments. As the phase is already normalized, we subtracted the

control average from every value and kept the absolute change in phase. For the frequency, we

divided all points in time by the control average, subtracted one from it, to set the control value to

an average of zero. The integrated neurograms were resampled at 19 Hz and resized to have the

same time course and duration as the time series derived from the wavelet analysis. We also normal-

ized the integrated neurograms to zero for the control period. The normalized data are plotted as

percentage changes. We then averaged the integrated neurograms for all experiments. If the values

in the averaged integrated neurograms go below zero it reflects a decrease in the motoneuron firing

whereas when they are positive, it shows an increase in motoneuron firing.

To compare statistically the extracted time series between two conditions, we used a bootstrap

procedure which allows the use of a t-test without any assumptions about the distribution of the vari-

ables (Falgairolle and O’Donovan, 2015). This allowed us to establish if each point in the experi-

mental and control time series was statistically different . All the trial-averaged time series were used

to generate the averaged time series for each variable (phase, frequency, integrated neurogram).

These data comprised a matrix (3200 x number of experiments) for each variable. The bootstrap pro-

cedure was iterated 10,000 times. We then plotted one condition and color-coded the results of the

t-test with green for p<0.05, yellow for p<0.01, orange for p<0.001 and red for p<0.0001.

We also determined the average value (over 10 s) of each variable before the light, at the begin-

ning of the light, just before the light was turned off and just after the light was turned off. For the

Channelrhodopsin experiments, the maximum change in frequency before during and after the light

was calculated. To compare these values under the different conditions (light on/off – light status;

animal type – genetic identity; genetic identity/drug treatment) we used a 2-way ANOVA with a two

stage linear step up procedure of Benjamini, Krieger and Yekutieli post hoc test (Prism 7.0, Graph-

Pad software, La Jolla, CA). The locomotor frequencies were calculated from the control part of the

times series (before the light was on), and we compared them using a 1-way ANOVA with a two

stage linear step up procedure of Benjamini, Krieger and Yekutieli post-test or a t-test for ChAT-

ChR2. All results are given as mean ± SD. In all figures, *p<0.05, **p<0.01, ***p<0.001,

****p<0.0001.

Intracellular recording from motoneurons
Microelectrodes were pulled from borosilicate capillaries with a microelectrode puller (model P-97;

Sutter Instruments). Pipettes (2.5–7 MW) were filled with intracellular solution (NaCl 10 mM;

Falgairolle et al. eLife 2017;6:e26622. DOI: 10.7554/eLife.26622 24 of 29

Research article Neuroscience

https://github.com/avinashpujala/Spectral-Analysis
https://github.com/avinashpujala/Spectral-Analysis
https://github.com/avinashpujala/General
https://github.com/avinashpujala/General
https://github.com/elifesciences-publications/Spectral-Analysis
https://github.com/elifesciences-publications/Spectral-Analysis
https://github.com/elifesciences-publications/General
http://dx.doi.org/10.7554/eLife.26622


K-Gluconate 130 mM; MgCl21 mM; HEPES 10 mM; Na2ATP 1 mM; EGTA 11 mM; CaCl2 0.1 mM; pH

adjusted to 7.2–7.4 with KOH). The liquid junction potential was not corrected. After removing the

dura and pia maters, blind recordings were obtained by targeting the motoneuron pools either ven-

trally or laterally. Two sets of experiments were performed using whole cell recordings. To assess

the effect of hyperpolarizing motoneurons during the light, we recorded ten motoneurons which

were identified by their antidromic spike in response to ventral root stimulation. We counted four

additional cells as motoneurons even though they did not generate an antidromic spike. All four

neurons were recorded in the ventral part of the cord near the motoneuron pool, and were hyperpo-

larized by the light. Three of the motoneurons received a small antidromically initiated short latency

depolarization arising from antidromically-activated motoneurons that were electrically coupled to

the recorded motoneuron. In the second set of experiments, we tested the effects of carbenoxolone

(100 mM) on gap-junction coupling between motoneurons. We recorded from five antidromically-

identified motoneurons in the L5 segment, in ChAT-Arch spinal cords. The ventral root was stimu-

lated using duration of either 250 ms or 50 ms and the threshold for evoking the action potential

determined. We then recorded the sub-threshold, short-latency depolarizations (averaging 20 trials

for each short-latency depolarization) that represent the electrically-coupled action potentials from

other antidromically activated motoneurons. The potentials were recorded at several membrane

potentials to demonstrate their voltage-independence. The amplitude of short latency depolariza-

tions was quantified following collision of the antidromic action potential with an orthodromically-

evoked action potential (Chang et al., 1999). Measurements were made at 2x the threshold for the

antidromic action potential. The amplitude of the coupling potential was obtained by subtracting

the orthodromic action potential from the collided antidromic action potential. We then performed

the same collision protocol in presence of carbenoxolone while monitoring the resistance of the cell.

All recordings were obtained using a Multiclamp 700A amplifier (DC-3kHz, Molecular Devices). The

input resistance of the cell was calculated from the slope of the current/ voltage (200 ms duration)

plot within the linear range.

Immunohistochemistry
The L2-L1 or L5-L6 segments of spinal cords were dissected and fixed in 4% paraformaldehyde for

at least 4 hr at room temperature. They were then transferred to phosphate buffered saline (PBS),

and embedded in a 5% Agar/PBS solution. Transverse sections (60 mm) were cut on V1000 vibra-

tome (Leica Biosystems, Buffalo Grove, IL). The sections were blocked in 10% normal donkey serum

in 0.01M PBS with 0.1% Triton X-100 for 90 min, and subsequently incubated overnight at room tem-

perature in Chicken Anti-GPF antibody (ab13970, dilution 1:1000, Abcam, Cambridge, MA), Goat

Anti-ChAT antibody (AB144P, dilution 1:100, Millipore, Temecula, CA). The following day, the sec-

tions were washed for an hour and then incubated for 3 hr in secondary antibodies: Donkey Anti-

Chicken-FITC and Donkey Anti-Goat-Cy5 (dilution 1:50, Jackson ImmunoResarch, West Grove, PA).

The sections were then mounted on slides and cover-slipped with a Glycerol/PBS solution (3:7).

Images were acquired using a LSM510 Carl Zeiss confocal microscope with either 10X (air) and 40X

(oil) objectives.
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