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Abstract: Plants are often exposed to abiotic stresses such as drought, salinity, heat, cold, and heavy
metals that induce complex responses, which result in reduced growth as well as crop yield. Phy-
tohormones are well known for their regulatory role in plant growth and development, and they
serve as important chemical messengers, allowing plants to function during exposure to various
stresses. Seed priming is a physiological technique involving seed hydration and drying to improve
metabolic processes prior to germination, thereby increasing the percentage and rate of germination
and improving seedling growth and crop yield under normal and various biotic and abiotic stresses.
Seed priming allows plants to obtain an enhanced capacity for rapidly and effectively combating
different stresses. Thus, seed priming with phytohormones has emerged as an important tool for
mitigating the effects of abiotic stress. Therefore, this review discusses the potential role of priming
with phytohormones to mitigate the harmful effects of abiotic stresses, possible mechanisms for how
mitigation is accomplished, and roles of priming on the enhancement of crop production.
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1. Introduction

Due to the consequences of global warming, crop production and productivity are ham-
pered in many localities. Different environmental constraints, such as drought, salinity, heat,
cold, and heavy metals, can seriously affect plant growth and development
mboxciteB1-plants-1035346,B2-plants-1035346,B3-plants-1035346,B4-plants-1035346. The early
stages of plants, such as seed germination and seedling establishment, are susceptible to these
environmental constraints [5,6]. In this era, much attention has been given to developing
approaches to alleviate the constraints of abiotic stresses on seed germination. Different phys-
iological and non-physiological techniques are available for enhancing seed germination as
well as alleviating abiotic stresses. Seed priming is a low-cost and effective physiological and
biochemical process that stimulates seed germination, enhances morphological parameters,
and improves plant growth and development under abiotic stress [7–11]. Plant hormones are
known as phytohormones or plant growth regulators (PGRs). Phytohormones are chemical
molecules produced by plants and have important roles in regulating plant growth and
development. Auxins (IAAs), cytokinins (CKs), gibberellins (GAs), abscisic acid (ABA),
salicylic acid (SA), and ethylene (ET) are well-known phytohormones that are essential
for plant growth and development [8,12]. Phytohormones function as important chemical
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messengers and modulate many cellular processes in plants, and they can coordinate
different signaling pathways during exposure to abiotic stresses [13,14]. Several studies
have reported that phytohormones can interact with each other and manage the physiology
of plants exposed to different biotic and abiotic stresses [15–18].

Seed priming with hormone solutions is referred to as hormonal priming, and hormonal
seed priming plays an important role in seed metabolism [9]. Currently, hormonal seed
priming is a commonly used technique to improve seed germination, seedling growth,
and crop yield in adverse conditions [19–21]. Ensuring better germination and seedling vigor
by seed priming would result in healthy and productive plants under adverse conditions
(Figure 1).

Figure 1. Schematic model showing possible effects of seed priming with phytohormones.

In hormonal seed priming, seeds are pre-soaked with an optimal concentration of
phytohormone, which enhances germination, seedling growth, and yield by increasing
nutrient uptake through enhanced physiological activities and root production [22,23].
Seed priming with phytohormones has been studied in a range of crop species, and it
modulates many physiological processes such as growth and development, respiration,
and transpiration [24–26]. Phytohormones have a significant role in the biochemical,
defense, and signaling pathways of plants [12]. Many researchers are working to develop
effective approaches to alleviate abiotic stresses and enhance crop production. Seed priming
with phytohormones can modulate the biochemical and molecular mechanisms making
plants capable of tolerating these abiotic stresses, and these techniques are now very
promising. Thus, the purpose of this review is to summarize the current understanding of
the regulation of abiotic stresses through phytohormone priming and its future promise.
Therefore, this review discusses hormonal seed priming and its role in stress mitigation,
mechanisms of action of the hormones, and benefits for crop production in the future.

2. Commonly Used PGRs in Seed Priming

Among the plant growth regulators, IAAs, CKs, GAs, ABA, SA, and ET are commonly
used in seed priming. In addition, methyl jasmonate (MeJA) and strigolactone have also
been used in seed priming.
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2.1. Auxin

The IAAs were the first identified and are most well-known phytohormone that demon-
strates a vital role in modulating plant growth and developmental processes such as root
growth, cell elongation, vascular differentiation, and apical dominance [27,28]. IAAs promote
plant growth not only under normal conditions but also under different stress conditions [29]
(Figure 2). In higher plants, IAAs mainly exist in the form of IAA conjugates, and they are
the primary free endogenous auxin involved in plant developmental processes such as lateral
root formation. The exogenous application of IAAs induces the formation of adventitious
roots [30,31].

Figure 2. Proposed possible mechanisms used by auxin-and abscisic acid (ABA)-priming and their roles on the germination,
growth, and development of plants under different stresses.

Plant growth and development are hampered by different abiotic stresses, and seed
priming with IAAs has been reported as an effective tool to reduce the effects of these
stresses [23,32]. Seed priming with IAAs enhances cell division, photosynthetic activi-
ties, and translocation of carbohydrates, which results in lateral root initiation, flowering,
and good stand establishment [33–35]. Seed priming with IAAs (1 ppm) enhanced the
seedling establishment of Bouteloua gracilis [36], and in wheatgrass (Agropyron elongatum),
seeds priming with IAAs at 50 ppm improved tolerance to drought stress by enhanc-
ing antioxidant enzyme activities such as catalase (CAT), superoxide dismutase (SOD),
and peroxidase (POD) [7]. Under salinity stress, wheat seeds priming with IAAs (100, 150,
and 200 mg L−1) regulated hormonal homeostasis, which enhanced the CO2 assimilation
rate and ultimately resulted in increased grain yield [32]. Also, seed priming with IAAs
improved the germination and growth of different species, such as rice (Oryza Sativa) and
pigeon pea (Cajanus cajan), under arsenic or cadmium (Cd) stress [26,37].

Iqbal and Ashraf [32] reported that seed priming with IAAs ameliorated salt stress via
modulation of ion homeostasis in wheat and induced salicylic acid biosynthesis in leaves.
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Also, seed priming with IAAs activates calcium anion channels and inhibits K+ inward,
rectifying channels during salt stress, which results in a reduction of transpirational water
loss from plants. Modulation of the stomatal opening and closing helps plants reduce
water loss via transpiration [38,39]. Consequently, plant growth is improved under stressful
conditions. It is well known that exogenous and endogenous IAAs play an important
role in stomatal movement and function as a positive regulator in the stomatal opening,
but high concentrations of IAAs have a negative effect [40].

2.2. Cytokinin

CKs are the major plant hormones that regulate numerous aspects of plant growth and
development, such as cell division, apical dominance, root formation, stomatal behavior,
and chloroplast development [41,42]. It is well known that CKs application promotes crop
production. For example, the application of CKs to cotton seedlings increased cotton yield
by 5–10% [43]. CKs play an important role in plant pathogenesis, and CK application
induced resistance against Pseudomonas syringae in Arabidopsis thaliana [44,45] and Nicotiana
tabacum [45]. CKs may act as a biological agent to control diseases. For instance, Pseu-
domonas fluorescens G20-18 produces CKs, which controls Pseudomonas syringae infection
in Arabidopsis and enhances biomass yield [46]. The exogenous application of CKs can
mitigate the abiotic stresses on crop plants, which ultimately results in increased growth,
development, and yield. Likewise, supplementation of CKs also reduces salinity stress
in plants [47,48], and it increases starch accumulation in salt-stressed rice plants [49].
In addition, exogenously applied CKs increased net C-assimilation, net photosynthesis,
and dry matter accumulation in Epipremnum aureum, which resulted in enhanced plant
growth [50,51]. However, Zahir et al. [52] reported that exogenous application of CKs
significantly increased the growth and yield of rice.

Seed priming with CKs or a combination of CKs and other plant hormones has
resulted in the mitigation of abiotic stresses in various plant species (Table 1). Priming with
CKs enhances chlorophyll (Chl) formation and biomass accumulation in plants, and it
increases photosynthetic rate, promotes membrane stability, and maintains stable ionic
levels. It has been reported that wheat seeds priming with kinetin (100 mg L−1, 150 mg L−1,
and 200 mg L−1) enhanced germination and tolerance against salt by decreasing ABA
and increasing IAAs concentrations [53]. Likewise, Mangena [54] reported that soybean
seed priming with CKs (Benzyl adenine; 4.87 mg L−1) increased soybean root biomass,
flowering, and fruiting under drought stress. Priming of aged groundnut (Arachis hypogaea
L.) seeds with CKs (150 ppm) enhanced germination and seedling indices by enhancing
antioxidant enzyme activities and decreasing oxidative damage [55]. However, the detailed
mechanisms of how priming with CKs mitigate abiotic stress have not been investigated.
CKs play a significant role in stomatal movement, and when applied exogenously, this PGR
inhibits ABA-induced stomatal closure [56,57]. However, seed priming with CKs and its
effects on stomatal movement are still unclear.

2.3. Gibberellin

GAs are plant growth hormones and have positive effects on seed germination, stem elon-
gation, flowering initiation, and flower and fruit development [66,67]. GAs regulate plant
growth and development during the entire life cycle of plants [68]. Demir et al. [68] reported
that the application of GA3 significantly increased the germination speed of eggplant (Solanum
melongena) seeds. Also, GAs can interact with other plant hormones and mediate many devel-
opmental processes in plants [69].

Different abiotic stresses, such as salinity, drought, chilling, heat, and heavy metals,
inhibit proper nutrient uptake and photosynthesis, which ultimately results in stunted
plant growth [70,71]. The exogenous application of GAs can mitigate abiotic stresses and
enhance plant growth and development. The application of GAs in combination with
poultry manure improved the growth of pepper (Capsicum annuum) plants and increased
their salinity tolerance [72]. Moumita et al. [73] reported that exogenous application
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of GAs improved the growth of wheat (Triticum aestivum) plants and mitigated drought-
induced oxidative damage by maintaining relative water content, balancing the antioxidant
mechanism system, and conserving the Chl concentration. Foliar application of GA3 to
tomato (Solanum lycopersicum) plants increased relative leaf water content, stomatal density,
and Chl content by mitigating salinity stress [74]. Besides, GA3 stimulated plant growth
and yield leaf of lettuce (Lactuca sativa) by enhancing biomass accumulation, leaf expansion,
stomatal conductance, water use efficiency, and nitrogen use efficiency [75].

Table 1. Seed-priming with cytokinin adopted for developing abiotic stress tolerance in plants.

Plant Stresses Responses of Plant References

Soybean (Glycine max) Drought Improved drought tolerance in
soybean plants [54]

Pigeon pea (Cajanus cajan) Salt Prevented the damage caused by the
apparatus involved in protein synthesis [58]

Cadmium Tolerance to the effects of Cd stress [26]

Basil (Ocimum basilicum) Drought Reduced negative effects of drought stress [59]

Wheat (Triticum aestivum)

Salt
Decreased ABA concentration, increased
IAAs concentration, and enhancement of

salt tolerance
[60]

Salt

Improved photosynthetic rate, water use
efficiency and stomatal conductance,

decreased Na+ and Cl− level,
increased K+ level

[61]

Salt Decreased electrolyte leakage and conferred
salt tolerance [62]

Salt Increased tissue N content and nitrate
reductase activity [63]

Salt

Induced reduction in inorganic ion
accumulation and increasing membranes

stability and K+/Na+ ratio,
enhanced chlorophyll formation and soluble

sugar accumulation

[64]

Salt Alleviated salt stress by enhanced
ethylene production [65]

GAs are used as important seed priming agents to mitigate abiotic stresses in different
crops (Table 2). Guangwu and Xuwen [76] reported that GAs (5 × 10−5 M) promoted
seed respiration and lowered the ABA level and stimulated IAAs and GAs biosynthesis.
In addition, wheat seeds treated with GA3 (100 mg L−1, 150 mg L−1, and 200 mg L−1)
exhibited a decrease in the concentration of polyamines, ABA, and Na+ and an increase in
the concentration of Ca2+ and K+ [23]. Moreover, wheat seeds primed with GAs (150 ppm)
enhanced germination and seedling parameters under salt stress [77]. In the case of salt
stress, maize seed priming with GAs (5 mg L−1) increased the shoot and root length and
tissue water content [78]. Recently, Ma et al. [79] reported that seeds priming with GAs
(50 µM) increased the germination rate, plant growth, and biomass production in Leymus
chinensis. Likewise, seed priming with GAs increased the percentage and rate of seed
germination and enhanced growth, yield, and yield-contributing characters of different
crops species such as wheat, maize, and lentil [80–83]. However, more research is required
to find the mechanisms of GA priming in abiotic stress mitigation.
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Table 2. Seed-priming with gibberellin and response of plant species.

Plants Stresses Responses of Plant References

Pigeon pea (Cajanus cajan) Cadmium Increased germination speed index and germination percentage
and tolerance to Cd stress [26]

Pot marigold and Sweet fennel Salt Increased dry matter and enhanced tolerance to salinity by
enhancing antioxidant enzyme activities [84]

Milk Thistle (Silybum marianum) Salt Increased α-amylase activity and alleviated salt stress effects [85]

Chickpea (Cicer arietinum) Drought Increased relative water content, seed protein, and reduced
electrolyte leakage [86]

Wheat (Triticum aestivum) Salt Promoted better salinity tolerance [77]

Sorghum (Sorghum bicolor) Drought Increased CAT and APX activities [87]

Corn (Zea mays) Salt Increased tissue water content [78]

Maize (Zea mays), Pea (Pisum sativum), Grass pea
(Lathyrus sativus) Salt Alleviated salt stress effects [88]

Rice (Oryza sativa) Flood Increased α-Amylase activity, sucrose, glucose, and fructose
content in seeds. [89]

Alfalfa (Medicago sativa) Salt
Induced enzymatic activities (SOD, CAT, GPX, APX, GR),
and decreased lipid peroxidation, and reduced membrane

damage of alfalfa.
[90]

Sponge gourd (Luffa aegyptiaca) Salt Prevented the adverse effect of salinity [91]

Soybean (Glycine max) Saline-alkali Increased activities of the antioxidant defense system,
photosynthetic pigment contents, better membrane integrity [92]

Maize (Zea mays) Salt Reduced negative effect of salt stress [93]

Sweet sorghum (Sorghum bicolor) Salt Enhanced water absorption and improved salinity tolerance [94]

Maize (Zea mays) Drought Increased chlorophyll content and enhance drought tolerance [95]

Okra (Abelmoschus esculentus) Salt Increased water content of the okra seedlings [96]

Triticale Salt Reduced Na+ accumulation and increased K+ uptake [97]
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2.4. Abscisic Acid

ABA is one of the major plant hormones and is also known as a stress hormone.
It plays a vital role in mediating plant responses to various abiotic stresses, such as salt,
heat, and drought [98–100]. ABA not only plays a role in abiotic stress mitigation but also
plays a significant role in plant growth and development [101,102].

ABA is a potent seed priming hormone for the enhancement of germination as well as
increased tolerance to various stresses by different crop species [103]. Rice seeds primed
with ABA exhibited enhanced seedling growth and yield in saline soil by balancing nutrient
uptake [103–106]. Likewise, priming rice seeds with ABA at 10 µM reduced alkaline stress
by enhancing antioxidant enzyme activities and the activity of stress tolerance-related
genes in the roots of rice seedlings [107]. Moreover, Wei et al. [108] reported that ABA
(10 µM and 50 µM) priming of rice seeds improved the growth rate, survival rate, biomass
accumulation, and root formation under alkaline stress. Also, seed priming with ABA
enhanced salinity tolerance and increased the growth of rice, wheat, and sorghum [104,109].
Fricke et al. [110] reported that ABA priming promoted barley leaves growth by reducing
transpirational water loss under saline conditions. Rice seeds primed with ABA at 10−5

M showed increased osmoregulation by reduced cellular Na concentration and increased
proline and sugar accumulation in salt-stressed rice leaves [104]. The deterioration of
Agropyron elongatum seeds was prevented by priming them with ABA at 50 ppm, which en-
hanced antioxidant enzyme activities [8]. Under saline soils, good stand establishment of
sesame (Sesamum indicum) was achieved by ABA seed priming [111]. Zongshuai et al. [112]
reported that the salt tolerance of wheat plants was enhanced by seed priming with ABA.

It has been reported that phytohormones are effective in the mitigation of heavy
metal stress [12,26]. ABA biosynthetic gene expressions are induced by heavy metal
stresses, which results in increased levels of endogenous ABA [12,18]. Under Cd stress,
the germination of pigeon pea was improved by ABA (100 µM) priming [26]. However,
the mechanism is still not clear, and the effects of seed priming with ABA on mitigation
of heavy metal stress remain to be explored. Although seed priming with ABA enhances
germination, many studies have reported that ABA inhibits seed germination which is
dose dependent (10–30 µM) [113,114]. These differences may come from the endogenous
and exogenous concentrations of ABA, whereas Srivastava et al. [115] reported the priming
of mustard seeds with ABA (100 µM) increased the germination rate by 25% compared
to the control under salt stress. In other words, an exogenous concentration may have an
effect, and may enhance the germination at higher concentrations. However, how seed
priming with ABA promotes germination needs more clarification with molecular studies.

ABA facilitates growth improvement via modulation of ion transport and regulation
of stomatal movement in plants [116]. ABA is synthesized in plants under water-deficit con-
ditions, and this induces stomatal closure via modulation of reactive oxygen species, reac-
tive carbonyl species, cytosolic alkalization, and elevation of cytosolic calcium [38,117–119].
Exogenous application of ABA to plants also stimulates the regulation of stomatal move-
ments, which helps reduce transpirational water loss. Marthandan et al. [120] reported
priming Arabidopsis seeds with amino-butyric acid enhanced drought tolerance by accumu-
lation of ABA and the closing of stomata. However, it is not known how seed priming with
ABA helps regulate stomatal movements in plants. Based on information in the literature,
we created a model showing how seed priming with ABA influences plant growth and
development (Figure 2).

2.5. Salicylic Acid

SA is a phenolic plant hormone that regulates growth and development and many
physiological processes, such as photosynthesis, respiration, transpiration, and the trans-
portation of ions in plants. SA exhibits a key role in the activation, modulation, and regula-
tion of numerous responses during exposure to abiotic and biotic stresses [102,121–123].
It is well known that SA generates a cascade of signaling pathways by interacting with
other plant hormones such as ABA, MeJA, and ET and plays an important role in mit-
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igating plant stresses [124,125]. Also, plant resistance to salinity, heat, and cell death
under various hypersensitive stresses can be regulated by the presence of SA [126,127].
The exogenous application of SA enhanced maize (Z. mays) productivity under low temper-
ature stress, as well as the germination and growth parameters of garden cress (Lepidium
sativum) seedlings under salinity stress [128], and mitigated drought stress and enhanced
the vegetative growth of safflower (Carthamus tinctorius) [129].

Seed priming with SA mitigates the effects of abiotic stresses and enhances yield in a
range of crop species (Table 3).

Table 3. Seed priming with salicylic acid (SA) and response of plant species.

Crops Stresses Responses of Plants References

Rice (Oryza sativa)

Chromium Increased chlorophyll content and proper
nutrient uptake [130]

Water deficit Decreased water stress [131]

Chilling Enhanced antioxidant enzyme activities,
detoxified ROS [132]

Salinity Improved Na+/K+ and maintaining
membrane integrity [133]

Safflower
(Carthamus tinctorius) Drought Enhanced antioxidant enzyme activities and

reduced oxidative damage [129]

Maize (Zea mays)

Chilling Increased α-amylase and antioxidant enzyme
activities and endogenous SA content [134]

Chilling Enhanced enzymatic antioxidant activities,
high tissue water content [135]

Lead Increased glycine betaine and nitric oxide
content and regulation of gene expression [136]

Chromium and UV-B Reduced the accumulation of chromium
and ROS [137]

Wheat (Triticum aestivum)

Salinity Decreased the electrolyte leakage [138]

Drought Balanced nutrient uptake [139]

Osmotic Resistance to osmotic stress [140]

Salinity Higher contents of photosynthetic pigments,
soluble sugar, and protein [141]

Boron toxicity Increased photosynthetic pigments [142]

Cadmium Modulates nutrient relations and
photosynthetic attributes [143]

Smooth vetch (Vicia dasycarpa) Water deficit Higher accumulation of proline and
glycine betaine [144]

Okra (Abelmoschus esculentus) Chilling Enhanced antioxidant enzyme activities and
membrane integrity [145]

Sorghum (Sorghum bicolor) Drought Improved antioxidant defense system [146]

Tomato (Solanum lycopersicum)
Salinity Decreased salinity stress [147]

Heat Increased lycopene content [148]

Pumpkin Salinity Protein contents and nitrate reductase
were increased [149]

Faba bean (Vicia faba) Salinity Higher osmotic solute content, carotenoids,
and antioxidant enzyme activity [150]

Seed priming with SA mitigated abiotic stresses by enhancing antioxidant enzyme ac-
tivities such as CAT, APX, and SOD and regulating lipid peroxidation and H2O2 production.
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Likewise, seed priming with SA also increased the production of osmolytes such as proline
and glycine betaine, which play an important role in mitigating different stresses [12,37].
Ion homeostasis and nutrient uptake were regulated by priming with SA at 0.25 mM and
0.50 mM, which enhanced the tolerance of heavy metal stress [130]. In addition, priming
with SA at 0.5 mM also enhanced endogenous SA content and α-amylase activity during
abiotic stresses [134]. Moreover, priming with SA enhanced the integration affinity among
the phytohormones as a result of the GAs biosynthetic gene, and ABA catabolism gene
expression enhanced and upregulated the GAs and ABA signaling pathways (Figure 3).
In addition to abiotic stress mitigation, priming with SA has an important role in enhanc-
ing seed germination and crop productivity. Priming with SA at 100 mg L−1 enhanced
emergence and early seedling growth in cucumber [151] and increased germination and
productivity of Vicia faba [152] and sesame [153]. It has been reported that rice seeds primed
with SA (100 ppm) had increased germination and accelerated seedling growth by ion
absorption in PEG-induced water stress [131]. In addition, priming of rice seeds with
SA enhanced tolerance to chilling stress by enhancing antioxidant enzyme activities and
reducing oxidative damage [132]. SA induced stomatal closure and reduced transpirational
water loss from plants [154,155]. Seed priming with SA has a role in the stomatal movement
that has not been analyzed, and integration mechanisms with other phytohormones are
still unclear.

Figure 3. Mechanisms of SA priming for abiotic stress tolerance enhancement.

2.6. Ethylene

The hydrocarbon ET is an important plant hormone and it is widely used for ripening
fruits [156]. For example, the application of 100 µL L−1 of ET for 12 h stimulated the
production of 1-amino cyclopropane-1-carboxylic acid (ACC: an ethylene precursor) and
increased ACC oxidase activity, which accelerated the ripening of ‘Ataulfo’ mangoes [157].
The exogenous application of 5 mL L−1 ET improved the activity of CAT, APX, and SOD and
reduced the activity of polyphenol oxidase (PPO) and POX, which prevented browning
of the peel of the ‘Huangguan’ Pear (Pyrus bretschneideri Rehd cv. Huangguan) [158].
The exogenous application of ethephon (source of ethylene) to soybean (Glycine max) plants
mitigated waterlogging stress by promoting the initiation of adventitious roots and by
increasing root surface area, expression of glutathione transferases, and relative glutathione
activity [159].
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The exogenous application of ET has been an important player in the mitigation of
abiotic stresses, but seed priming with ET has received little research attention. Nascimento
et al. [160] reported that priming lettuce seeds with ACC increased germination at a high
temperature (36 ◦C). Priming pigeon pea seeds with 10 mM ET (chloroethylphosphonic
acid) increased the germination percentage under Cd stress conditions [26]. The combined
application of ethephon and gibberellic acid to rice seeds increased α-amylase activity and
sugar content [89]. Manoharlal and Saiprasad [161] reported that priming with ethephon
improved the germination of soybean seeds. Further research is necessary to determine the
effects of priming seed with ethylene on germination under different abiotic stresses.

2.7. Others

Jasmonic acid derivatives are widely used as a priming agent to ameliorate abiotic
stresses. It has been reported that, with rice seed priming with MeJA at 2.5 mM and
5 mM, seeds experienced increased Chl content and photochemical efficiency under PEG
stress [162]. Likewise, priming with MeJA improved the growth of broccoli sprouts under
salinity stress [163]. In addition, priming with MeJA (1 mM) may function as a biocontrol
agent and protect tomato seedlings against fusarium wilt [164]. Another phytohormone,
brassinosteroids, has also been used as a priming agent and has been known to regulate
plant growth and development and resistance to abiotic stresses [165]. It has been reported
that the seed priming of lucerne (Medicago sativa L.) with brassinolide (5 µM L−1) improved
seed germination and seedling growth under salinity stress [166]. Likewise, peanut seed
priming with brassinosteroids at 0.15 ppm improved drought tolerance and increased the
yield of peanut [167]. However, more research is necessary to find out the effects of seed
priming with jasmonic acid and brassinosteroids under abiotic stresses.

3. Conclusions with Future Perspectives

Seed priming with phytohormones has emerged as a promising strategy in modern
stress management as it protects plants against various abiotic stresses by increasing
level of antioxidant enzyme activity, decreasing oxidative damage, and enhancing plant
growth. Thus, seed priming with phytohormones improves the tolerance of crop plants to
abiotic stress, and this technique can be utilized to maintain sustainable crop production in
drought-, saline-, and flood-prone areas of the world. Seed priming with phytohormones
not only improves the tolerance to abiotic stresses but also ensures hermonized germination
by breaking the dormancy and enhancing viability. This review provides insight into the
role of seed priming with phytohormones in mitigating the effects of abiotic stress on seed
germination and plant growth. The data compiled in this review can be used for developing
further extensive research on abiotic stress mitigation by seed priming with phytohormones.
Seed priming with phytohormones has emerged as an effective seed treating tool for many
crops, but treating conditions and methods differ from crop to crop, and seed priming
with phytohormones has still limitations. For instance, prolonged seed treatment with
hormonal solution during priming may cause the loss of seed tolerance to desiccation,
which reduces seed viability. However, more research at the molecular level is required to
clarify the mechanisms of involvement of phytohormones in seed priming, especially in
the application methods, and phytohormones cross-talk and stress-responsive genes.
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161. Manoharlal, R.; Saiprasad, G.V.S.; Kovařík, A. Gene-specific DNA demethylation changes associates with ethylene induced

germination of soybean [Glycine max (L.) Merrill]. Plant Physiol. Rep. 2019, 24, 272–277. [CrossRef]
162. Sheteiwy, M.S.; Gong, D.; Gao, Y.; Pan, R.; Hu, J.; Guan, Y. Priming with methyl jasmonate alleviates polyethylene glycol-induced

osmotic stress in rice seeds by regulating the seed metabolic profile. Environ. Exp. Bot. 2018, 153, 236–248. [CrossRef]
163. Hassini, I.; Martinez-Ballesta, M.C.; Boughanmi, N.; Moreno, D.A.; Carvajal, M. Improvement of broccoli sprouts (Brassica oleracea

L. var. italica) growth and quality by KCl seed priming and methyl jasmonate under salinity stress. Sci. Hortic. 2017, 226, 141–151.
[CrossRef]
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