
 International Journal of 

Molecular Sciences

Article

Melatonin and Glycine Reduce Uterus Ischemia/Reperfusion
Injury in a Rat Model of Warm Ischemia

Viktorija Zitkute 1,2 , Mindaugas Kvietkauskas 1,2 , Vygante Maskoliunaite 2,3, Bettina Leber 1,* ,
Diana Ramasauskaite 2, Kestutis Strupas 2, Philipp Stiegler 1 and Peter Schemmer 1

����������
�������

Citation: Zitkute, V.; Kvietkauskas,

M.; Maskoliunaite, V.; Leber, B.;

Ramasauskaite, D.; Strupas, K.;

Stiegler, P.; Schemmer, P. Melatonin

and Glycine Reduce Uterus Ischemia/

Reperfusion Injury in a Rat Model of

Warm Ischemia. Int. J. Mol. Sci. 2021,

22, 8373. https://doi.org/10.3390/

ijms22168373

Academic Editor:

Joan Roselló-Catafau

Received: 8 July 2021

Accepted: 1 August 2021

Published: 4 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz,
Auenbruggerplatz 2, 8036 Graz, Austria; viktorijazitkute@gmail.com (V.Z.);
min.kvietkauskas@gmail.com (M.K.); philipp.stiegler@medunigraz.at (P.S.);
peter.schemmer@medunigraz.at (P.S.)

2 Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania;
vygantem@gmail.com (V.M.); diana.ramasauskaite@santa.lt (D.R.); kestutis.strupas@santa.lt (K.S.)

3 National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, P. Baublio 5,
08406 Vilnius, Lithuania

* Correspondence: bettina.leber@medunigraz.at; Tel.: +43-316-385-84094

Abstract: Ischemia/reperfusion injury (IRI) remains a significant problem to be solved in uterus
transplantation (UTx). Melatonin and glycine have been shown to possess direct cytoprotective
activities, mainly due to their antioxidative and anti-inflammatory properties. The aim of this study
was to investigate the protective effects of melatonin and glycine and their combination on IRI in a rat
model of warm ischemia. In this study, Sprague-Dawley rats were assigned to eight groups, including
sham and IRI (n = 80). Melatonin and glycine alone or their combination were administered prior
to 1 h of uterus ischemia followed by 1 h of reperfusion. Melatonin (50 mg/kg) was administered
via gavage 2 h before IRI and glycine in an enriched diet for 5 days prior to intervention. Uterus
IRI was estimated by histology, including immunohistochemistry, and biochemical tissue analyses.
Histology revealed that uterus IRI was significantly attenuated by pretreatment with melatonin
(p = 0.019) and glycine (p = 0.044) alone as well as their combination (p = 0.003). Uterus IRI led to
increased myeloperoxidase expression, which was significantly reduced by melatonin (p = 0.004),
glycine (p < 0.001) or their combination (p < 0.001). The decline in superoxide dismutase activity
was significantly reduced in the melatonin (p = 0.027), glycine (p = 0.038) and combined treatment
groups (p = 0.015) when compared to the IRI control group. In conclusion, melatonin, glycine and
their combination significantly reduced oxidative stress-induced cell damage after IRI in a small
animal warm ischemia model, and, therefore, clinical studies are required to evaluate the protective
effects of these well-characterized substances in uterus IRI.

Keywords: melatonin; glycine; ischemia and reperfusion injury; uterus transplantation

1. Introduction

Successful uterus transplantation (UTx) has been shown to be the best treatment
option for patients with absolute uterus factor infertility (AUFI) [1]. AUFI specifies women
who are unable to become pregnant or maintain pregnancy because of the absence of a
uterus (due to Mayer-Rokitansky-Küster-Hauser syndrome, or hysterectomy due to uterine
benign/malignant tumors or postpartum bleeding), or the presence of a uterus that is
anatomically dysfunctional (Asherman syndrome, septate, bicornuate, arcuate, hypoplastic
or myomic uterus) [2–4].

In 2014, Brännström et al. reported the first human live birth following UTx, arousing
interest in research on UTx as AUFI treatment and resulting in at least 20 clinical trials and
even more animal experiments currently taking place across the world [5]. The need for
UTx is growing in addition to the increasing number of successful clinical trials worldwide.
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To date, about 100 human UTx have been performed with around 20 reported successful
live births [2].

Unlike other solid organ transplantation (Tx), UTx is the only ephemeral type of Tx,
where the transplant is not intended for life-long use but for a limited time in the recipient
(until delivery), and this restricted duration greatly reduces the risk of the well-known
long-term immunosuppressive-related side effects [6,7]. Although UTx is still at the stage
of animal experiments and clinical trials, its necessity is undeniable, and it is only a matter
of time before this procedure becomes routine worldwide.

Transplant success is limited by ischemia/reperfusion injury (IRI), and researchers are
still struggling to answer key questions about uterus tolerance to IRI [4]. During ischemia,
severe imbalance of metabolic supply and demand occurs, subsequently causing tissue
hypoxia [8,9]. Moreover, restoration of blood flow and reoxygenation itself paradoxically
further enhance the activation of innate and adaptive immune responses and cell death
programs (reperfusion injury) [10]. These processes increase the likelihood of short- and
long-term complications, such as delayed graft function and acute or chronic rejection [11].
Different strategies to reduce IRI, such as optimization of organ perfusion and storing
conditions, or the development of drugs targeting IRI, are under investigation [12,13].

Melatonin is a hormone produced by various tissues in the body, although the major
source is the pineal gland in the brain [14,15]. It is naturally produced from the amino acid
tryptophan and comprises biological activities such as immunoregulatory, antioxidative
and anti-inflammatory effects, as well as the ability to stabilize cell membranes; furthermore,
its metabolites are able to reduce free radicals [14,16–18]. Melatonin receptors are expressed
in a variety of cell types in rodents or primates as well as in the human female reproductive
system, including the ovary, uterus, breast and placenta [14,19]. The potentially beneficial
effects of melatonin have been shown in various animal models of IRI [12,20–22].

Glycine, the simplest amino acid, is involved in the synthesis of a variety of biomolecules
and metabolisms, and is also an inhibitory neurotransmitter and an inhibitor of the activa-
tion of immune cells [23]. It is able to attenuate hypoxic cell injury by direct cytoprotection
in isolated cells, organ perfusion and in vivo models targeting different organs, including
the heart, liver, kidney and skeletal muscle [23–28].

This study was thus designed to evaluate the protective effects of melatonin and
glycine, as separate supplements or in combination, on IRI in a rat model of warm ischemia.

2. Results
2.1. General Data

All animals were in good general health throughout the study period. One rat (1.25%)
died after induction of anesthesia prior to surgery. The median body weight slightly
increased from 303.9 (296.9; 322.1) g at the beginning of the study to 313.6 (304.9; 329.7) g
at the end (p = 0.001). Five days of different diets (casein vs. glycine) did not affect body
weight gain (3.04% (0.66; 6.84) vs. 2.7% (1.01; 4.42), p = 0.494), despite differences in median
daily food intake (22.3 (21.4; 23.6) vs. 20.3 (19.3; 21.6) g, p < 0.001).

2.2. Glycine Concentration

The median glycine concentration in serum, before switching to special diets (baseline),
was 342.6 (303.3; 412.5) µmol/L. After 5 days of a glycine-enriched diet, median serum
glycine concentration was 4.2-fold higher compared to the casein diet group (745.1 (558.7;
991.2) vs. 176.9 (155.4; 220.6) µmol/L, p < 0.001). The casein diet resulted in decreased
glycine concentration compared to baseline values (p < 0.001), while the glycine-enriched
diet was associated with significantly higher serum glycine levels (p < 0.001). The gavage
with melatonin, 2 h before IRI or sham procedure, did not affect glycine levels at the end of
the experiment (Figure 1).
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Figure 1. Glycine concentration in serum after 5 days of pretreatment in study groups. IRI: is-
chemia/reperfusion injury. Data presented as median and interquartile range (n = 10/group, except
n = 9 in sham combined treatment group).

2.3. Histology

The total scores of uterus histological evaluation for IRI in all sham groups (control,
melatonin, glycine and their combination) were similar (5 (4; 6) vs. 4 (3; 6) vs. 4.5 (4; 6)
vs. 4 (3.5; 6), p = 0.719, respectively) (Figure 2). Uterus IRI procedure led to an increase in
total scores, which were found to be 8.5 (7; 10.25) in control (p < 0.001), 6 (5; 8) in melatonin
(p = 0.005), 7 (6; 8) in glycine (p < 0.001) and 6 (6; 7) in the combined treatment group
(p = 0.022) compared to corresponding sham groups. The elevation in total score after IRI
procedure was significantly attenuated by pretreatment with melatonin (p = 0.019) and
glycine (p = 0.044) alone as well as with their combination (p = 0.003) compared to IRI
control group.
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When comparing the individual histological features of the scoring system between
IRI groups, there was a significant reduction in tissue edema (p = 0.003) after pretreatment
using the combined treatment. In addition, there was a tendency toward reduction in in-
flammatory cells (p = 0.074) and tissue edema (p = 0.068) after pretreatment with melatonin,
while the same occurred with tissue edema (p = 0.074) and perimeter thickening (p = 0.068)
after pretreatment with glycine, and with inflammatory cells (p = 0.068) after pretreatment
of their combination (Table 1). Other histological features were similar in all IRI groups.

Table 1. Results of the scoring system for uterus IRI evaluation.

Sham Procedure IRI Procedure

Control Melatonin Glycine Melatonin
+ Glycine Control Melatonin Glycine Melatonin

+ Glycine

Inflammatory cells 1 (0.75; 1) 1 (0.75; 1) 1 (1; 1) 1 (0.5; 1) 2 (1; 2) 1 (1; 1.25) 1 (1; 2) 1 (1; 1.25)
Vasoconstriction 0 (0; 0.25) 0 (0; 0) 0 (0; 0.25) 0 (0; 0) 0 (0; 1) 0 (0; 1) 0 (0; 0.25) 0 (0; 0.25)

Hemorrhage 0 (0; 0) 0 (0; 0) 0 (0; 0) 0 (0; 0) 0 (0; 0) 0 (0; 0) 0 (0; 0) 0 (0; 0)
Necrosis 1 (1; 1) 1 (0.75; 1) 1 (0.75; 1) 1 (1; 1) 1 (1; 2) 1 (1; 1.25) 1 (1; 2) 1 (1; 1.25)
Edema 1 (0.75; 1) 1 (0; 1) 1 (1; 1) 1 (0; 1) 2 (1; 2) 1 (1; 2) 1 (1; 2) 1 (1; 1)

Thrombosis 0 (0; 0) 0 (0; 0) 0 (0; 0) 0 (0; 0) 0 (0; 0.25) 0 (0; 0) 0 (0; 0) 0 (0; 0)
Endometrial loss of cells 1 (1; 1) 1 (0.75; 1) 1 (0.75; 1) 1 (0.5; 1) 1 (1; 2) 1 (1; 1.25) 1 (1; 2) 1 (1; 1)

Smooth muscle
contraction 0 (0; 0) 0 (0; 0) 0 (0; 0) 0 (0; 1) 0 (0; 1) 0 (0; 1) 1 (0; 1) 0 (0; 0.25)

Impaired basement
membrane integrity 1 (0; 1) 0 (0; 1) 0 (0; 0.25) 0 (0; 1) 1 (0; 1) 0.5 (0; 1) 1 (0; 1) 1 (0.75; 1)

Perimeter thickening 0 (0; 0.25) 0 (0; 1) 0.5 (0; 1) 1 (0; 1) 1 (0.75; 1) 0.5 (0; 1) 0 (0; 1) 0.5 (0; 1)
Total score 5 (4; 6) 4 (3; 6) 4.5 (4; 6) 4 (3.5; 6) 8.5 (7; 10.25) 6 (5; 8) 7 (6; 8) 6 (6; 7)

IRI: ischemia/reperfusion injury. Data presented as median and quartiles (Q1; Q3); n = 10/group, except n = 9 in sham combined treatment
group.

2.4. Tissue MPO Expression

MPO levels in uterus tissue did not significantly vary between sham groups (Figure 3),
with 2.92% (1.52; 3.89), 3.08% (1.64; 3.96), 3.61% (2.94; 4.25) and 3.52% (2.87; 4.06) in the
sham control group, the sham melatonin group, the sham glycine group and the combined
treatment group, respectively. Uterus IRI resulted in increased MPO levels (7.18% (6.57;
7.75) in the control group, 5.61% (3.58; 6.36) in the melatonin group, 5.31% (4.62; 6.16) in the
glycine group and 4.04% (2.86; 5.2) in the combined treatment group). Pretreatment with
melatonin (p = 0.004) and glycine (p < 0.001) alone or with their combination (p < 0.001)
attenuated MPO increase following IRI compared to the IRI control group. While the
combination treatment of glycine plus melatonin totally blocked the IRI effect of MPO
expression (p = 0.224), all other IRI groups were different to their corresponding controls
with p < 0.001, p = 0.005 and p = 0.002, for IRI, IRI plus melatonin and IRI plus glycine,
respectively.

2.5. Tissue SOD Activity

The SOD activity in uterus tissue samples was similar in all sham groups with 3.66
(2.97; 3.78) in control vs. 2.93 (2.44; 3.89) in melatonin vs. 3.55 (2.81; 3.77) in glycine
vs. 3.13 (2.47; 3.93) U/mg protein in combined treatment group, p = 0.699) (Figure 4).
IRI significantly decreases SOD activity. This decrease was attenuated by pretreatment
with melatonin (2.61 (2.12; 3.74) U/mg protein, p = 0.027), glycine (2.52 (1.93; 3.44) U/mg
protein, p = 0.038) and the combination of both supplements (2.69 (2.23; 3.04) U/mg protein,
p = 0.015) as compared to the corresponding IRI control group (2.04 (1.57; 2.35) U/mg
protein).
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3. Discussion

In organ Tx IRI is a major challenge affecting clinical outcome. An imbalance in
metabolic supply and demand within the ischemic organ results in profound tissue hy-
poxia and microvascular dysfunction; furthermore, subsequent reperfusion enhances the
activation of innate and adaptive immune responses and cell death programs, culminating
in acute or chronic organ rejections [10,29]. To date, only a limited number of studies
investigating agents capable of minimizing IRI, particularly in UTx, are available [4]. The
data of this study clearly demonstrate the protective effects of melatonin and glycine, both
separately and combined, against experimental uterus IRI. This is the first implication of
these non-toxic substances in the research of UTx.

The potential benefits of melatonin in other solid organ Tx have been described
previously [12,16]. Melatonin is a potent free radical scavenger of reactive oxygen species
(ROS) and, therefore, improves morphology, apoptosis, immunological reaction, and
oxidative stress of grafts, among other processes. [16,30]. It has been proven to be a
potentially useful therapeutic tool in reducing graft rejection [8]. In the last decades, its
positive effects on the heart [31–33], bone [34], lung [35], pancreas [36,37], kidney [38–40]
and liver [41–43] have been described in the Tx setting. Melatonin ameliorates IRI most
likely through its antioxidative properties and inhibitory capacity of nuclear factor κB
(NF-κB), IκB kinase (IKK) and c-Jun N-terminal kinase (JNK) in the mitogen-activated
protein kinase (MAPK) pathway [40,44–46]. In addition, the capability of melatonin to
enhance Akt activation in the setting of IRI has been documented previously [45–47].
All of these factors play an important role in inflammation and cell death. Our results
demonstrated reduced histopathologic damage after uterus IRI. Moreover, the observed
decline in SOD activity after 1 h of ischemia followed by 1 h of reperfusion was significantly
attenuated by pretreatment with melatonin compared with control groups, leading to
reduced oxidative stress. As a result, further polymorphonuclear infiltration and tissue
activation, as documented by reduced MPO levels, significantly decreased with melatonin
supplementation.

Numerous experimental and clinical studies have suggested the great potential of
glycine in providing protection against IRI [24,25,48,49]. However, this protective abil-
ity does not apply to all organs and conditions. For the liver, heart and small intestine,
several reports demonstrating organ protection have been published, while in the case
of the kidney, it appears to be unlikely [23]. It seems that glycine attenuates IRI through
similar pathways to melatonin: by enhancing Akt activation, while reducing the activa-
tion of extracellular signal-regulated kinase (ERK), JNK, and p38 in the MAPK signaling
pathway [26,50,51]. Within this study, glycine mediated similar effects to those reported for
melatonin. Glycine was able to preserve the activity of antioxidant pathways during uterus
IRI, resulting in reduced oxidative stress and inflammatory cell activation as shown by
MPO expression. Interestingly, the combination of melatonin and glycine did not result in
significant additive effects as supposed, giving rise to new questions that may be answered
by further investigations.

There were a number of limitations in our study. First, this model (1 h of ischemia
and 1 h of reperfusion) did not reflect a real clinical situation. However, the time allowed
for these processes was sufficient to trigger tissue-oxidative damage pathways and to
investigate the effects of potentially beneficial agents. Second, the uteri exposed to IRI were
not transplanted. However, as the effects of melatonin and glycine were being investigated
in a model of uterus IRI for the first time, this study focused on answering preliminary
questions. Within this study, melatonin and glycine revealed antioxidative and anti-
inflammatory properties in uterus IRI, but further research is warranted. Novel therapeutic
strategies are necessary, as minimizing IRI during Tx may potentially suppress the immune
response against the allograft, leading to reduced need of systemic immunosuppression,
thereby reducing additional risks [52], especially during pregnancy after UTx.
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4. Materials and Methods
4.1. Animals

A total of 80 adult female (12-week-old; weight 270–360 g) Sprague-Dawley rats were
obtained from Janvier Labs (Le Genest-Saint-Isle, France) and arrived at the research facility
7 days prior to intervention. All rats were kept under a controlled environment (22 ±
1 ◦C; 12 h/12 h light/dark cycle) and had access to fresh water and chow ad libitum.
The study followed the guidelines for the handling and care of experimental animals
issued by the Federation of European Laboratory Animal Science Associations (FELASA)
and was approved by the Austrian Federal Ministry of Education, Science and Research
(BMBWF-66.010/0197-V/3b/2018, 26 November 2018).

4.2. Animal Groups and Experimental Design

The rats (n = 80) were randomly assigned to either sham groups or experimental
groups (n = 10/group) and subjected to a 7-day acclimatization period. Half of the animals
in each group were then switched to a 5% glycine-enriched diet (containing 15% casein and
5% glycine for the glycine and combined treatment groups), while the other half received a
control diet (containing 20% casein and 0% glycine for the control and melatonin groups),
purchased from Altromin International (Lage, Germany), for 5 days. Two hours prior to
IRI or sham procedure, the melatonin and combined treatment groups received 1.5 mL of
milk (3.5% fat) containing 50 mg/kg melatonin (Sigma-Aldrich, St. Louis, MO, USA) via
gavage, while the control and glycine groups received the same type of milk containing
a corresponding amount of microcrystalline cellulose (placebo; from Sigma-Aldrich, St.
Louis, MO, USA). The administration route and dose of both investigated substances
(melatonin and glycine) were adopted based on previous experiments [27,28,40,44,53,54].
Water consumption, food intake and body weight were recorded regularly (for details, see
Figure 5).
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4.3. IRI and Sham Procedure

Anesthesia was performed using 2%, 2 L/min isoflurane inhalation and intramuscular
injection of fentanyl (5 µg/kg), midazolam (2 mg/kg) and medetomidine (0.15 mg/kg).
Animals were placed in a supine position on an automatically regulated heating pad to
maintain normothermia during intervention. After shaving and disinfecting the surgical
area, a horizontal laparotomy (measuring about 3 cm) was performed (Figure 6A). Ischemia
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was induced by clamping the distal abdominal aorta about 0.5 cm above the bifurcation
with a micro-bulldog clamp (clamping pressure 20–25 g; GEISTER Medizintechnik, Tuttlin-
gen, Germany; Figure 6B,C). Subsequently both ovarian arteries, including the surrounding
fatty tissue, were temporarily ligated with Vicryl 3-0 sutures. The abdomen was closed and
the animal was returned to a prone position. Warm ischemia was maintained for 1 h fol-
lowed by relaparotomy restoration of the uterus blood flow by removing the micro-bulldog
clamp and sutures from the ovarian arteries (see Figure S1 in Supplementary Materials).
Reperfusion was maintained with closed abdomen in a prone position for 1 h. The duration
of warm ischemia and reperfusion was based on previous preclinical studies and clinical
case series [2,55–57]. At the end of the reperfusion period, animals were euthanized by
terminal blood collection from the vena cava inferior. The right uterus horn was fixed in
4% formalin and prepared for histology and immunohistochemistry (IHC), while the left
uterus horn was frozen in liquid nitrogen and stored at −80 ◦C for further biochemical
analysis.

The sham procedure was performed in exactly the same manner, omitting vessel
occlusion.
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Figure 6. Surgical procedure. (A): laparotomy. (B): mobilization of the abdominal aorta (white arrow)
about 0.5 cm above the bifurcation. (C): micro-bulldog clamp to be placed on the aorta (white arrow).

4.4. Histology

Paraffin-embedded samples were cut in 2 µm thick sections, stained with hematoxylin
and eosin (H&E) [58], and subsequently examined by an experienced pathologist under
a light microscope in a blinded manner. A modified semi-quantitative morphological
scoring system was used for histological evaluation (Table 2; for details, see Supplementary
Information) [59,60].
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Table 2. Scoring system for the evaluation of uterus IRI.

Score

0 1 2

Inflammatory cells Absent Moderate number of cells Severe infiltration of cells
Vasoconstriction Absent <20% of small vessels >20% of small vessels

Hemorrhage Absent Subendometrial Myometrial and endometrial
Necrosis Absent <20% >20%
Edema Absent <50% >50%

Thrombosis Absent <50% of the vessels >50% of the vessels
Endometrial loss of cells Absent <20% >20%

Smooth muscle contraction Absent Present
Impaired basement membrane integrity Absent Present

Perimeter thickening Absent Present

Maximum score for uterus IRI—17. IRI: ischemia/reperfusion injury.

4.5. IHC Staining

The expression of myeloperoxidase (MPO), the oxidative stress marker and the indica-
tor of neutrophils accumulation [61] was assessed by IHC staining with a rabbit polyclonal
antibody to human MPO (Dako, Via Real, Carpinteria, CA, USA; dilution 1:800) in combi-
nation with the UltraVision LP Detection System HRP Polymer (Thermo Fisher Scientific,
Waltham, MA, USA) and DAB chromogen (Dako, Via Real, Carpinteria, CA, USA). Rat
spleen tissue was used as positive control, while primary antibody was omitted as negative
control. The slides were scanned using the QuPath software version 0.2.0-m5 (Belfast,
Northern Ireland) [13,62] and analyzed by a blinded examiner. Results are given as the
ratio of MPO-positive cells to the total number of cells (percent MPO-positive cells).

4.6. Biochemistry

Frozen tissue samples were homogenized in 2 mL MagNA Lyser Green Beads tubes
(Roche Diagnostics, Mannheim, Germany) containing 1 mL ice cold phosphate-buffered
saline and 5 mM butylated hydroxytoluene (antioxidant) by homogenizing 3 times at
600 rpm for 30 s in the MagNA Lyser Instrument (Roche Diagnostics, Mannheim, Ger-
many). Supernatant was collected and stored at −80 ◦C for batch analysis. Superoxide
dismutase (SOD) activity was determined using the commercially available SOD Colori-
metric Activity Kit by Thermo Fisher Scientific (Waltham, MA, USA) exactly as described
by the manufacturer. The BCA Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA,
USA) was used to adjust values to total protein levels. Results are expressed as units per
mg of protein.

4.7. Blood Sample Analysis

Venous blood samples were collected from jugular veins before diet administration
and at the end of the experiment at terminal blood collection from vena cava inferior under
general anesthesia. Blood cells were separated from serum at 1970× g at 4 ◦C for 10 min
and subsequently stored at −80 ◦C for further analyses. Determination of serum glycine
levels was performed in the routine hospital laboratory.

4.8. Statistical Analysis

Statistical analyses were performed using SPSS (Statistical Package for the Social
Sciences) version 23.0 (IBM Corp., Armonk, NY, USA). The Kruskal-Wallis test was used
to compare sham and IRI groups (comparison of more than two groups with Bonferroni
correction). Experimental groups with representative control groups (comparison of two
groups) were analyzed using the Mann-Whitney U test. Data are presented as median and
quartiles (Q1; Q3). A p value less than 0.05 was considered as statistically significant.
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5. Conclusions

Pretreatment with melatonin and glycine provided protection against IRI in a rat
warm ischemia model. This study represents a step toward understanding the effects of
melatonin and glycine, which are commonly used as cytoprotective agents due to their
antioxidative and anti-inflammatory properties in IRI. Since both are natural and nontoxic
molecules, their use in UTx is considered safe. Although dietary melatonin and glycine,
given separately, exert beneficial effects, the combined supplementation did not yield
additive properties. Further investigations replicating the clinical situation are warranted
in order to pave the way for clinical studies focusing on new organ-protective strategies in
UTx using glycine, melatonin or their combination.
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.3390/ijms22168373/s1.
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