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Abstract

Motivation: Methods to model dynamic changes in gene expression at a genome-wide level are not currently suffi-
cient for large (temporally rich or single-cell) datasets. Variational autoencoders offer means to characterize large
datasets and have been used effectively to characterize features of single-cell datasets. Here, we extend these meth-
ods for use with gene expression time series data.

Results: We present RVAgene: a recurrent variational autoencoder to model gene expression dynamics. RVAgene
learns to accurately and efficiently reconstruct temporal gene profiles. It also learns a low dimensional representa-
tion of the data via a recurrent encoder network that can be used for biological feature discovery, and from which
we can generate new gene expression data by sampling the latent space. We test RVAgene on simulated and real
biological datasets, including embryonic stem cell differentiation and kidney injury response dynamics. In all cases,
RVAgene accurately reconstructed complex gene expression temporal profiles. Via cross validation, we show that a
low-error latent space representation can be learnt using only a fraction of the data. Through clustering and gene
ontology term enrichment analysis on the latent space, we demonstrate the potential of RVAgene for unsupervised
discovery. In particular, RVAgene identifies new programs of shared gene regulation of Lox family genes in re-
sponse to kidney injury.

Availability and implementation: All datasets analyzed in this manuscript are publicly available and have been pub-
lished previously. RVAgene is available in Python, at GitHub: https:/github.com/maclean-lab/RVAgene; Zenodo
archive: http://doi.org/10.5281/zenodo.4271097.

Contact: macleana@usc.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

representation. Variational autoencoders (VAEs) build on this archi-

1Introduction tecture and instead encode input data points as distributions; VAEs

Dynamic changes in gene expression control the transcriptional state
of a cell, and are responsible for modulating cellular states and fates.
Gene expression dynamics are in turn controlled by cell-internal and
external signaling networks. Despite the noisiness of gene expression
in single cells (Raj and Van Oudenaarden, 2008), over time or over
populations of cells, predictable patterns emerge. Here, we address
the challenge of classifying and predicting gene expression dynamics
across large groups of genes.

Machine learning (and deep learning in particular) has led to re-
cent advances in our ability to explain or predict biological phenom-
ena (Ching et al., 2018). Deep learning modeling via autoencoders
(Hinton and Salakhutdinov, 2006) and variational autoencoders
(Kingma and Welling, 2014) has been central to progress in the
field. Autoencoders learn two functions: one to encode each input
data point to a low dimensional point, and another (the decoder) to
reconstruct the original data point from the low dimensional

©The Author(s) 2021. Published by Oxford University Press.

are less prone to overfitting and can offer meaningful representa-
tions of biological features in the latent space (Way and Greene,
2017).

Single-cell mRNA sequencing (scRNA-seq) data present appeal-
ing sources of data for deep learning models, given their size and
complexity (Svensson ef al., 2018). Deep learning models have been
used to analyze scRNA-seq data and address a variety of challenges.
Autoencoders have been developed to perform noise removal/batch
correction (Deng et al., 2019; Eraslan et al., 2019; Wang et al.,
2019), imputation (Talwar et al., 2018) and visualization and clus-
tering (Lin et al., 2017). VAEs have been developed for the visualiza-
tion and clustering of scRNA-seq data (Ding et al., 2018; Wang and
Gu, 2018), and can provide a broad framework for generative mod-
eling of scRNA-seq data (Lopez et al., 2018): scVI can be used for
batch correction, clustering, visualization and differential expression
testing.
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The methods described above for single-cell data analysis by deep
learning focus primarily on cell-centric tasks; here, we are interested
in gene-centric inference. Particularly, we are interested in character-
izing dynamic changes in gene expression. These can be either
changes with respect to real time or ‘pseudotime,’ the latter referring
to the ordering of single cells along an axis describing a dynamic cell
process such as development or stem cell differentiation (see methods
overview in (Saelens et al., 2019)). We can interpret any scRNA-seq
data as gene expression time series data, given an appropriate under-
lying temporal process, either in terms of real (experimental) time
(low resolution: around 2-20 data points) or pseudotime (high reso-
lution: 10° — 10° data points). McDowell ez al. (2018) introduced a
non-parametric hierarchical Bayesian method (DPGP) to model such
data. Using a Gaussian process to cluster temporal gene profiles and a
Dirichlet process to generate the Gaussian processes, DPGP offers
powerful and intuitive means with which to cluster gene expression
time series data. However, since learning Gaussian processes is
equivalent to a fully agnostic search in function space, training DPGP
is computationally intensive and difficult to parallelize.

Clustering relies on strong assumptions about the underlying struc-
ture of the data. Even for methods that move away from hard cluster-
ing toward probabilistic methods for cell type assignment (Jetka ez al.,
2018; Zhu et al., 2019), assumptions remain and under certain condi-
tions a continuous representation of the data may be better. Here, we
take such an approach, and seek to find a low dimensional representa-
tion of the data, on which further analyses (including but not limited
to clustering) can be performed. VAEs are an obvious choice, given
their success on other scRNA-seq analysis tasks, but modeling tem-
poral changes with a feed-forward VAE would be equivalent to a fully
agnostic search, similar to learning a Gaussian process. Recurrent net-
works offer well-established architectures for learning sequential and
temporal data, and have been successfully combined with VAEs
(Fabius and van Amersfoort, 2014). We use a recurrent network
architecture to take advantage of the structure in the data.

We introduce a recurrent variational autoencoder for modeling
gene dynamics from scRNA-seq data (RVAgene). RVAgene learns
two functions during training, parameterized by encoder and de-
coder networks. The encoder network projects the training data into
latent space (we use a 2 or 3 dimensions in order to visualize, though
there are no inherent limits). The decoder network learns a recon-
struction of training genes from their latent representation.
RVAgene facilitates clustering or other characterization of gene pro-
files in the latent space. By sampling points from the latent space
and decoding them, RVAgene provides means to generate new gene
expression time series data, drawn from the biological process that
was encoded. Overall, RVAgene serves as a multipurpose generative
model for exploring gene expression time-series data.

The remainder of the article is structured as follows: we next pre-
sent methodological details and development of RVAgene. We pro-
duce a synthetic gene expression time-series dataset with innate
cluster structure, and demonstrate the accuracy of RVAgene on
these data. We then explore two biological datasets with RVAgene:
a scRNA-seq dataset on stem cell differentiation over pseudotime,
on which we demonstrate the advantages of RVAgene over alterna-
tive approaches; and a bulk RNA-seq dataset describing dynamic
responses to kidney injury, on which we demonstrate the potential
for biological discovery. We also present evidence for the efficiency
and scalability of RVAgene, and we conclude by discussing its key
features and limitations, in light of recent advances in machine
learning that will pave the way for future work in these directions.

2 Materials and methods

We develop a recurrent variational autoencoder to model gene ex-
pression dynamics (RVAgene). Here, we briefly describe the meth-
ods underpinning variational autoencoders, and present the
implementation of RVAgene.

2.1 Variational inference and variational autoencoders
In the most general setting of a Bayesian model, we seek to learn the
latent variables z that best characterize some data x. Given a

generative process that draws latent variables from a prior distribu-
tion, p(z), and a likelihood of the data observed that is given by
p(x|z), then the posterior probability is given by Bayes rule:

 plp()
PR = T e e W

The denominator is often intractable, making it difficult to es-
timate p(z|x). Markov Chain Monte Carlo methods provide
means to estimate posterior probability distributions. An alterna-
tive method to estimate hard-to-compute probability distribu-
tions is Variational Inference (VI) (Hoffman et al., 2013), which
starts from the assumption that the posterior can be approxi-
mated by a distribution g(z) from the family Q. VI then amounts
to an optimization problem to find the g* that minimizes the
Kullback-Leibler (KL) divergence between the approximation
and the true posterior:

q°(z) = argming,c o KL(q(2)[[p(z[x)). 2)

Much recent effort has gone into solving VI problems in different
settings (Bouchard-Cété and Jordan, 2010; Ingraham and Marks,
2017; Zhang et al., 2019). VI can be framed as solving an optimiza-
tion problem over function families: neural networks are popular
candidates for representing and learning complex functions. VI was
incorporated into autoencoders (Kingma and Welling, 2014) to cre-
ate the architecture of a variational autoencoder (VAE). A VAE con-
sists of an encoder network to approximate p(z|x) through a
function ¢x(z), and a decoder network p(x|z)(Fig. 1A).
Conceptually, the encoder solves an inference problem: approximat-
ing the posterior distribution p(z|x) as some ¢ (z), while the decoder
solves a reconstruction problem: defining a generative process for
p(x|z), given the latent variables. The VAE posterior is modeled by a
multivariate normal N'(p,Z) of the same dimension as z. Training
then comes down to minimizing two objective functions. For the en-
coder network, which should learn a ‘well distributed’ latent space,
minimize the KL divergence: KL(A (pn, X)||N(0,1)). For the decoder
network, which should reconstruct the inputs x from the latent
space, minimizing either an L1 or L2 objective function with respect
to X is appropriate. The use of KL-divergence and an L2 objective
solves the VI formulation of Equation 2 (Kingma and Welling,
2014), however, an L1 objective may be preferred in practice, e.g. in
cases where we want to suppress the effects of outliers on the struc-
ture of z (Botchkarev, 2018).

2.2 RVAgene: a recurrent variational autoencoder to

model gene expression dynamics
Following the VAE architecture, RVAgene consists of an encoder
and a decoder network with a reparameterization step in between.
To incorporate the knowledge that we are modeling temporal data,
recurrent neural networks offer an ideal architecture to use for both
the encoder and the decoder networks. Recurrent and VAE net-
works have been successfully combined elsewhere, e.g. for textual
(Nallapati et al., 2016) and time series data (Malhotra et al., 2015).

The architecture of RVAgene is based on Fabius and van
Amersfoort (2014). An input sequence (i.e. gene) x € X, x =
(x1,%2,...,%s,...,x7) is encoded using a recurrent function
described by a long short-term memory (LSTM) unit. LSTM units
are the state-of-the-art in recurrent architectures, since they are ro-
bust against the vanishing gradient problem for longer sequences,
unlike other recurrent units (see details in Hochreiter and
Schmidhuber (1997)). We encode x in the following manner:

by = LSTM(W[, b™ + Wil x; + bene), (3)

where (Wene, Winp and bepc) are network weight parameters, and the
hidden states b, represent information shared over timepoints in the
LSTM. The dimension of the b, (and W,,) is given by a hyperpara-
meter (‘hidden-size’). The encoded b,y are used to parametrize the
posterior mean and variance from x, with mean ,, and diagonal co-
variance ,, as:
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Fig. 1. Unsupervised representation learning with RVAgene using synthetic data. (A) Schematic diagram of the RVAgene model. (B) Average loss function ¢ as over duration of
training. (C) Latent space representation learnt by RVAgene model after training. (D) Clusters detected by k-means clustering on the latent space, with k =6 (E) First and third

rows show input training data used (20 simulated genes in each of six clusters); cluster means shown in black. Second and fourth rows show the model-generated data,
obtained by sampling and decoding points from the latent space; decoded cluster empirical means shown in black

B = W;Thspil +b#

log(a,) = WIhSS, + b,. (4)

We then use the reparameterization step described in Kingma
and Welling (2014) to sample z from the distribution:

= i, + o, )

where, for known , backpropagation through the sampling step is
possible while training the network.

For the decoder network, the first state b; is calculated from z,
and the recurrent formulation follows by reconstructing x as
X =(%1,%2,...,%,...,%7), thus:

h‘liec = sigm(WZTz +b,)

bl = LSTM(WEL b3 + WE 2, + baee) (6)

t+1 out

~ . T d

%y = sigm(W,, b5 + bour),

where sigm(u) = H% is the sigmoid activation function, and (W,
b,) are the network weight parameters. A schematic diagram of the
network is shown in Figure 1A, which can now be trained using

backpropagation, to minimize the objective function:
£(0,x) = D (N (n,, Z2)|IV(0,I)) + |x — %[, (7)

where p, and X, = diag(o;) are calculated from x by the encoder.

To evaluate the accuracy of RVAgene, we need an appropriate
error measure. For each gene in the test set, we calculate the L1 re-
construction error between generated data X and true data x, aver-
aged over all time points. We normalize the data to lie in [0, 1] to
avoid skewing the error by differences in gene expression magni-
tudes. Thus we define:

Reconstruction error(x,%) = %Z [s(x), —s(x),l, (8)
t
where, s(x) = Tx . (9)
2 X
=1

2.3 Generating synthetic gene expression time series

data

To test RVAgene, we generate a synthetic time series dataset. Six clus-
ters each containing 20 genes are simulated, where for each cluster c,
the mean gene expression time series Y. = (V¢1,¥e2, - - -, Yr) Was genet-
ated using addition or convolution and rescaling of two random sinus-
oidal functions of the form kj sin(k2t), where ky, k, are randomly
chosen positive integers. Trajectories of cluster members were then gen-
erated by sampling from the multivariate normal N'(Y,, £,). We model
X as the positive definite matrix Y, Y], where ,, is a scaling factor, we
use: & = 1/|Y.YT|. As defined, Xc will describe non-zero correlations
for all pairs of time points, (¢, ¢;). This is unrealistic, so we set to 0 the
entries of Xc¢ for which column and row indices have a difference of
more than some threshold T (we used T'= 50), reflecting the fact that
correlations between time points are lost over larger time windows
(temporal correlations are local). Note that under this condition, Xc is
no longer necessarily positive definite. The multivariate Gaussian sam-
pler numpy.random.multivariate_normal() implemented in numpy
(Harris et al., 2020) was used to sample from this augmented Xc. After
generating a simulated dataset by this process, we also added Gaussian
noise, drawn from N(0,0.7), to the simulated dataset to produce an
additional dataset exhibiting higher levels of noise.

3 Results

3.1 RVAgene can accurately and efficiently reconstruct

temporal profiles from synthetic data
We generated a dataset of 120 genes using convolutions of sinusoid-
al functions (see Section 2) to test the ability of RVAgene (Fig. 1A)
to learn and reconstruct noisy non-linear temporal profiles. An
RVAgene model was trained on all 120 genes from 6 clusters with a
hidden size of 70 and a 3 dimensional latent space. The model was
trained for 400 epochs, after which the average batch objective ¢
function indicates convergence (Fig. 1B), producing a three-dimen-
sional latent space representation (Fig. 1C). K-means clustering on
the latent space (k = 6) identified well-separated clusters (Fig. 1D).
RVAgene modeling followed by k-means clustering on the latent
space identified six clusters with perfect fidelity between predicted
and true clusters. One might reasonably ask, why use a neural net-
work for this task? Simpler dimensionality reduction methods (e.g.
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PCA, t-SNE or a non-variational autoencoder) would also find the
correct solution. RVAgene has the advantage over these methods
that the underlying structure of the latent space leads to interpret-
ability. A point in reduced PCA or t-SNE space that does not overlap
with a data point is not interpretable. Traditional autoencoders lack
regularity in the latent space, i.e. even for a representation with arbi-
trary accuracy (a reconstruction error of zero), decoding a point that
does not correspond to a training data point can result in non-sensi-
cal generated data, even if the decoded point is arbitrarily close to a
training data point. Variational Auoencoders remedy this by learn-
ing a regularized or smoother distribution on the latent space. In this
sense, the KL-divergence term in the VAE loss function can be
thought of as a regularizer. This property enables RVAgene to gen-
erate new gene expression dynamics by decoding points from differ-
ent regions of the latent space, having properties similar to clusters
nearby to those points.

To demonstrate the generative properties of the RVAgene latent
space, we sample points from multivariate Normal distributions,
centered on the empirical mean of each cluster with variance of 0.4,
i.e. N'(u.,0.41), where , is the empirical mean of the cluster and I is
the identity matrix in R®. Corresponding to each cluster, we sample
20 points in the latent space, and use the decoder network to gener-
ate new time series data (Fig. 1E). Most of the points sampled gener-
ate trajectories that belong to the correct cluster. Moreover, we
identify cases corresponding to transitions between clusters. For ex-
ample, some points sampled near Cluster 2 generate trajectories that
are similar to members of Cluster 4, and vice versa. This makes
sense due to the similarity between the temporal profiles of Clusters
2 and 4. A similar correspondence is observed between Clusters 1
and 5. We note that in a few cases the generated data have profiles
that differ from their cluster of origin and appear most similar to
those of another cluster. This occurs when points are sampled close
to neighboring clusters, e.g. the red line for Cluster 5 in Fig. 1E has
been sampled from a point close to cluster 3. We also observe some
generated trajectories that display intermediate profiles between two
or more clusters: the decoder function learnt by RVAgene is smooth,
and gives rise to meaningful representations of points across regions
of the latent space.

RVAgene offers additional functionality as a tool for removing
noise from the data. Via sampling and decoding points from the la-
tent space, RVAgene reconstructs trajectories that are smooth and
de-noised relative to the input data (Fig. 1E, Supplementary Fig. S1).
Similar neural network approaches have been proposed to denoise
from single-cell data, e.g. using a deep count autoencoder (Eraslan
et al., 2019). RVAgene provides data denoising as a by-product of
its primary functionality: learning patterns of dynamic gene
expression.

To investigate the impact of input noise levels on RVAgene per-
formance, we added Gaussian noise drawn from N(0,0.7) to the
simulated data to produce a dataset with higher overall noise levels.
RVAgene learns a latent space shown in (Supplementary Fig. S1A)
from which six clusters are identified by k-means clustering
(Supplementary Fig. S1B). It is notable that the clusters identified in
the latent space are not as clear in this case as for lower noise levels
(Fig. 1), however RVAgene can still reconstruct the distinct profiles
with high confidence. To illustrate this, we plot the original training
data alongside model-generated data, sampled at random points in
the latent space from N (y, 0.41) around each cluster mean , for each
of the six clusters (Supplementary Fig. S1C). From these simulations,
RVAgene appears able to separate even relatively high levels of noise
from the signal, in order to learn a smooth encoding and corre-
sponding generative process for distinct temporal patterns.

It is inevitably challenging to include sufficient dimensionality
and variation in synthetic datasets to accurately capture biological
processes such as those we observe in experimental datasets. Thus,
in the subsequent two sections, we test the capabilities of RVAgene
on two whole-genome biological datasets: embryonic stem cell dif-
ferentiation, and kidney injury response. As we will see, in these
cases it may not be possible to characterize the latent space by sim-
ple (e.g. k-means) clustering; we need to use other means to gain in-
sight into the features of the latent space.

3.2 RVAgene modeling of pseudotemporally ordered

data during embryonic stem cell differentiation

We applied RVAgene to model gene expression dynamics during embry-
onic stem cell (ESC) differentiation. Klein et al. (2015) identified 732 dif-
ferentially expressed genes over the time course of mouse ESC
differentiation following leukemia inhibitory factor (LIF) withdrawal.
Data is gathered at four time points: 0, 2, 4 and 7 days after LIF with-
drawal (Supplementary Table S2 in Klein et al., 2015). We ordered the
data (2717 single cells) using diffusion pseudotime (DPT), which provides
robust methods for the reconstruction of single-cell temporal processes
(Haghverdi et al., 2016). The root cell was randomly sampled from the
initial time point (Fig. 2A). The inferred pseudotime is highly correlated
with the experimental time points, giving confidence that true biological
processes are represented over the DPT pseudotime. The gene expression
dynamics over pseudotime show considerable variability among cells. To
smooth the data, we apply a moving window average, over windows of
length 40, to give 68 time points after smoothing (Fig. 2A). We fit linear
regression models to the smoothed pseudotime profiles of each gene
(Supplementary Fig. S2), and see that for the majority of genes the correl-
ation coefficients are >0.5 (Fig. 2B), with a clear distinction between the
up- and down-regulated genes over pseudotime.

An RVAgene model was trained on the data with a two-dimensional
latent space, on which genes are classified based on their correlation coef-
ficients (Fig. 2C). Two distinctive characteristics emerge: (i) the two
groups (up- and down-regulated genes) are well-separated in the latent
space, and (ii) the two groups merge and overlap at some point, illustrat-
ing the continuity of the latent space, as discussed above. We compared
the results of RVAgene with DPGP, an unsupervised approach for gene
expression time series clustering (McDowell ez al., 2018). DPGP is a hier-
archical Bayesian model that estimates the number of clusters along with
the cluster membership.

To assess the correspondence between methods, genes clustered
by DPGP (Supplementary Fig. S3) were projected onto the RVAgene
latent space (Fig. 2D). Of the 12 clusters detected by DPGP, the four
largest can be characterized by their up- and down-regulation pro-
files over pseudotime. On the RVAgene latent space, we find that
genes sampled from each of the DPGP clusters appear close together,
and moreover, are represented on a spectrum from upregulation to
downregulation (Fig. 2D). The goals of RVAgene and DPGP are to
some degree complementary: DPGP characterizes gene expression
profiles discretely with no need for prior information, while
RVAgene characterizes profiles with a continuous representation,
that can explain smooth changes in patterns. To assess the ability of
the model to reconstruct genes not used during training, we kept
aside 300 genes for testing and trained RVAgene on the remaining
432 genes. We note that in this case (and in the case of single-cell
datasets in general), the generative model of RVAgene produces
pseudotime-smoothed gene expression trajectories, rather than
being generative of raw pseudotemporal data, which tend to display
overall high noise levels. Reconstructed test gene expression profiles
are shown for three reconstructed genes (Fig. 2E), chosen to sample
across the spectrum of reconstruction errors (Fig. 2F). The recon-
struction for Ddt, which has a reconstruction error near the mode
(Fig. 2F), shows very high accuracy. The reconstruction for Hmgb2,
which has twice the reconstruction error, still broadly captures the
temporal profile but with lesser accuracy. Finally we show the re-
construction for Rhox4e, a gene that was sampled from the long tail
of the reconstruction error distribution, i.e. does not well match the
data. Comparing these three examples with the full distribution of
reconstruction errors (Fig. 2F), we see that the large majority of
genes lie to the left of Hmgb2, i.e. have better-than-moderate accur-
acy. The reconstruction error of Hmgb2 is close to 0.005, which we
use as a cut off for ‘well-reconstructed’ genes, based on analysis of
individual gene reconstructions. The cumulative reconstruction
error distribution reiterates this point: 230 out of 300 genes (77%)
have a reconstruction error < 0.005 (Fig. 2G); we can conclude
that the majority of test genes were faithfully reconstructed by the
model.

RVAgene accurately reconstructed most gene profiles using
only ~60% of the data for training (Fig. 2G), likely due to co-
regulation of gene expression programs. This led to a question:
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Fig. 2. Accurate reconstruction of embryonic stem cell differentiation dynamics with RVAgene. (A) Pseudotemporal ordering of 2717 single cells (data from Klein et al., 2015),
calculated using DPT; example gene shown: Ahsal. Gene expression values given as log2(counts + 1) for all cells (left), and for sliding window average (right). (B) Pearson cor-
relation coefficient between gene expression and time for 732 differentially expressed genes. (C) The 2 D latent space learnt by an RVAgene model trained on 732 gene profiles
over pseudotime, showing clear separation between upregulated and downregulated genes. (D) Comparison of RVAgene and DPGP. The four largest clusters from DPGP are
plotted on the RVAgene latent space: temporal expression patterns (from highly upregulated to highly downregulated) are in close agreement between methods. (E)
Comparison of experimental data and reconstructions. Model-generated reconstructions of three genes from the test set not used in training: Ddt, Hmgb2 and Rhox4e.
Expression values are log2(counts+ 1). (F) Distribution of average L1 reconstruction errors for the 300 genes used in the test set. Genes plotted in C are marked. (G)
Cumulative distributions of reconstruction errors on randomly sampled sets of test genes, where the full data were split into test groups of: 200 genes (train on 72%), 300 genes
(train on 59%), 400 genes (train on 45%), 500 genes (train on 31%) and 600 genes (train on 18%)

what is the smallest training gene set that can be used to accur-
ately reconstruct gene dynamics? We subset the data randomly
into train/test sets and trained separate RVAgene models on
each. We found that reconstruction errors slowly increase as the
size of the training set decreases, but not until the training set
was as low as 18 % of the data did the reconstruction errors sig-
nificantly increase (Fig. 2G, Supplementary Fig. S4). Analysis of
the cumulative distribution of reconstruction errors across all
groups found that RVAgene reconstructs the majority of gene
temporal profiles well (defined as below a reconstruction error of
0.005) if > 45% of the data is used for training. The successful re-
construction of gene expression dynamics de novo while training
on small subsets of the data suggests widespread co-regulation of
gene expression programs during embryonic stem cell differenti-
ation, as found in previous work (Jang et al., 2017).

3.3 Comparison of RVAgene with alternative
approaches for gene clustering

In order to assess the performance of RVAgene for gene clustering
and biological discovery, we compared it to five alternative

methods: two neural network approaches and three hierarchical
clustering methods. To assess the utility of the recurrent architecture
of RVAgene, we trained non-recurrent (i.e. fully connected) vari-
ational autoencoders on the embryonic stem cell differentiation
dataset (Klein et al., 2015). We compared two options: using the
pseudotemporally ordered and smoothed data as input (same as for
RVAgene), or using the raw (i.e. unordered and unsmoothed) gene
expression data as input. We trained encoder and decoder networks
of depth two (one hidden layer) and with a hidden layer size of 400
(we performed a hyperparameter search to optimize this).
Theoretically, depth two networks are large enough to learn any
non-linear function (Barron, 1994; Cybenko, 1989; Funahashi,
1989; Hornik et al., 1989), although the fully connected VAE has
no recurrent inductive bias. Thus we test how important this recur-
rent inductive bias is in practice.

The results of the comparison of neural networks are given in
Fig. 3A and B. In each case, models were trained for 200 epochs.
Annotating the results in latent space using correlations against
pseudotime (Fig. 3A) shows that all three models separate the data
reasonably well, with slightly better separation for the recurrent
architecture (RVAgene). We also annotated the results using cluster
labels from the largest four DPGP clusters for comparison. These
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are appropriate ‘gold-standard’ cluster labels since robust dynamical
signatures are learnt by DPGP in each case (Supplementary Fig. S3).
RVAgene captures: (i) better separation between clusters that either
of the non-recurrent networks, and (ii) a spectrum of behaviors from
up- to down-regulated (Fig. 3B).

We also performed hierarchical clustering on the pseudotempor-
ally ordered and smoothed data using three standard hierarchical
clustering methods: the Nearest Point Algorithm, the Farthest Point
Algorithm and UPGMA (the Unweighted Pair Group Method with
Arithmetic mean). We annotated the results with the same clusters
labels from DPGP (Fig. 3C). UPGMA performs best out of these
three clustering algorithms, yet still does not attain clear seperation

A VAE

(on unordered data)
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B Krt82

(on pseudotemporally ordered data)

between each of the four groups. Thus, the 2D latent space repre-
sentation of RVAgene is better than both 1D representations via
hierarchical clustering and the alternative neural network latent
space representations at distinguishing between dynamic gene pro-
files in pseudotemporally ordered data.

3.4 RVAgene can classify and predict gene expression

dynamics in response to kidney injury

We investigated gene expression dynamics in the murine kidney by
applying RVAgene to a dataset that describes gene expression pro-
files before, during and after a kidney injury (Liu et al., 2017). The
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dataset is temporally rich, with a total of ten bulk samples over
twelve months. Since in this case no single-cell information is avail-
able, we cannot order samples by pseudotime to smooth the data.
Moreover, the temporal gene expression profiles described in Liu
et al. (2017) display more complex dynamics than for the previous
dataset (Klein et al., 2015), and are not readily separable by linear
patterns of up- and down-regulated genes (cf. Fig. 2C). Thus, below,
we must consider non-linear models in order to characterize the tem-
poral patterns observed.

The data consist of one initial timepoint (¢=0) before the injury
event (an ischemia/reperfusion injury model) and nine subsequent
time points (=1 to 10) following the injury (48, 72h, 7days,
14 days, 28 days, 6 months and 12 months). We note that the time-
points are not uniformly spaced, which is not taken into account in
RVAgene, which only models the broad temporal trend (see
Discussion). From an initial list of 1927 differentially expressed
genes measured over the time course in three biological replicates,
we removed putative/predicted and non-protein coding genes,
retaining a list of 1713 genes as input to the model.

We ran RVAgene separately for each of three biological repli-
cates. Independent replicates and independently trained models pro-
vide additional means with which to test the reproducibility of these
methods. For each replicate, RVAgene was trained with a two-di-
mensional latent space and a hidden size of 10, on the full set of
genes over 200 epochs: found to be sufficient for the convergence of
¢ (see Section 2 for further details). We fit linear regression models
to the temporal gene profiles (Supplementary Fig. S5) and found
that linear fits did not describe the gene temporal profiles well (most
correlation coefficients had values close to zero),nor they did not
identify separate clusters in the latent space. Normalizing the data to
lie in [0, 1] improved our ability to discriminate clusters in the latent
space (Supplementary Fig. S5C), but came at the expense of a signifi-
cant loss of information, as the variance captured in the latent space
was dramatically reduced. The absence of evidence for linear corre-
lations could indicate expression dynamics that are uncorrelated
with time, but could of course also indicate more complicated (non-
linear) gene expression dynamics, which are explored below.

To study non-linear gene expression dynamics, we fit a 2nd de-
gree polynomial, i.e. we fit the temporal trajectory of each gene x to:
x = at> + bt + ¢, where a, b, ¢ are constants (Supplementary Fig.
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S6). We hypothesized that this function could adequately describe
the transient dynamics observed by Liu et al. (2017) for most genes
in response to the kidney injury. Thus, we classified genes into one
of two groups, a < 0: convex (up-down pattern), 1200 genes; and
a > 0: concave (down-up pattern), 512 genes. In the latent space,
the separation of these two groups is clearly visible for each replicate
(Fig. 4A). Moreover, the classification is in agreement with Liu ez al.
(2017), where the majority of differentially expressed genes are
upregulated transiently. To explore the ability of RVAgene to recon-
struct gene expression profiles not used in model development, we
kept aside 300 randomly sampled genes for testing, and trained
RVAgene models on the remaining genes for each of the three repli-
cates. Independently for each model, we then generated dynamic
profiles for the test genes. Three genes sampled randomly from the
test set are plotted in Fig. 4B. Of particular note, for each of genes,
the model-generated data captures the temporal patterns while dis-
playing a higher degree of similarity across replicates than the ex-
perimental data itself. This illustrates that the model is neither
under- nor overfitting, but capturing the underlying biological pat-
terns while sufficiently accounting for the noise. Reconstruction
errors are comparable across the three replicates, albeit with slightly
higher overall errors in replicate 1 (Fig. 4C and D). Overall, the re-
construction errors are higher than for the previous section (averag-
ing over many pseudotemporal time points allowed us to
significantly reduced the noise). To investigate in more depth the
features that are captured in the RVAgene latent space, we per-
formed two sets of analyses: unbiased clustering, and targeted ex-
ploration. For the unbiased analysis, we performed k-means
clustering on RVAgene latent space of replicate 1 (R1) with k=9
(Supplementary Fig. S7A); we project the clusters labels learnt onto
replicates R2 and R3. All cluster identities are well-preserved across
replicates, with the exception of cluster 5, which seems to indicate
outlier genes in R1. To study biological processes within these clus-
ters, we performed GO term enrichment analysis on each. In
Supplementary Figure S7B we plot one significant GO term per clus-
ter (omitting cluster 5), and see that specific regions of the latent
spaces across replicates can be characterized in terms of biological
processes, many of which relate to metabolic and immune system
responses. These can be separated into two broad classes, which sep-
arate the left-hand side of R1 (metabolic processes downregulated
during injury response) from the right-hand side (immune responses
upregulated during injury response).

To study the effects of gene-specific regions of the latent space in
greater depth, we chose three distinct regions based on the co-location of
genes of interest. These gene groups studied on the latent space are: (i) a
Wt group consisting of family members Wnt2 and Wnt4; (ii) an Slc
group consisting of family members Slc7a13 and SIc22a18; and (iii) a
Sdc1 group, consisting of only Sdcl. For each group, we characterized
neighboring genes by defining a circular neighborhood around each gene
in the group, with radius 7 (depending on the local density, the radius was
varied, giving: 7> = 1 for Slc, r* = 0.3 for Sdc, r* = 0.05 for Wnt). We
then took all genes inside this radius for each replicate, and found the
intersection of genes over the three replicates (Fig. SA and B). We ana-
lyzed the intersection gene set for each group by studying their temporal
profiles and their gene ontology (GO) term associations. Each group was
characterized by a strikingly clear temporal profile. The Sdc1 and Wnt
groups both show transient upregulation, over different timescales: the
Sdc1 group is upregulated from 24 h post-injury until 14-28 days post-in-
jury (fast response) (Supplementary Fig. S8B), whereas the Wt group is
upregulated at 7 days post-injury until 28 days post-injury (slow response)
(Fig. 5C). In contrast, the Slc group is downregulated at 24 h post-injury,
and remains suppressed until 7-28 days post-injury (Fig. 5D).

Analysis of GO biological process terms enriched in each gene
group further highlighted the power of the latent space for biological
discovery. The fast response (Sdcl) group was characterized by
upregulation of programs related to apoptosis, stress response,
wound healing and chemotaxis, i.e. the first responders to the site of
injury (Supplementary Fig. S8C). In addition all five Lox genes com-
prising the GO term ‘peptidyl-lysine oxidization’ were found in this
group. This is consistent with the oxidative stress resulting from the
renal ischemia-reperfusion injury that was performed. However,
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Fig. 5. RVAgene latent space captures biological processes driving concordant gene expression changes. (A) Z-plots for replicates R1-R3 with local neighborhoods of Wnt2
and Wnt4 marked (circles). (B) As in A, for Slc family members Slc22a18 and Slc7a13. (C) Heatmap of expression changes over time course of injury for the Wnt neighbor-
hood genes in the intersection of R1-R3. Selected genes marked (black), as well as ortholog gene pairs (blue). (D) As in C, for Slc neighborhood genes. (E) Histogram of -log10
P values of gene ontology terms for biological processes terms associated with the Wnt neighborhood (gene set in C). (F) As in E, with the Slc neighborhood (gene set in D)

distinct factors regulate the Lox family genes, as can be partly
observed by their subtle differences in temporal profile
(Supplementary Fig. S8D). Their co-location in the latent spaces of all
three models thus highlights the potential use of RVAgene for discov-
ery of complex temporal regulatory events from gene expression data.

The slow response (Wnt) group was primarily characterized by
immune response processes, including leukocyte activation, platelet
aggregation and various cytokine-mediated pathways including IL-1
and IL-33 (Fig. SE). Notably, the Wnt group identies multiple gene
orthologs (Fig. 5C) with very similar profiles: likely evidence of
shared temporal regulation. This illustrates once again (as for the
Lox genes above) the potency of RVAgene for the discovery of tem-
porally co-regulated genes.

Finally, the Slc group of genes shows a transiently down-regu-
lated pattern between 24h and 7-28 days, although some gene in
this group deviate from this pattern (Fig. 5D). GO term enrichment

identifies the positive regulation of metabolic processes (Fig. SF).
The downregulation of metabolic programs during the response to
kidney injury is agreement with the findings of Liu et al. (2017).
Notably, this metabolism-sensitive group contains many genes that
also display sexually dimorphic expression, primarily in specific
regions of the proximal tubule (Ransick et al., 2019), thus independ-
ently identifying the well-established (though under-studied) inter-
play between sex differences and injury responses in the kidney
(Neugarten et al., 2000).

In summary, unsupervised analysis of groups of genes co-located
in the latent spaces of RVAgene finds: (i) high similarity between
temporal gene profiles of genes nearby in latent space, and (ii) clear
biological signatures represented by these groups of nearby genes, in
strong agreement with prior knowledge (Liu et al., 2017).
Moreover, the latent spaces of RVAgene models can be used to pre-
dict programs of temporal co-regulation.
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3.5 Assessment of the computational efficiency of
RVAgene

We assessed the computational efficiency of RVAgene for various
settings and hardware. For the majority of the models trained, 100-
200 epochs was sufficient for the loss function ¢ to converge. For
tests performed here, we recorded the RVAgene runtime for 100
epochs of training on Klein ez al. (2015), using models that varied in
their number of genes and time points. In each case we used a latent
space of dimension two, a hidden size of 10 and a training batch size
of 10. We ran the model on an intel i7 CPU with four cores and a
Tesla K20 GPU. Runtimes were recorded on linux via the inbuilt
time script (/usr/bin/time —verbose). As the number of time points
and genes grew large (up to 60 time points and 700 genes), total run-
times on CPU were on the order of 10%s (<20 min) (Fig. 6A). On
GPU, total runtimes were decreased to around 100 s (<3 min). Thus,
RVAgene is readily scalable to tens of thousands of genes and hun-
dreds of time points for training times of up to a few days on CPU
or hours on GPU. For comparison, as described in McDowell et al.
(2018), the approximation-free time complexity of each iteration of
learning for DPGP is O(GT?), due to the G matrix inversions, each
of size T x T, for a dataset with G genes and T timepoints. The com-
plexity for each epoch of training of RVAgene is O(GT).

In terms of peak memory usage, since RVAgene is a neural net-
work trained using backpropagation (Rumelhart ez al., 1986), max-
imum memory used during training is of the same size as the
network itself, which is constant given that the model parameters
are fixed (Fig. 6B). This is in contrast to Gaussian Processes (such as
DPGP), which initially assign each gene to its own cluster, thus must
store G matrices of size T X T, for G genes and T timepoints per
gene. This leads to quickly increasing runtime peak resident set sizes
for DPGP compared to RVAgene (Fig. 6B Inset). The memory used
by DPGP grows with the number of time points as O(GT?)). Thus,
DPGP will not run with large numbers of genes and time points. A
note on this comparison: it is not direct, in the sense that DPGP per-
forms clustering and RVAgene does not, in addition to other import-
ant differences between the goals of the methods. Nonetheless, the
size and scope of current biological datasets—particularly at single-
cell resolution—in many cases preclude the use of DPGP without
large reductions of the input data size. As we have shown, a feasible
and efficient alternative in such cases is to run RVAgene, and then
to perform clustering or other classification analyses post hoc on the
latent space of the model.

4 Discussion

We have presented RVAgene, a recurrent variational autoencoder
for generative modeling of gene expression time series data.
Through its encoder network, RVAgene provides means to visualize
and classify gene expression dynamic profiles, which can lead to the
discovery of biological processes. Through its decoder network,
RVAgene provides means to generate new gene expression dynamic
profiles of either the full data or (in the case of single-cell studies)
the pseudotime-smoothed data by sampling points from the latent
space. In doing so, RVAgene can accurately reconstruct gene dy-
namics in complex biological data. As a by-product, on single-cell
datasets the model directly produces smoothed outputs, useful for
denoising gene expression time series data. RVAgene is efficient on
temporally rich whole genome datasets, in comparison to current
existing methods.

RVAgene can be used to discover structure in the data, such as gene
profile clusters. Popular methods for clustering gene profiles such as
Bayesian hierarchical clustering (Cooke et al., 2011) or DPGP (McDowell
et al., 2018) detect the number of clusters in the data by fitting a hyper-
parameter o, the concentration parameter of the governing Dirichlet pro-
cess (Ferguson, 1973). Although unsupervised, inevitably, the choice of ,
affects the number of clusters output. Visualizing the data first with
RVAgene can give an idea whether the data favor clustering or a continu-
ous representation. Thus analysis in RVAgene can guide the setting of the
hyperparameter o in DPGP and similar methods. In the case of ESC dif-
ferentiation, DPGP predicts 12 clusters (Supplementary Fig. S3), yet most

have very few members and many share similar patterns. The RVAgene
latent space for this dataset finds two major divisions in the data, and
orders the largest DPGP clusters along a spectrum (Fig. 2D), suggesting
that DPGP might be overfitting the data. Indeed, the two methods can be
used complementarily: RVAgene for high-level structure discovery and
DPGP for clustering. In cases where learning a detailed noise model (at
single time point resolution) is important to the user, DPGP or other
Gaussian Process models are preferable over RVAgene. However, DPGP
does not scale well with large datasets and thus cannot always be used
(Fig. 6).

The latent space of an RVAgene model encodes useful information
about biological features, and in that sense provides biologically interpret-
able representations of the data. However, the representation is not inter-
pretable in the sense that the components of the latent space do not have
a physical meaning nor are they necessarily independent. Recent methods
have tackled this issue of interpretability, by either modifying the loss
function to make components independent (Higgins et al., 2016) or sub-
stituting linear functions in parts of the VAE (Ainsworth ez al., 2018;
Svensson et al., 2020). These methods have clear advantages regarding
the analysis and interpretation of features in the latent space. In future
work, decoding an RVAgene model with a linear function (Svensson
et al., 2020) could facilitate additional discovery and improve our ability
to gain insight into dynamic biological processes through the analysis of
the latent space.

Dynamic changes in gene expression underlie essential cell proc-
esses. As such, modeling gene expression changes can also facilitate
downstream analysis tasks, including gene regulatory network
(GRN) inference. Inferring gene regulatory networks from single-
cell data is challenging (Chen and Mar, 2018), particularly due to
cell—cell heterogeneity and high levels of noise. Several recent
approaches to GRN inference make use of temporal profiles
(Deshpande et al., 2019; Kim et al., 2021) or differential equations
(Aubin-Frankowski and Vert, 2020; Ma et al., 2020; Matsumoto
et al., 2017). RVAgene could supplement such methods either by
providing denoised input data, or by completely replacing the tem-
poral ordering/differential equation-based components of these
methods (which can be notoriously difficult to parameterize) with
data produced from an RVAgene generative model of the gene ex-
pression dynamics.

RVAgene is currently agnostic of irregular time intervals be-
tween consecutive points in a time series, i.e. it standardizes the time
interval. This is not usually a concern for single-cell data, since with
pseudotime information we can choose appropriate time intervals.
However, in other cases, such as in response to kidney injury (Liu
et al., 2017), standardizing time intervals distorts the dynamic pro-
files. Since RVAgene seeks to describe broad temporal patterns, we
do not see this as a critical issue, though it would be desirable to
generalize the model. A simple way to model irregularly spaced time
points would be to augment the data through interpolation, though
this is difficult without making strong assumptions about the (gener-
ally unknown) noise model. Gaussian process models (Hensman
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et al., 2013; McDowell et al., 2018) can take irregular data as input,
although (as noted above) are not efficient enough to run on large
datasets. An alternative approach would be to modify the recurrent
network architecture to take time points explicitly as input values,
this would enable modeling of irregular or asynchronous data (Wu
etal.,2018).

RVAgene models in discrete time steps. There is no simple modifi-
cation to the recurrent network structure that allows for prediction on
continuously valued time. However, a recent development: neural or-
dinary differential equations (ODEs) (Chen et al., 2018), enables mod-
eling of time series data with continuous timepoints. Chen et al. (2018)
describe a generative latent ODE architecture similar to that of
RVAgene, except that in their case the recurrent decoder network is
replaced by a neural ODE decoder network. Chen ez al. (2018) demon-
strate accurate results using synthetic data, however when we applied
the method to the ESC single-cell differentiation dataset (Klein et al.,
2015), the neural ODE network was found to converge very slowly
and was overall underfit (Supplementary Fig. S9). The latent ODE
method used by Chen et al. (2018) does not address the challenge of
modeling asynchronous/irregularly spaced data, but this has been more
recently addressed (Rubanova et al., 2019). These new models may
well lead to future improvements in network architectures, although it
seems that computational progress is needed before they can be suc-
cessfully applied to complex biological systems.

In the current work, the prior on latent space used throughout was a
unit spherical Normal, appropriate for exploratory data analysis where
we have no further knowledge about structure in the latent space.
However, given more information, e.g. that the data contains k clusters, a
different prior on the latent space might be more appropriate. A multi-
modal prio—such as a Gaussian Mixture Model (GMM) prior—would
permit structured (multi-modal) representations. However, the KL-diver-
gence for an arbitrary GMM is not tractable; approximation (Hershey
and Olsen, 2007) or numerical computation would be necessary.
Moreover, there is a greater problem: mixture models contain discrete
parameters and VAE models are ill-suited for the optimization of discrete
parameters (Dilokthanakul ez al., 2016), thus directly replacing the
Normal prior of a VAE with a GMM is not feasible. A workaround to
this problem is presented in (Dilokthanakul et al., 2016), however imple-
menting this for a recurrent model architecture remains an open problem.

The points raised above offer much scope for future work. These in-
clude the design of new latent space models with informative priors, mod-
eling irregular time series data and modeling in continuous time.
Developments in some of these areas (Chen ez al., 2018), while promising,
tend to rely on training data with relatively low levels of noise: far from
the reality of most biological data. Thus it seems highly likely to be benefi-
cial for both machine learning and biology to develop new neural net-
work architectures in light of biological data.
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