
REPORT

Inferring condition-specific transcription factor
function from DNA binding and gene expression data

Rachel Patton McCord1,2, Michael F Berger1,2, Anthony A Philippakis1,2,3 and Martha L Bulyk1,2,3,4,*

1 Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA, 2 Harvard University Graduate
Biophysics Program, Cambridge, MA, USA, 3 Harvard/MIT Division of Health Sciences and Technology (HST), Harvard Medical School, Boston, MA, USA and
4 Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
* Corresponding author. Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Harvard Medical School
New Research Building, Room 466D, 77 Avenue Louis Pasteur, Boston, MA 02115, USA. Tel.: þ 1 617 525 4725; Fax: þ 1 617 525 4705;
E-mail: mlbulyk@receptor.med.harvard.edu

Received 16.1.07; accepted 11.2.07

Numerous genomic and proteomic datasets are permitting the elucidation of transcriptional
regulatory networks in the yeast Saccharomyces cerevisiae. However, predicting the condition
dependence of regulatory network interactions has been challenging, because most protein–DNA
interactions identified in vivo are from assays performed in one or a few cellular states. Here, we
present a novel method to predict the condition-specific functions of S. cerevisiae transcription
factors (TFs) by integrating 1327 microarray gene expression data sets and either comprehensive TF
binding site data from protein binding microarrays (PBMs) or in silico motif data. Importantly, our
method does not impose arbitrary thresholds for calling target regions ‘bound’ or genes
‘differentially expressed’, but rather allows all the information derived from a TF binding or gene
expression experiment to be considered. We show that this method can identify environmental,
physical, and genetic interactions, as well as distinct sets of genes that might be activated or
repressed by a single TF under particular conditions. This approach can be used to suggest
conditions for directed in vivo experimentation and to predict TF function.
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Introduction

The coordinated regulation of gene expression in response to
changing environmental or cellular states (‘conditions’) is
essential to organism survival. A central mode of gene
regulation in Saccharomyces cerevisiae is accomplished
through binding of regulatory transcription factors (TFs) to
intergenic regions (IGRs) of the genome in a condition-specific
manner. In vivo approaches such as genome-wide location
analysis (‘ChIP–chip’) (Reid et al, 2000; Ren et al, 2000; Iyer
et al, 2001; Lieb et al, 2001) have generated binding site data for
many S. cerevisiae TFs (Lee et al, 2002; Harbison et al, 2004).
However, because ChIP–chip identifies binding sites in the
particular in vivo context in which the crosslinking was
performed, yeast would need to be cultured in an indetermi-
nate number of different conditions to determine all the
biologically relevant DNA binding sites of a given TF. In contrast,
in vitro protein binding microarray (PBM) technology (Bulyk
et al, 2001) can be used to identify all potential binding sites of a
particular TF (Berger et al, 2006) in the yeast genome (Mukherjee
et al, 2004), yet such in vitro techniques cannot determine if or
when the identified binding sites are utilized in vivo.

Recent studies on transcriptional regulation in yeast have
attempted to address the limitations of individual data types by
combining information from multiple experimental sources.
The idea that genes coregulated by a given TF are expected to
be coexpressed, notwithstanding coregulation by additional
TFs, has been implemented previously in algorithms that
combine gene expression and TF binding site data (Hartemink
et al, 2001, 2002; Bar-Joseph et al, 2003; Gao et al, 2004;
Marion et al, 2004; Cole et al, 2005; Holloway et al, 2005; Kim
et al, 2006). However, most of those studies employed a
threshold parameter to define a set of TF target genes, and
none considered a comprehensive, condition-independent in
vitro TF binding site data type.

In this study, we have developed a novel algorithm, called
‘CRACR’ (Combination Rank-order Analysis of Condition-
specific Regulation; pronounced ‘cracker’), which derives
information about condition-specific gene regulation and TF
activity by combining comprehensive, condition-independent
PBM data for a given TF with gene expression microarray data
under a variety of biological conditions (see Supplementary
Figure 1 for schema). Specifically, CRACR searches for
conditions in which genes downstream of IGRs exhibiting
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significant TF binding in PBMs are enriched among differen-
tially expressed genes. In contrast to earlier studies, CRACR
integrates PBM-derived experimental TF binding site data with
gene expression data without imposing arbitrary cutoffs that
define which IGRs are ‘bound’ or which genes are ‘differen-
tially expressed’. Indeed, experimental evidence suggests that
both low-affinity TF–DNA interactions (Berger et al, 2006;
Tanay, 2006) and modest gene expression changes (Hughes
et al, 2000b) may be important in gene regulation, and such
interactions likely would be missed by the use of arbitrary
cutoffs. In addition, our use of rank order statistics in CRACR
facilitates comparison of gene expression data from different
microarray platforms.

CRACR does not require that the TF itself be coexpressed
with its target genes, thus extending the applicability of this
analysis to TFs such as Mig1, which are primarily regulated by
changes in subcellular localization rather than overall
abundance (De Vit et al, 1997), or Tec1, whose abundance is
controlled more by protein degradation than by changes in
gene expression (Bao et al, 2004). Our approach can generate
new hypotheses about the condition-specific activity of TFs,
which can be validated by directed in vivo experimentation.
The conditions in which a particular TF is predicted to be
active can also be used to infer its function without any prior
knowledge about either the TF itself or its putative targets.

Results and discussion

Prediction of the condition-specific function(s)
of yeast TFs

We considered 1327 publicly available gene expression
microarray data sets obtained for S. cerevisiae in various
cellular or environmental states (we shall refer to each of these
individual microarray data sets as an ‘expression condition’).
For each condition, we first order the genes from induced to
repressed by expression fold-change. Next, we assign ranks to
the genes according to the PBM P-values of TF binding to their
upstream IGRs. We then use a rank-based, mean-centered area
under the receiver operating characteristic curve (AUC)
statistical test (see Materials and methods section) to compare
the PBM-defined ranks of similarly expressed genes within a
sliding foreground window to the ranks of a length-matched
background set of genes outside this window. The result of this
statistical test yields a value which we refer to as the
‘enrichment score’ or ‘area statistic’ and represents the degree
to which PBM-derived target genes of a given TF are
significantly enriched within each window of similarly
expressed genes. We determine the statistical significance of
the maximum enrichment in a condition by permutation
testing (see the Materials and methods section).

The expression conditions in which predicted TF target
genes are significantly differentially expressed can lead to
hypotheses about the function(s) of the TF. Indeed, the results
of such analysis for characterized TFs examined in this study
agree with their annotated functions. For example, CRACR
results show that the genes repressed when glucose is added to
the cell culture medium are significantly enriched for genes
immediately downstream of IGRs with highly significant Mig1
PBM P-values (Figure 1A). The converse is seen for expression

in diauxic shift (Figure 1B); there, PBM-derived Mig1 target
genes are enriched among the most induced (derepressed)
genes. These results are consistent with the known role of
Mig1 in glucose repression (Lutfiyya et al, 1998).

Although such analysis of individual expression conditions
can be highly informative, we sought to develop an automated
approach that would identify the types of conditions in which
any given TF is likely to be exerting its regulatory role.
Therefore, we first annotated each gene expression data set
with ‘condition annotation terms’ describing the general class
of perturbation applied (i.e. amino acid starvation, a factor
treatment, etc.) and the biological processes (i.e. RNA
processing, pheromone response, sporulation, etc.) that are
affected in the given experimental condition, following an
initial set of annotation terms described previously (Marion
et al, 2004). For each TF, we performed CRACR analysis on the
1327 expression conditions, and then examined all statistically
significant conditions for over-representation of these condi-
tion annotation terms. For Mig1, we found that the set of
significant conditions is enriched for annotations such as
carbohydrate metabolism and response to glucose starvation,
consistent with Mig1’s role in glucose repression (Lutfiyya
et al, 1998). Some stress response annotations are also
significant for Mig1, potentially reflecting the similarity
between the Mig1 binding site (TGTGGGG) and the canonical
stress response motif (AGGGG) (Conlon et al, 2003; Mukherjee
et al, 2004) and indicating the effect of non-nutrient stresses
such as heat shock on metabolic processes such as carbo-
hydrate metabolism (Gasch et al, 2000). Condition annotation
terms over-represented among expression conditions signifi-
cant for Rap1 (protein biosynthesis, response to stress, and
others), Cbf1 (amino acid metabolism, nitrogen utilization),
and Abf1 (silencing, processes affecting general transcrip-
tional regulation such as histone depletion) are also supported
by the annotations of these TFs in the Saccharomyces Genome
Database (http://www.yeastgenome.org/) (Cherry et al,
1998). The expression conditions found to be significant for
each TF and the biological significance of these conditions are
qualitatively very similar for foreground window sizes of 200
or 300 genes. The full set of significant conditions for various
window sizes and significance thresholds for each TF, along
with the corresponding significant condition annotation
terms, are provided in the Supplementary information
(Supplementary Data 1). The success of CRACR with
characterized TFs suggests its potential for future use in
predicting the functions of uncharacterized TFs.

Identification of genetic and physical interactions

As the interactions between a TF and other proteins in the cell
play a key role in TF function, we investigated whether CRACR
could identify potential genetic and physical interaction
partners of a given TF. If a certain gene mutation has an effect
on the expression of a certain TF’s target genes, then that gene
may be a genetic or physical interaction partner of the TF of
interest. We searched for and identified examples of such
interactions using CRACR and the 677 expression data sets for
various yeast mutants. For example, when either Tup1 or
Cyc8 (Ssn6), known members of a corepressor complex with
Mig1, is deleted, the PBM-derived target genes of Mig1 are
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derepressed (Figure 1C and D). Similarly, Rap1 targets are
upregulated when Sin3, which exhibits a synthetic rescue
interaction with Rap1, is deleted (Figure 1E), suggesting a
regulatory relationship between Sin3 and Rapl that may

mediate their genetic interaction. The ability of CRACR to
recover further genetic and physical interactions was eval-
uated using a reduced interaction network, containing only
those proteins known to interact with Abf1, Rap1, Mig1, and
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Figure 1 Results of CRACR analysis for various expression conditions. Area statistic for PBM target gene enrichment (see the Materials and methods section) is
plotted (y axis) for each window of expression-ordered genes (x axis), using a window size of 200 genes. Mig1 target genes are significantly enriched (A) among
repressed genes in glucose addition and (B) among derepressed genes in diauxic shift (21 h time point is shown). Deletion of either (C) Tup1 or (D) Cyc8 results in
derepression of Mig1 targets. (E) Induction of Rap1 target genes in genetic interactor Sin3 deletion. (F) Induction of Mig1 targets in the Aep2 deletion. (G) Negative
control: no enrichment for Cbf1 targets among differentially expressed genes in glucose addition. The dotted line in each panel indicates the Po0.001 significance
threshold. The background color indicates gene expression fold change as depicted in the colorbar.
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Cbf1, and for which expression data on mutant strains were
available. With this analysis of PBM and mutant expression
data, at an expression condition significance threshold of
Po0.001 we were able to identify 30% of validated protein–
protein interactions and 40% of synthetic lethal interactions
for these TFs (we identify 30 and 50% respectively at Po0.01;
Figure 2). In addition to recovering previously discovered
physical and genetic interactions, CRACR can also predict
novel biological interactions. For example, when the mito-
chondrial TF Aep2 is deleted, PBM-derived Mig1 target genes
are enriched among the induced genes (Figure 1F), perhaps
reflecting the effects of crosstalk between mitochondrial and
nuclear energy regulation networks (Poyton and McEwen,
1996).

Predicting condition-specific gene regulation and
TF binding site usage

After using the cutoff-free CRACR algorithm to select
significant expression conditions, we examined the particular
genes most likely to be targeted by the TF in each significant
condition (genes within the significant foreground windows
with Bonferroni-corrected PBM P-values o0.001; Supplemen-
tary Data 2). With this approach, CRACR analysis of Cbf1 PBM
data predicted that an expanded set of target genes are
regulated by Cbf1 under amino acid deprivation conditions as
compared to growth in rich medium. This CRACR prediction is
supported by the ‘condition-expanded’ binding of Cbf1
observed in ChIP–chip experiments (Harbison et al, 2004).
Of this expanded set of target genes predicted by CRACR, 80%
are bound in vivo in the amino acid deprivation ChIP–chip
experiment (Harbison et al, 2004). Thus, CRACR can predict
the condition-specific binding observed in in vivo experiments
and identify biologically relevant condition-specific functional
modules of TF targets from in vitro PBM data.

As demonstrated with the above example of Cbf1, TFs often
bind different target genes under different conditions. Thus,
although IGRs bound in PBMs but not in a ChIP–chip data set
for a single condition might be false positives in a biological
sense, they might also represent real TF targets that are missed

by ChIP–chip either because the TF was not bound to these
targets in the examined cellular state or because of epitope
inaccessibility (Mukherjee et al, 2004) (Supplementary Figure
2). CRACR analysis of these IGRs bound strongly in PBMs but
not in ChIP–chip can determine if and in what conditions the
predicted TF binding sites serve a regulatory role. To identify
conditions in which up- or downregulated genes are enriched
for PBM-predicted target genes not occupied in a given ChIP–
chip experiment, we ranked IGRs according to log(PBM rank/
ChIP–chip rank). We then used CRACR to search for
enrichment of these ‘PBM NOT ChIP–chip’ genes among
differentially expressed genes in various biological conditions.

To observe the subtle effect of subsets of genes bound in
PBM but not ChIP–chip experiments, and to generate
biological hypotheses for future experimentation to elucidate
the regulation of these genes, we considered CRACR results
at a less stringent significance threshold (CRACR Po0.05).
Using Rap1 as an example, the resulting significant conditions,
which include changes in nutrient sources, heat shock
or oxidative stress, are good candidates for conditions in
which these PBM-derived target genes may actually be
regulated by Rap1. Among the hypotheses generated by
the above approach, CRACR predicts that the Rap1 targets
bound more significantly in PBMs than in a rich medium
ChIP–chip experiment will be induced after diamide treatment
(Figure 3). Interestingly, these additional Rap1 targets are
bound less strongly (less significant PBM P-values) than
those predicted to be repressed in this oxidative stress
condition (Figure 3D). This novel CRACR prediction that a
distinct set of lower affinity binding sites are occupied and
upregulated by Rap1 under certain conditions is supported by
recent experimental data, which showed that chromatin
conformational changes expose a similar set of lower affinity
sites for Rap1 binding in low glucose conditions (Buck and
Lieb, 2006). As in those experiments, many of the genes
predicted to be upregulated in diamide treatment encode
glycolytic enzymes. This biological prediction again demon-
strates the importance of the cutoff-free CRACR approach, as
the biological relevance of these lower affinity Rap1 binding
sites would have been missed with the use of a stringent
binding P-value cutoff.
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Using ChIP–chip or in silico TF binding site motifs

In the absence of PBM data, our approach can be applied to
other experimental or in silico data types that can be used to
score IGRs according to TF binding site data. As an example,
we considered Rap1 motifs derived either purely computa-
tionally from a group of annotated ribosomal protein genes
(Hughes et al, 2000a) or from a Rap1 ChIP–chip experiment
performed in a single environmental condition (Harbison et al,
2004), and then scored IGRs according to the strength of their
matches to these motifs (see the Materials and methods
section). We ranked the IGRs according to this score, and then

used CRACR to predict the condition-specific usage of the
predicted binding sites. CRACR results are similar for these
independently derived motifs (Supplementary Figure 3),
demonstrating the broad applicability of the CRACR algorithm
to TF binding site data from various data types. The results
with these motifs suggest the presence of upregulated Rap1
targets in this diamide treatment condition, as was predicted
by CRACR analysis with the PBM data. However, ranking the
IGRs by the strength of their matches to a motif never recovers
the predicted role of these genes as strongly as ranking by PBM
P-values. This is expected from previous indications that Rap1
upregulates this group of genes through a lower affinity Rap1
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enrichment, measured by the maximum area statistic for a window size of 200 genes of TF targets among genes differentially expressed when the interactor is mutated.
Solid edges indicate CRACR enrichment significant to Po0.001. Edge color indicates interaction type: genetic (green) or physical (navy).
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motif likely missed by motif searches with a Rap1 consensus
sequence (Buck and Lieb, 2006). Nonetheless, the general
similarities between the results obtained with motifs and PBM
data indicate that motif data could also be used with CRACR to
predict additional conditions for in vivo TF binding.

Conclusions

CRACR not only provides information about the general
biological processes in which a given TF is involved and in
what cellular or environmental conditions that regulation
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occurs, but also suggests new regulatory interactions. There-
fore, CRACR results could be used to direct experimentation to
investigate environmental, physical or genetic interactions. A
major strength of CRACR lies in its ability to integrate different
types of existing high-throughput genomic data sets to map
condition specificity onto the activity of TFs whose DNA
binding sites were identified either through rapid, condition-
independent in vitro PBM experiments or other techniques.
This provides an approach to understanding the condition-
specific regulation of genes in a way that is more feasible than
performing in vivo binding site location analysis experiments,
such as ChIP–chip, in all possible cellular states. These results
also suggest that the CRACR approach may be useful in
determining the functions and condition-specific utilization of
uncharacterized yeast TFs.

Materials and methods

Large-scale data sets used in this study

The PBM data for Rap1, Abf1, and Mig1 were published previously
(Mukherjee et al, 2004). As part of this study, we generated Cbf1 PBM
data (Supplementary Data 3) as described previously (Mukherjee et al,
2004). The Rap1 and Cbf1 ChIP–chip data sets considered in this study
were published previously (Harbison et al, 2004); we considered as
‘bound’ those IGRs called bound in that study at Po0.001. The 1327
publicly available gene expression microarray datasets considered in
this study were published previously and include 650 environmental
stresses and perturbations, as well as 407 deletion, 215 titratable
promoter, and 55 overexpressor strains (Ihmels et al, 2004; Mnaimneh
et al, 2004; Chua et al, 2006); a list of these 1327 datasets and the full
set of expression data are available upon request. Protein–protein
interaction data and synthetic lethality data were obtained from
published sources as compiled in MIPS (Mewes et al, 2002) and
BioGRID (Stark et al, 2006).

Mapping TF binding sites to genes

IGRs were assigned to any downstream genes that they might
potentially regulate, using the criteria that the regulated gene must
either be the closest downstream gene or a secondary downstream
gene with a transcription start site within 500 bp of the end of the IGR
microarray probe (Lee et al, 2002; Harbison et al, 2004). This
assignment method allows for the possibility that a single IGR may
regulate different genes under different conditions.

Rank order statistics and the area statistic

The relevance of a certain TF to the regulation of gene expression in a
particular condition was determined using rank order statistics and a
mean-centered area under the ROC curve (AUC) statistical measure
(Agarwal and Graepel, 2005). This test measures the area between the
sensitivity and specificity curves for foreground and background gene
sets, thereby quantifying the degree to which a set of similarly
expressed foreground genes ranks higher than a set of background
genes on the basis of the strength of TF binding (measured in this study
by PBM P-value) in their regulatory regions. To choose the foreground
and background sets, we first ordered all the genes in the yeast genome
according to their expression fold-changes in the condition of interest;
we shall now consider these genes as being placed along an
‘expression axis’ according to this ordering. Alternative methods for
quantifying gene expression changes, such as P-values of the observed
fold-change (Hughes et al, 2000b; Allison et al, 2006), could be used to
order the genes for CRACR analysis. We have chosen to consider gene
expression fold-change in this study because of this metric’s simplicity
and frequency of use, and we note that using a different expression
metric does not affect the most significant results from CRACR analysis
(Supplementary Figure 4A and B), although less significant results

may vary (Supplementary Figure 4C). A ‘foreground set’ is thus a
window of similarly expressed genes along this expression axis and a
‘background set’ of genes is selected from the remaining genes outside
this foreground window. Next, for the TF under consideration, we
assigned a rank to each gene based on its associated PBM P-value (rank
of 1 corresponds to the gene with the most significant PBM P-value). In
cases of ties in PBM ranks, we assigned the mean rank of the tied
genes.

To evaluate the enrichment of significant TF targets among similarly
differentially expressed genes, relative to the rest of the genes in the
genome, we calculated a mean-centered AUC as follows:

area ¼ 1

ðB þ FÞ
rB

B
� rF

F

h i

where B is the size of the background set of genes, F the foreground
size (window size), rB the sum of ranks in the background set and rF

the sum of ranks in the foreground set. This area statistic ranges
between �0.5 and 0.5 and evaluates effect sizes while normalizing for
differences in sample sizes (Philippakis et al, 2006). Positive values of
the enrichment score indicate that the ranks in the foreground set are
higher than ranks in the background, and thus the window of genes is
enriched for probable TF targets. Negative area, conversely, indicates
that genes within the window contain fewer likely TF targets than the
entire set of genes in general. The initial window of foreground genes
encompassed the most highly induced genes along the expression axis,
and then we moved the window, one gene at a time, down to the most
repressed genes along the expression axis. The area statistic calculated
for each foreground window position was plotted along the expression
axis at the center of the window of foreground genes.

Window size selection

When choosing a window size, we first noted that small window sizes
(o150 genes) resulted in substantial ‘noise’ in the area statistic and an
increased likelihood that large area statistic results would be found
among randomly ordered genes with no expected biologically
significant clusterings (Supplementary Figure 5A). To minimize the
effect of random co-occurrences of a few genes with highly significant
PBM P-values while highlighting the persistent enrichment of TF
targets among a larger set of similarly expressed genes, in this study,
we used only window sizes of at least 100 genes. As the window size
increases beyond B500 genes, the foreground set will begin to contain
both genes that are differentially expressed and those whose
expression is not significantly changed, and the biologically significant
enrichment of TF targets among differentially regulated genes will be
lost (Supplementary Figure 5B). Thus, to minimize the effect of
random co-occurrences of a few genes with highly significant PBM
P-values while highlighting the persistent enrichment of TF targets
among a larger set of similarly expressed genes, in this study, we report
CRACR results using window sizes of 100, 200 and 300 genes. Within
this range, the significance of the biologically relevant results is
maintained while background noise is minimized. All figures were
generated using a window size of 200 genes as the results with each of
these window sizes are qualitatively similar. Some differences in the
relative significance of individual conditions may result from varia-
tions in the number of highly differentially regulated genes from one
condition to another, and thus the full set of significant conditions are
reported at a variety of window sizes so that any minor differences in
the results for particular TFs and particular expression conditions for
different window sizes can be observed.

Intergenic region length correction

We employed a length correction in our conditions analysis to correct
for potential biases arising from the fact that longer IGRs have been
found to be associated with more highly variable gene expression
(Supplementary Figure 6A) (Bilu and Barkai, 2005) and that longer
IGRs may tend to be more significantly bound in PBM experiments
(Supplementary Figure 6B). For any given window of foreground
genes, a length-matched background set of genes, containing six times
as many genes as the foreground set, was selected such that the
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distributions of sequence lengths of the associated IGRs for the
foreground and background sets were nearly identical. This was
accomplished by first ordering all the IGRs by length, and then
selecting the six background IGRs nearest in length to each foreground
gene (Philippakis et al, 2006). A large background size minimizes
noise, but length matching often begins to fail as more genes are added
to the background set. The net effect of the length bias can be
measured by ranking the genes by their IGR lengths rather than by a
PBM P-value (as in Supplementary Figure 6C) and calculating the
maximum area statistic obtained for any expression condition based
on lengths alone. We chose the maximum background size for which
this measured length bias contributes no more than 0.001 to the final
area statistic such that the potential contribution of the length bias to a
significant area statistic was less than 1%.

Evaluation of statistical significance of expression
conditions

To calculate the significance of the enrichment determined by the area
statistic, we employed a permutation test. Specifically, genes were
assigned random ranks, and the enrichment was calculated using
these random ranks. We performed this process 1000 times and then fit
an extreme value distribution to the set of maximum area statistic
values seen during each permutation. The extreme value distribution
follows the form:

fðxjk;m; sÞ ¼ 1

s

� �
exp � 1 þ k

x � mð Þ
s

� ��1
k

 !
1 þ k

ðx � mÞ
s

� ��1�1
k

with location parameter m, scale parameter s and shape parameter k.
The significance of the maximum area statistic observed with real PBM
data was then calculated from this extreme value distribution, and we
required a P-value of 0.001 to call an expression condition ‘significant’.
As the variance of enrichment scores for random sets of genes
decreases for increasing window sizes (Supplementary Figure 5A),
different significance thresholds are required for analysis using
different window sizes. The parameters of the generalized extreme
value distribution and the corresponding threshold values of the area
statistic required to achieve Po0.001 significance for the window sizes
used in this study are listed in Supplementary Table I.

Expression condition annotation term enrichment

Gene expression conditions were annotated with terms describing the
biological functions that are affected by the given experimental
condition being examined (i.e., environmental context, such as heat-
shock response, or cellular state, such as sporulation), following an
initial set of annotation terms described by Marion and co-workers
(Marion et al, 2004). A hypergeometric distribution (Tavazoie et al,
1999; Hughes et al, 2000a) was used in calculating whether the
conditions in which a given TF was deemed active were significantly
enriched for any of these annotation terms.

Use of in silico motifs with CRACR

We separately considered three independently published Rap1 motifs,
derived either from AlignACE motif searching of the upstream regions
of annotated ribosomal protein genes (Hughes et al, 2000a), from IGRs
bound in PBMs (Po0.001) (Mukherjee et al, 2004), or from IGRs
bound in YPD medium in ChIP–chip (Po0.001) (Harbison et al, 2004),
in a ScanACE search (Hughes et al, 2000a) of all yeast IGRs. We
retrieved the ScanACE scores of the best 10 000 matches to each of
these three separate Rap1 motifs; the retrieved motif matches scored
about 8–10 standard deviations below the motif means. Next, we
assigned a rank to each IGR based on the sum of the motif scores of all
binding site matches within each IGR. We intentionally used this
permissive threshold so that we could obtain a continuous measure of
the potential for TF binding in IGRs. We then used these IGR ranks in
CRACR analysis.

Unless a specifically mentioned web-based tool was used, all of the
computational analyses and algorithms described in this study were
implemented in MATLAB and Perl.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb). The CRACR algorithm is
available on the Bulyk lab website at http://the_brain.bwh.harvard.
edu/CRACR/index.html.
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