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Background: Progenitor cells serve as a promising source of regenerative potential in a variety of tissue types yet remain
underutilized in tendinopathy. Tendon-derived progenitor cells (TDPCs) have previously been isolated from hamstring tendon but
only as part of a concomitant medical procedure. Determining the presence of TDPCs in patellar tendon may facilitate clinical
utilization of these cells because of the relative accessibility of this location for tissue harvest.

Purpose: To characterize TDPCs in human patellar tendon samples.

Study Design: Descriptive laboratory study.

Methods: Human patellar tendon samples were obtained during elective knee surgery. TDPCs were isolated and seeded at an
optimal low cell density and subcultured to confluence for up to 2 passages. Flow cytometry was used to analyze for the
expression of CD90þ, CD105þ, CD44þ, and CD31–, CD34–, and CD45– markers. The multilineage differentiation potential of
TDPCs was tested in vitro via adipogenic, osteogenic, and chondrogenic culture with subsequent cytochemical staining for Oil Red
O, Alizarin Red, and Alcian Blue, respectively. Enzyme-linked immunosorbent assay was used to quantify the amount of adipo-
nectin, alkaline phosphatase, and SRY-box transcription factor 9 secreted into cell culture supernatant for further confirmation of
lineage differentiation. Results were analyzed statistically using the 2-tailed Student t test.

Results: TDPCs demonstrated near-uniform expression of CD90, CD105, and CD44 with minimal expression of CD34, CD31, and
CD45. Adipogenic, osteogenic, and chondrogenic differentiation of TDPCs was confirmed using qualitative analysis. The
expression of adiponectin, alkaline phosphatase, and SRY-box transcription factor 9 were significantly increased in differentiated
cells versus undifferentiated TDPCs (P < .05).

Conclusion: TDPCs can be successfully isolated from human patellar tendon samples, and they exhibit characteristics of mul-
tipotent progenitor cells.

Clinical Relevance: These data demonstrate the promise of patellar tendon tissue as a source of progenitor cells for use in biologic
therapies for the treatment of tendinopathy.
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INTRODUCTION

Tendinopathy is a degenerative tendon disorder characterized
by chronic pain, decreased strength, localized tenderness,
and reduced function.56 Approximately 30% of all general
practitioner musculoskeletal visits are attributed to symp-
toms of tendinopathy, costing an estimated US$30 billion
in annual health care utilization in the United States
alone.2,37 Traditional treatments for tendinopathy include
activity modification, physical therapy consisting mostly
of eccentric exercises, injections, and extracorporeal

shockwave therapy.8,21,26,54,61 However, these modalities
often do not resolve symptoms, as many patients are unable
to return to their prior levels of physical activity and work.39

Although biologic treatments have shown promise in
other musculoskeletal conditions, biologic treatments for
tendinopathy have not advanced to the same degree.20

Human progenitor cells hold promise for their ability to
regenerate many types of tissue and ameliorate disease
burden. Bone marrow–derived and adipose-derived mesen-
chymal progenitor/stromal cells (BMSCs and ADSCs) have
been the most studied in musculoskeletal regenerative
medicine because of their relative ease of isolation and mul-
tilineage potential.3,4 Cells derived from these sources have
been utilized to treat chondral defects, fractures, and osteo-
necrosis, among others.14,15,18,19,24,27,50
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In order to regenerate tendon, however, it would seem
most advantageous to harvest progenitor cells from a ten-
don source. This would take advantage of the fact that pro-
genitor cells from tendons are more phenotypically
committed or “primed” for tenogenesis than are cells from
other tissues.13 Bi et al1 demonstrated this when they first
isolated tendon-derived progenitor cells (TDPCs) and
reported that progenitor cells derived from tendon were
phenotypically distinct from bone marrow–derived progen-
itor cells. Additional investigations have shown TDPCs to
have the ability to regenerate tendon after in vitro expan-
sion and subsequent implantation.1,25,36,42,45

The majority of literature to date describing the isolation
of TDPCs from human samples has utilized hamstring ten-
don as the source tissue.1,43,46 Hamstring tendon samples,
however, are typically only available as part of a concomi-
tant medical procedure, such as anterior cruciate ligament
(ACL) reconstruction. The patellar tendon, in contrast, is
nearly subcutaneous, could be easily accessed in both the
operative and nonoperative settings, and has been
described as part of autologous tenocyte injection treatment
for lateral epicondylitis.51,52

There are few reports of isolation of TDPC from human
patellar tendon.22,38 If sufficient TDPCs exist within patel-
lar tendon, these cells could be easily harvested and provide
a biological regenerative advantage in the treatment of ten-
dinopathy. The purpose of this investigation was to deter-
mine the presence of TDPCs in human patellar tendon
samples. The authors hypothesized that TDPCs could be
consistently isolated from human patellar tendon samples.

METHODS

Institutional review board approval was obtained before
study initiation. Samples of patellar tendons were obtained
during elective knee surgery from 2 healthy human donors
undergoing ACL reconstruction (1 man: age, 32 years; 1
woman: age, 26 years). To assess for the presence of TDPCs,
we utilized the definition of multipotent mesenchymal stro-
mal cells as put forth by the International Society of Cellu-
lar Therapy (ISCT): adherent to plastic when maintained in
standard culture conditions, trilineage (osteoblasts, adipo-
cytes, and chondroblasts) differentiation in vitro, and hav-
ing the specified cell surface marker expression profiles.12

Cell Isolation and Expansion

Tissue was minced and washed twice in 50 mL of phosphate-
buffered saline (PBS; Gibco) and 1% penicillin-streptomycin

(Gibco) under sterile conditions and centrifuged at 400g at
22�C for 5 minutes. The supernatant was collected, and the
tissue fragments were digested in 3 mg/mL of collagenase
type I from Clostridium histolyticum and 4 mg/mL of dis-
pase II from Bacillus polymyxa (Sigma) in Dulbecco’s Mod-
ified Eagle Medium (DMEM; Sigma-Aldrich) for 2 hours at
37�C, with gentle shaking every 30 minutes. The resulting
cell suspension was diluted in PBS, filtered via a 75-mM
strainer to remove debris, and centrifuged at 400g at
22�C for 10 minutes to obtain a cell pellet. The supernatant
was aspirated without disturbing the pellet. The cell count
and viability were performed using a hemocytometer and
trypan blue. The isolated viable nucleated cells were seeded
at an optimal low cell density (500 cells/cm2) and resus-
pended in DMEM/Nutrient Mixture F-12 (DMEM/F-12;
Gibco) supplemented with 20% fetal bovine serum (Gibco)
and 1% penicillin-streptomycin. They were then cultured at
37�C and 5% CO2 to form colonies for the isolation of
TDPCs. Subcultured cells were expanded at 500 cells/cm2

when they reached 90% confluence up to 2 passages and
then subjected to the in vitro characterization following the
previously described guidelines for the definition of mesen-
chymal stromal cells.12

Expression of Progenitor Cell Surface Markers

Flow cytometry was performed on cells obtained from the
digestion after the second passage. An amount of 1 � 106

of cells were harvested using trypsin-EDTA (Gibco), filtered
via a 70-mm strainer, and washed in PBS. The cells were
suspended in 100 mL of PBS, stained with Zombie Aqua Fix-
able Viability (BioLegend), and incubated for 20 to 30 min-
utes in the dark. After the incubation, the cells were then
resuspended in flow wash/stain buffer (Biosciences) and
centrifuged. Pellets were collected in PBS (Invitrogen) and
stained first with Human Fc Block (Biosciences) for 10 min-
utes and then using selected antibodies for 30 minutes in the
dark. To define mesenchymal stem cells (MSC), we sorted for
CD90þ, CD105þ, CD44þ, and CD31–, CD34–, and CD45–
markers. Cells were compared with unstained cells as a neg-
ative control. Samples were acquired via flow cytometric
analysis (BD LSRFortessa), and data were further analyzed
using FlowJo software (Version 10.6.2; Tree Star Inc).

In Vitro Multilineage Differentiation

The multilineage potential of the TDPCs was tested in vitro
via osteogenic, adipogenic, and chondrogenic culture. To
evaluate for trilineage differentiation, the treated cells, after
a specific time period, were stained. The supernatants and
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the micropellets were collected before cytochemical staining
in order to perform a separate enzyme-linked immunosor-
bent assay (ELISA) analysis. Samples were also stained with
hematoxylin and eosin (H&E) to evaluate the morphology of
the cells. Each sample was compared with unstimulated
cells as a negative control. After the second passage, cells
were harvested using trypsin-EDTA and seeded at
3000 cells/cm2 in a different 6-well plate, and then they were
cultured in adipogenic and osteogenic media for up to
3 weeks. For chondrogenesis, cells were collected after the
second passage, and micropellets of 1 � 106 cells were cre-
ated in 15-mL conicals with centrifugation for 5 minutes at
400g. The supernatant was aspirated, and the pellet was
partially suspended in 100 mL of culture media. From this
suspension, we removed droplets of 6 mL each and cultured
them in 40 mL of chondrogenic induction media up to 3 weeks
to preserve the micropellet for the cytochemical assay. In
parallel, micropellets with a cell density of approximately 1
� 106 viable cells per pellet were placed in 15-mL conicals
using the same technique. The supernatant was aspirated,
but the pellet was cultured in 4 mL of induction media in the
15-mL conicals for 21 days. After 21 days, the micropellets
from the 15-mL conicals were collected, and the cells were
lysed for the quantitative analysis.

Adipogenesis. To determine adipogenesis, TDPCs
were collected and cultured using the StemPro Adipogen-
esis Differentiation Kit (Gibco) for up to 2 weeks and
stained with Oil Red O to visualize the accumulation of
lipid vacuoli after embedding with 4% paraformaldehyde.
To quantify adiponectin secreted in the culture medium of
adipo-induced cells, we used a standard adiponectin ELISA
(Abcam). This assay uses an antibody specific for human
adiponectin coated on a 96-well plate. Standards and sam-
ples are pipetted into the wells, and adiponectin present in
a sample is bound to the wells via the immobilized antibody.
The color was developed in proportion to the amount of
adiponectin bound and measured at 450 nm using a spec-
trophotometer (SpectraMax M5; Molecular Devices).

Osteogenesis. To diagnose osteogenesis, cells were cul-
tured using the StemPro Osteogenesis Differentiation Kit
(Gibco), and on day 21, osteogenic differentiation of TDPCs
was visualized using the intensity of Alizarin Red staining
on micros-copy. In addition, the alkaline phosphatase
(ALP) activity was quantified using ELISA (Alkaline Phos-
phatase Assay Kit; Colorimetric Inc) in the cell culture
supernatants. This kit uses p-nitrophenyl phosphate as a
phosphatase substrate that turns color when dephosphory-
lated via ALP. The optical density was measured at 405 nm
using a spectrophotometer (SpectraMax M5).

Chondrogenesis. To diagnose chondrogenesis, micropel-
lets of TDPCs in 6-well plates were created and then cul-
tured using a chondrogenesis differentiation kit
(StemPro). For analysis, the pellets in the 6-well plates
were embedded in 4% paraformaldehyde and then stained
with Alcian Blue to detect the presence of acidic polysac-
charides such as glycosaminoglycans in cartilage cells. For
the quantitative assay, the micro cell pellets were lysed,
and the presence of SRY-box transcription factor 9 (SOX9)
was detected using ELISA. The ELISA uses an affinity

tag–labeled capture antibody and a reporter-conjugated
detector antibody that immunocaptures the sample ana-
lyte in solution. Signal was generated proportionally to
the amount of bound analyte, and the intensity was mea-
sured at 450 nm using a spectrophotometer (SpectraMax
M5).

Data Analysis

Sample data output generated from flow cytometry was
analyzed using FlowJo software. Gating was applied to
exclude debris, multicellular aggregates, and dead cells
by selecting the central live population of single cells with
highly similar morphologic and cytometeric characteristics.
Isotype control readings were used against fluorescence
readings to determine fluorescence shift. Compensation
was conducted using FlowJo software using single-stain
analysis readings of monoclonal antibodies. Characteriza-
tion of TDPCs is based on the expression of MSC-associated
surface markers (CD90, CD105, CD44) and non-MSC sur-
face markers (CD31, CD34, CD45). Positive and negative
percentages from different samples were combined to
obtain a mean ± standard deviation for positive and nega-
tive markers. All experiments were performed in duplicate,
and TDPC differentiation was performed using cells from
each donor.

Statistical Analysis

To evaluate the differences in the presence of adiponectin,
ALP, and SOX9 in comparison with the negative control, a
2-tailed Student t test was performed. Data were analyzed
using R Foundation for Statistical Computing (version
4.0.0; R Development Core Team). P values <.05 were con-
sidered to be statistically significant. All experiments were
performed in duplicate. These differentiations were per-
formed using cells from different donors.

RESULTS

Cells Isolation and Expansion

Subcultured TDPCs were cultured onto tissue-treated cul-
ture flasks for several passages and adhered to the plastic
flask when maintained in standard culture conditions.
These cells demonstrated a fibroblastic-like appearance
and exhibited distinct colony formation. The TDPCs
showed constant proliferation during the expansion and
continued to be adherent with a spindle-like cell morphol-
ogy appearance typical of MSCs (Figure 1), satisfying the
first criterion described from the ISCT.12

Expression of MSC Surface Markers

The other minimum criterion for the identification of MSCs
is the presence of MSC-associated surface markers, such
as CD90, CD105, and CD44, and simultaneous low expres-
sion or the absence of non–progenitor cell–associated sur-
face markers, such as CD34, CD31, and CD45. TDPCs
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demonstrated near-uniform expression of CD90, CD105,
and CD44, with minimal expression of CD34, CD31, and
CD45 (Figure 2). These results demonstrated that the
TDPCs satisfied the surface antigen expression criteria of
the ISCT.12

In Vitro Multilineage Differentiation Assay

To determine whether our isolated TDPCs were capable of
adipogenic, osteogenic, and chondrogenic differentiation,
cytochemical staining and ELISA were performed.

Adipogenesis. Cells demonstrated many intracellular
lipid vacuoles typical of adipocytes after staining with Oil
Red O (Figure 3C). Furthermore, H&E staining demon-
strated that TDPCs changed in morphology from spindle-
shaped to larger, more rounded cells (Figure 3, A and B).
Analysis using ELISA revealed significantly increased
expression of adiponectin as compared with the untreated
TDPCs (P < .001) (Figure 4A).

Osteogenesis. Alizarin Red staining demonstrated the
abundant formation of calcium on the differentiated
TDPCs, which was not observed in the undifferentiated
cells (Figure 3, D and F). The H&E staining also demon-
strated a rounded cell morphology, different from that of
undifferentiated TDPCs (Figure 3E). The quantitative
analysis showed significantly higher ALP expression in the
induced cells compared with the noninduced control group
(P ¼ .035) (Figure 4B).

Chondrogenesis. Culture in chondrogenic medium
resulted in the production of glycoproteins of the cartilage
matrix as seen via Alcian Blue staining (Figure 3, G-I). The
expression of SOX9 was significantly increased in the cells
that underwent chondrogenic culture differentiation ver-
sus undifferentiated TDPCs (P < .001) (Figure 4C).

DISCUSSION

The present investigation demonstrated successful isola-
tion of TDPCs from human patellar tendon. These data
demonstrate the promise of patellar tendon tissue as a
source of TDPCs for use in biologic therapies for the treat-
ment of tendinopathy. Prior investigations have reported
the presence of TDPC in human tendon samples, but
TDPCs have been predominantly isolated from hamstring
tendons. Bi et al,1 who were the first to report on the
isolation of TDPCs, utilized pediatric hamstring samples
from children undergoing hamstring tenotomy for knee
flexion contracture. Ruzzini et al43 and Stanco et al46

were also able to isolate tendon-derived progenitor cells,
but they utilized hamstring tendon samples from patients
undergoing ACL reconstruction. The use of patellar ten-
don, which is more superficial in nature, provides a more
accessible source of TDPC for the typical patient with
tendinopathy who does not require ACL reconstruction.
In fact, needle biopsy of the patellar tendon for other
indications has been described in multiple publica-
tions.35,51,52 Even for those patients with signs and

Figure 1. Light microscopy (4�) image demonstrating prolif-
eration and colony formation of spindle-like tendon-derived
stem cells.

Figure 2. Percentage of tendon-derived progenitor cell sur-
face immunophenotype at second passage. Data are pre-
sented as mean ± SD.
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symptoms of patellar tendinopathy, tendon samples could
be acquired from the contralateral limb or distally in the
patellar tendon away from the typical location of proximal
patellar tendinopathy.

In comparison to isolation from hamstring tendons,
TDPCs derived from patellar tendon samples have been
characterized by fewer studies.22,38 In 1 investigation, Lee
et al22 found that hypoxic conditions promoted proliferation
of patellar tendon TDPCs but reduced the osteogenic, adi-
pogenic, and chondrogenic differentiation. Further, Qin
et al38 utilized human patellar tendon TDPCs to demon-
strate that TDPCs also have fibrochondrogenic differentia-
tion potential. Both studies demonstrated that TDPCs had
all characteristics of multipotent mesenchymal stromal
cells. As such, combined with previous findings, the present
investigation further demonstrates that TDPCs can be con-
sistently isolated from the patellar tendon.

Currently, BMSCs and ADSCs provide most progenitor
cells for clinical use for a variety of indications,29,47,48 but
these cells may not be optimal for the treatment of tendino-
pathy because they are not “primed” for tendon

regeneration and have been shown to be phenotypically
distinct from bone marrow–derived progenitor cells.1

TDPCs may be superior because they are isolated from the
native tendon source and express higher levels of tenogenic
markers, such as tenomodulin and scleraxis (Scx), key reg-
ulators of tenocyte differentiation.1,11,23,48 Tan et al48 dem-
onstrated that TDPCs expressed higher levels of
tenomodulin, Scx, and type I collagen compared with
BMSCs. Additionally, the authors showed that TDPCs pro-
liferate faster and have higher clonogenicity potential than
do BMSCs. Further, Youngstrom and colleagues57 evalu-
ated the tenogenesis of TDPCs, BMSCs, and ADSCs in a
dynamic bioreactor and found that of those cell types,
TDPCs expressed the highest levels of Scx and type I colla-
gen transcripts and resulted in the most mature tendon-
like phenotype in vitro.

TDPCs have a multifactorial role in tendon repair. Studies
have shown that TDPCs can spontaneously differentiate into
tenocytes in vitro without induction medium.49 Platelet-rich
plasma supplementation in vitro can also promote TDPC dif-
ferentiation into tenocytes and enhance in vivo tendon

Figure 3. Multilineage differentiation potential of tendon-derived progenitor cells at second passage. (A) Negative control for
adipogenesis (10�); cell differentiation into adipocytes stained with (B) hematoxylin and eosin (H&E) and (C) Oil Red O (20�). (D)
Negative control for osteogenesis (10�); cell differentiation into osteoblasts stained with (E) H&E and (F) Alizarin Red (2�).
(G) Negative control for chondrogenesis (2�); cell differentiation into chondrocytes stained with (H) H&E and (I) Alcian Blue (2�).
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healing in animal models.55,60 Further, mechanical loading
also has an effect on TDPC outcome, as Zhang and Wang59

determined that low mechanical stretching promoted teno-
genic differentiation of TDPCs, whereas higher loading
induced adipogenic, chondrogenic, and osteogenic
changes. It has also been shown that prostaglandin E2

decreases TDPC proliferation and induces osteogenic differ-
entiation, leading to increased production of BMP-2. This
mechanism may play a role in the pathogenesis of calcific
tendinopathy.58 Additionally, another study has reported
that despite a higher number of total resident TDPCs in ten-
dinopathic tissue, these TDPCs are unable to differentiate
into tenocytes to regulate the extracellular matrix (ECM).5

The difficulty in treating tendinopathy lies in the multi-
factorial pathogenesis of the disease. The utilization of ten-
don derived stem cells (TDSC) as a biologic agent may
address many of these aberrant pathways. One of the main
pathological mechanisms in the development of tendinopa-
thy involves repetitive tendon mechanical overload leading
to microscopic collagen fibril failure.41 Given the poor
intrinsic healing capacity of tendon, ECM damage may
accumulate over time, leading to progressive structural
injury and symptomatic disease.28 Healthy tendons are
predominantly composed of type I collagen, which gives
them their mechanical strength. In tendinopathy, there is
increased production of type III collagen, increased vascu-
larity, and deposition of additional ECM proteins, leading
to loss of collagen organization.9,32 In addition to mechan-
ical overload, other mechanisms that may propagate the
development of tendinopathy include matrix metalloprotei-
nase and tissue inhibitors of metalloproteinase

imbalance,40 hypoxia,33 dysregulated apoptosis,17 and neu-
ronal proliferation.10 Given their role as a central regula-
tory cell within the tendon environment,25 the utilization of
TDSCs may mitigate many of these pathological processes.
For instance, the use of TDSCs as a biologic therapy may
allow for the increased production of type I collagen over
type III collagen, addressing a major difference in the com-
position of the ECM in tendinopathy versus healthy
tendon.

Despite these varied mechanisms, it has become
increasingly evident that a central component of tendino-
pathy is a chronic inflammatory response. Multiple
studies have shown that inflammation is present in early
tendinopathy,16,30-32 and current evidence supports the
complex interplay between infiltrating immune cells, acti-
vation of resident stromal cells, and the innate immune sys-
tem in response to tissue damage.32 Additionally, recent
reviews have demonstrated that the immune response is a
major player in both tendon healing and dysregulation.6,7

Tenocytes are the most abundant cell type in tendon, and
in the setting of mechanical overload, these cells can produce
altered ECMs and inflammatory cytokines, such as interleu-
kin (IL)-1b,44 IL-6,34 and IL-17A,30 that continue to promote
the inflammatory conditions in tendinopathy. In addition to
tenocyte differentiation, TDPCs can play a role in modulat-
ing inflammation in tendinopathy. TDPCs have been shown
to secrete anti-inflammatory cytokines, such as IL-10, when
delivered into animal models of tendon injury.45,49 Further,
recent studies have demonstrated that exosomes derived
from TDPCs may also play a role in controlling inflammation
in tendinopathy and regulating the tendon ECM.53,62 Zhang

Figure 4. Enzyme-linked immunosorbent assay analysis of multilineage differentiation potential of tendon-derived progenitor cells.
(A) Adiponectin concentration in cellular supernatant after induction of adipogenesis. (B) Alkaline phosphatase (ALP) concentration
in cellular supernatant after induction of osteogenesis. (C) SRY-box transcription factor 9 (SOX9) concentration in cellular super-
natant after induction of chondrogenesis. Data are presented as mean ± SD. *P < .05; *** P < .01.
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et al62 found that animal models of Achilles tendon injury
treated using TDPC exosomes demonstrated decreased
expression of IL-6 and CCR7, a marker for M1 pro-
inflammatory macrophages, and increased expression of
IL-10. Additionally, TDPCs combined with their exosomes
upregulated tissue inhibitors of metalloproteinase-1 and
type I collagen.

There were some limitations to the current study. As this
was an in vitro study, the multilineage differentiation
potential and clonogenicity exhibited by TDPCs in culture
may not be representative of their capabilities in vivo. This
study also included a relatively small sample size with ten-
don samples collected from 2 patients, which may limit the
reliability and external validity of our results. Further, we
could not determine if the amount and quality of TDPCs
changed with increased age. Additionally, samples were
only harvested from patients with healthy tendons, even
though future TDPC treatment would target patients with
tendinopathy. As such, TDPCs harvested from tendino-
pathic samples may have different characteristics. Finally,
this investigation did not study interactions between other
cell types and TDPCs. There could be synergistic interac-
tions between TDPCs and tenocytes or MSCs derived from
other sources.

CONCLUSION

Tendon-derived cells that exhibit characteristics of multi-
potent progenitor cells can be successfully isolated from
human patellar tendon samples, offering an easily accessi-
ble source of cells for tendinopathy treatment and tendon
regeneration.
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