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Gut microbiome plays a significant role in HIV-1 immunopathogenesis and HIV-1-
associated complications. Previous studies have mostly been based on 16S rRNA gene
sequencing, which is limited in taxonomic resolution at the genus level and inferred
functionality. Herein, we performed a deep shotgun metagenomics study with the aim
to obtain a more precise landscape of gut microbiome dysbiosis in HIV-1 infection.
A reduced tendency of alpha diversity and significantly higher beta diversity were
found in HIV-1-infected individuals on antiretroviral therapy (ART) compared to HIV-1-
negative controls. Several species, such as Streptococcus anginosus, Actinomyces
odontolyticus, and Rothia mucilaginosa, were significantly enriched in the HIV-1-ART
group. Correlations were observed between the degree of immunodeficiency and gut
microbiome in terms of microbiota composition and metabolic pathways. Furthermore,
microbial shift in HIV-1-infected individuals was found to be associated with changes in
microbial virulome and resistome. From the perspective of methodological evaluations,
our study showed that different DNA extraction protocols significantly affect the genomic
DNA quantity and quality. Moreover, whole metagenome sequencing depth affects
critically the recovery of microbial genes, including virulome and resistome, while
less than 5 million reads per sample is sufficient for taxonomy profiling in human
fecal metagenomic samples. These findings advance our understanding of human gut
microbiome and their potential associations with HIV-1 infection. The methodological
assessment assists in future study design to accurately assess human gut microbiome.

Keywords: gut microbiome, shotgun metagenome sequencing, HIV-1 infection, virulome, resistome

INTRODUCTION

It is well-recognized that gut microbiome (GM) is a key player in intestinal and physiological
homeostasis, immunity, and energy metabolism. Dysbiosis in the GM may alter intestinal barrier
functions, host metabolic and signaling pathways, which are directly or indirectly linked to
various diseases and metabolic disorders such as obesity (Turnbaugh et al., 2006), diabetes
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(Sonnenburg and Backhed, 2016), autoimmune diseases
(Severance et al., 2016), cardiovascular disease (Karlsson et al.,
2013), inflammatory bowel disease (Ananthakrishnan et al.,
2018), cancer (Schwabe and Jobin, 2013), and neuropsychiatric
disorders (Mathee et al., 2020). Accumulating studies in recent
years have indicated that GM plays a significant role in human
immunodeficiency virus type 1 (HIV-1) immunopathogenesis as
well as in HIV-1-associated chronic complications (Vujkovic-
Cvijin et al., 2013; Nowak et al., 2015; Dillon et al., 2016). The
gastrointestinal tract is severely and rapidly damaged following
HIV-1 infection (Hunt et al., 2014), resulting in structural
impairment of the epithelial barrier and a disruption of intestinal
homeostasis. The resulting translocation of bacterial products
and bacteria themselves from the lumen into the systemic
circulation is associated with local and systemic inflammation,
immune activation, and deregulation (Svard et al., 2015), which
are not fully restored with antiretroviral therapy (ART) (Dillon
et al., 2016; Ray et al., 2020).

Cross-sectional studies have shown reduced gut microbiota
diversity and compositional shifts from Bacteroides to Prevotella
predominance after HIV-1 infection (Vazquez-Castellanos et al.,
2015; Ling et al., 2016; Dillon et al., 2017; Lu et al., 2018),
which have been linked to lower CD4 + T-cell count, higher
inflammation, and increased immune activation (Vujkovic-
Cvijin et al., 2013; Dinh et al., 2015). However, in some studies,
such microbiota shifts have been observed neither in animal
models (Handley et al., 2012) nor in studies matching for HIV-
1 risk groups (Noguera-Julian et al., 2016; Kelley et al., 2017).
Importantly, previous microbiome studies in HIV-1 infection
have mostly been based on 16S rRNA gene sequencing approach,
which has several limitations, for instance, taxonomic resolution
at the genus level (Knight et al., 2018). To date, limited
HIV-1 microbiome studies have been conducted using whole
metagenome sequencing, which can characterize the microbiome
at the species and gene levels. The sequencing depth of a few
published studies was inadequate (Vazquez-Castellanos et al.,
2015, 2018; D’Souza et al., 2019; Rocafort et al., 2019) and
underpowered to identify granular differences in both microbial
composition and function (Rocafort et al., 2019). It is noteworthy
that one previous study indicated that enrichment of bacterial
virulence factors and antimicrobial resistance (AMR) genes were
observed in HIV-1-infected individuals with progressively lower
nadir CD4 + T-cell counts (Guillen et al., 2019). It remains to
be seen if such alterations contribute to immune suppression
in HIV-1 infection. A reliable and comprehensive pattern of
gut microbiome dysbiosis and its impact on HIV-1 disease
progression are yet to be fully deciphered.

In the current study, we set up whole metagenomics workflows
and characterized the gut microbiome features in terms of
microbial composition at the species level, functional genes,
metabolic pathways, bacterial virulence factors, and AMR genes,
with respect to HIV-1 infection. As previous studies have shown
that different DNA extraction methods have an impact on DNA
yield and quality, which may influence the structure of bacterial
communities (Costea et al., 2017; Angebault et al., 2018; Lim et al.,
2018), we thus firstly evaluated the effect of different genomic
DNA (gDNA) extraction protocols on the DNA quantity and

quality. Whole metagenome sequencing was then performed on
fecal samples from HIV-1-infected individuals on ART (HIV-1-
ART) from the Swedish InfCareHIV cohort, as well as HIV-1-
negative controls. We evaluated whole metagenome sequencing
depth required for recovery of the bacterial species, virulence
factors genes, and AMR genes. We assessed proportions of
different types of microbes and functionally characterized genes
in human gut metagenomic samples. Finally, metagenomics
data were analyzed in combination with clinical variables to
determine potential associations between gut microbiome and
HIV-1 infection.

MATERIALS AND METHODS

Study Participants
This cross-sectional study included HIV-1-ART patients who
were recruited from the outpatient clinic at Karolinska University
Hospital, Stockholm, Sweden, and HIV-1-negative controls. The
inclusion criteria for the HIV-1-ART participants were age
>18 years (median: 45 years; range: 38–62 years), and HIV-
1 positive for at least 6 months. The exclusion criteria were
ongoing HIV-1-related complications or antibiotic treatment
during the previous 3 months. The patients received ART for
a median of 7.7 years (range: 4.4–20.8 years). The HIV-1-
negative controls were healthy individuals (median: 32 years;
range: 24–51 years) who did not receive antibiotic treatment
during the last 3 months.

This study was approved by the Regional Ethics Committee,
Stockholm (2009/1485-31, 2013/1944-31/4, 2014/920-3).

Samples and Data Collection
A sterile tube for fecal sampling without preservation
media was used when participants were able to donate
feces at the clinic as previously described (Vesterbacka
et al., 2017). Samples were frozen and stored at −80◦C
within 24 h. Stool collection tube with DNA stabilizer
(Stratec Biomedical) was used for participants who
collected the feces at home. The samples were delivered
to the outpatient clinic by the participants or instantly
sent by post and stored at −80◦C according to the
manufacturer’s instructions.

Clinical data of the HIV-1-ART participants were collected
from the InfCareHIV database, including gender, age, current,
and nadir CD4 + T-cell counts, ART regimen at sampling date,
total ART duration (years), and transmission mode (Table 1).

Metagenomic DNA Extraction With
Different Protocols
First, we did literature review and selected and evaluated two
widely used protocols, i.e., QIAamp PowerFecal Pro DNA
Isolation kit (QP) (Qiagen, Germany) and the standardized
International Human Microbiota Standards (IHMS) Protocol
Q recommended by the International Human Microbiome
Consortium1 (Costea et al., 2017), which performed better than

1http://www.microbiome-standards.org
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TABLE 1 | Characteristics of study subjects.

CD4 + T-cell count

(cells/mm3)

Sample ID Group Age at sampling
date (years)

Gender Current Nadir ART at sampling date Total ART
duration (years)

Transmission
mode

Q-C1 Case 43 Male 440 270 Abacavir/Lamivudine/Dolutegravir 4.4 Heterosexual

Q-C2 Case 48 Female 400 150 Abacavir/Lamivudine/Dolutegravir 8.3 Heterosexual

Q-C3 Case 38 Male 770 344 Tenofovir
(TAF)/Emtricitabine/Rilpivirine

6.4 MSM

Q-C4 Case 42 Female 810 530 TDF/Emtricitabine/Rilpivirine 5.1 Heterosexual

Q-C5 Case 43 Female 740 430 TDF/Emtricitabine/Dolutegravir 5.7 Heterosexual

Q-C6 Case 54 Female 690 280 TDF/Emtricitabine/Efavirenz 6.8 Heterosexual

Q-C7 Case 56 Female 800 570 TDF/Emtricitabine/Rilpivirine 5.0 Heterosexual

Q-C8 Case 45 Male 680 300 Abacavir/Lamivudine/Dolutegravir 8.1 Heterosexual

Q-C9 Case 62 Male 330 140 TAF/Emtricitabine/Dolutegravir 8.8 Drug use

Q-C10 Case 38 Female 780 300 Abacavir/Lamivudine/Dolutegravir 7.7 Heterosexual

Q-D2 Case 44 Female 1020 273 Dolutegravir/Abacavir/Lamivudine 20.8 Heterosexual

Q-D3 Case 55 Female 390 170 TDF/Emtricitabine/Dolutegravir 20.7 Blood product

Q-D4 Case 50 Female 970 380 TDF/Emtricitabine/Dolutegravir 10.9 Heterosexual

Q-H1 Control 29 Male - - - - -

Q-H2 Control 35 Male - - - - -

Q-H3 Control 51 Male - - - - -

Q-H4 Control 32 Male - - - - -

Q-H5 Control 40 Male - - - - -

Q-H6 Control 24 Male - - - - -

Q-H7 Control 30 Male - - - - -

Q-H8 Control 27 Male - - - - -

Q-H9 Control 42 Male - - - - -

Q-H10 Control 33 Male - - - - -

Q-H11 Control 30 Male - - - - -

other methods in terms of both DNA quality and microbial
diversity in human fecal microbiota studies (Angebault et al.,
2018; Lim et al., 2018; Fiedorova et al., 2019), while never
having been compared before. A subset of fecal samples was
randomly selected from cases and controls and then subjected
to the two protocols according to instructions with minor
modifications. The quantity and quality of gDNA extracted by the
two protocols were measured using NanoDropTM One (Thermo
Scientific, United States) and Agilent 2200 TapeStation (Agilent
Technologies, United States) including gDNA concentration,
purity, and integrity. The protocol yielding higher gDNA
quantity and better quality was then used to extract gDNA of
the remaining samples. The gDNA samples were stored at−80◦C
until library preparation and sequencing.

Library Preparation and Shotgun
Metagenome Sequencing
Sequencing libraries were prepared with the Nextera DNA Flex
kit (Illumina, Inc.) following the manufacturer’s instructions.
One paired-end (PE) library with insert size of approximately
320 bp was constructed for each sample. Libraries were
normalized with Qubit assay; the pooled library was then
sequenced on one lane on NovaSeq6000 platform (NovaSeq

Control Software 1.6.0/RTA v3.4.4) with a 2 × 150 setup
using “NovaSeqXp” workflow in “S1” mode flowcell. The Bcl
to FastQ conversion was performed using bcl2fastq_v2.20.0.422
from the CASAVA software suite. The quality scale used is
Sanger/phred33/Illumina 1.8+.

Data Preprocessing
A total of 146 GB raw sequencing data were generated for 24
fecal samples, approximately 6.1 GB per sample was obtained.
The raw sequencing data were preprocessed using our in-
house bioinformatics pipelines (Figure 1). Briefly, the adapter
and low-quality reads (a quality score of less than Q30) were
removed using Trim galore (v0.6.4).2 After the quality trimming,
Bowtie2 (v2.3.5.1) (Langmead and Salzberg, 2012) was used in
combination with SAMtools (v1.19) (Li et al., 2009) and BEDtools
(v2.29.2) (Quinlan and Hall, 2010) to identify and remove human
DNA sequences. The human unmapped reads were then used
for downstream analysis. After filtering, an average of 41 million
150-bp PE reads per sample was obtained, the adapter and low-
quality reads accounted for 1.32% of total reads, and the average
rate of human DNA contamination in all samples was 0.58%
(Supplementary Table S1).

2https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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FIGURE 1 | Schematic overview of the study design and workflow. For more details on each step of the workflow, see Materials and Methods.

Taxonomical Profiling
The taxonomic assignment and abundance estimation were
performed with MetaPhlAn 2.0 (Truong et al., 2015) using
default parameters. MetaPhlAn 2.0 relies on ∼1 million unique
clade-specific marker genes identified from ∼17,000 reference
genomes (∼13,500 bacterial and archaeal,∼3,500 viral, and∼110
eukaryotic genomes) (Truong et al., 2015). This computational
tool provides the relative abundances of each microbial clade
with species-level resolution. The filtered reads were mapped to
all reference genome sequences to determine the presence and
abundance of different taxonomic groups present in human fecal
samples. Given that this study focused on bacterial communities,
downstream analysis was performed on bacterial taxa.

Microbial Gene Richness Assessment
Filtered reads were mapped against the integrated gene catalog
(IGC) (Li et al., 2014) using the bwa software (Li and Durbin,
2009). Gene richness was measured as the total number
of different genes present in the sample regardless of their
abundance and length. A minimum of one filtered mapped read
was set to consider the presence of a gene, as described previously
(Guillen et al., 2019).

Functional Genes and Pathway Analysis
Metagenomics functional analysis was performed using the
HMP Unified Metabolic Analysis Network 2 (HUMAnN2),

which identifies the species profile from metagenomic shotgun
sequencing data and aligns reads to their pan-genomes, performs
translated search on unclassified reads, and quantifies gene
families and pathways (Franzosa et al., 2018). By default, gene
families were annotated using a comprehensive protein database
UniRef90 (Suzek et al., 2015) and metabolic pathways using
MetaCyc database (Caspi et al., 2016). The UniRef90 gene family
abundance from HUMAnN2 was then regrouped to Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and
Goto, 2000) orthology (KO). To gain a comprehensive profile
of functional pathways, the filtered reads were further mapped
to the KEGG database, which contains more compounds while
having less reactions and pathways than does the MetaCyc
database (Altman et al., 2013).

Characterization of Gut Microbial
Virulome and Resistome
To characterize the presence of bacterial virulence factors genes
and AMR genes, we mapped filtered reads from each sample
against the VFDB (Liu et al., 2019) and the CARD (Alcock
et al., 2020), respectively, using Bowtie2 (v2.3.5.1). The mapped
read segments were estimated using SAMtools idxstats. The
copy number of each gene was estimated by dividing the total
reads mapping to a gene divided by the gene’s length. The
relative abundance of genes was calculated using R function
make_relative in R package funrar (v1.4.1).
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Rarefaction Analysis of Microbiome,
Virulome, and Resistome
Rarefaction curves were generated using R function
rarecurve (R package vegan v2.5.6) to assess the
saturation of samples at different sequencing depth for
recovery of bacterial species, bacterial virulence factors
genes, and AMR genes.

Statistical Analysis
Species richness and Shannon diversity were calculated
using R function estimate_richness. Beta diversity was
measured by Bray–Curtis, weighted UniFrac, and unweighted
UniFrac distances using R package Phyloseq (v1.30.0)
(McMurdie and Holmes, 2013). Samples were clustered
according to their species composition using non-metric
multidimensional scaling (NMDS) approach based on Bray–
Curtis, weighted UniFrac, and unweighted UniFrac distances in
Phyloseq (v1.30.0).

Due to the small sample size in this study, different methods
were used to determine and verify the results obtained from
the other method. Differences in abundance of bacterial species,
pathways, bacterial virulence genes, and AMR genes between
two groups were determined using Wilcoxon rank sum test
with a significance level of <0.05. The linear discriminant
analysis (LDA) effect size (LEfSe) algorithm (Segata et al.,
2011) was used to identify specific bacterial taxa and metabolic
pathways as taxonomic and functional biomarkers and to verify
the Wilcoxon rank sum test. Kruskal–Wallis test was used
to process the dataset with LEfSe alpha values set at 0.05.
The threshold used to consider a discriminative feature for
the logarithmic LDA score was set at >2. The biomarker
discovery was performed at bacterial order, family, genus, and
species levels and all functional levels. All the correlation
analyses were performed using the Spearman’s rank correlation
coefficient (library “psych”; function “corr.test”). Spearman’s
correlation (rho) with p < 0.05 was considered statistically
significant. Statistical correction for multiple testing was not
applied because of the low sample size and the exploratory
focus of this study.

RESULTS

Study Subjects
The study subjects were categorized into case (HIV-1-ART
individuals, n = 13) and control (HIV-1-negative controls, n = 11)
groups. Cases were classified into groups based on median value
(740 cells/mm3) of current CD4+ T-cell counts:≥740 cells/mm3

(n = 7) and <740 cells/mm3) (n = 6).

Influence of Extraction Protocols on
Genomic DNA Quantity and Quality
Fecal samples were randomly selected from cases (n = 3) and
controls (n = 7) to evaluate two gDNA extraction protocols.
Using the same fecal material mass, IHMS Protocol Q produced
significantly higher gDNA yield (p < 0.0001, median DNA

concentration 17.26 times higher) than the QP kit (Figure 2 and
Supplementary Table S2). The 260/280 absorbance ratio was
used to assess the gDNA purity, within an acceptable range of
1.8–2.0 as good-quality DNA. gDNA from the IHMS Protocol
Q had 260/280 ratio ranging from 1.89 to 1.96, whereas four
out of 10 samples extracted from the QP kit had 260/280
ratio below 1.8. The gDNA integrity was assessed with DNA
Integrity Number (DIN) ranging from 1 to 10, where 1 indicates
highly degraded gDNA and 10 represents highly intact gDNA
(Nguyet et al., 2014). No significant difference in DIN values
was found between the two protocols (p = 0.82); however, one
sample with lower 260/280 ratio of 1.55 from the QP kit had
also appreciably low gDIN value of 2.8. Our study indicated
that the IHMS Protocol Q yielded significantly higher gDNA
quantity and more stable gDNA quality than the QP kit. The
remaining 14 samples were therefore extracted by the IHMS
Protocol Q. All samples (n = 24) extracted by the IHMS Protocol
Q were further subjected to shotgun metagenome sequencing and
downstream analysis.

Gut Microbial Composition Between
HIV-1-ART Cases and HIV-1-Negative
Controls
Surprisingly, the average proportion of filtered reads assigned
to known bacterial species accounted for 39.9% of total
reads, less than 0.1% of reads were assigned to archaea
and virus, whereas 60% of reads could not be mapped
to any known reference genome of different taxonomic
groups by MetaPhlAn 2.0 (Supplementary Figure 1a and
Supplementary Table S3). Given that the focus of this study
was on bacterial communities, the downstream analysis was
performed on bacteria only. Intriguingly, the bacterial species-
level richness rapidly reached a plateau for all 24 samples
at less than 5 million reads (Supplementary Figure 1b).
MetaPhlAn 2.0 identified 288 bacterial species in the 24
fecal samples (Supplementary Table S4), belonging to
109 genera, 53 families, 23 orders, 14 classes, and seven
phyla (Figure 3A). Clostridiales and Bacteroidales were
the most abundant orders (Supplementary Figure 2a).
Ruminococcaceae and Bifidobacteriaceae were the most
abundant families; Faecalibacterium and Bifidobacterium
were the most abundant genera (Figures 3B,C). The most
abundant bacterial species observed in all fecal samples was
Faecalibacterium prausnitzii (average relative abundance
15.97% in case group vs. 20.16% in control group), followed
by Bifidobacterium adolescentis (11.17% case vs. 7.11%
control), Collinsella aerofaciens (5.96% case vs. 6.51% control),
and Ruminococcus bromii (4.16% case vs. 6.10% control).
Sixteen species showed average relative abundance above
1% (Figure 3D). However, no significant difference of these
abundant species was found between HIV-1-ART cases and
HIV-1-negative controls.

Despite the small sample size, three families, five genera,
and 13 species biomarkers were identified between the case and
control groups (Figure 3E and Supplementary Figures 2b,c)
using LEfSe biomarker discovery tool. Among the 13 species
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FIGURE 2 | Comparison of the quantity and quality of genomic DNA extracted from QIAamp PowerFecal Pro DNA Isolation kit (QP) and IHMS Protocol Q. (A) DNA
concentration. (B) 260/280 absorbance ratio. (C) DNA Integrity Number.

biomarkers, seven were identified as biomarkers for the case
group and six for the control group (Figure 3E). Wilcoxon
rank sum test was consistent with LDA with two exceptions
(Corynebacterium pseudogenitalium and Streptococcus anginosus)
(Supplementary Table S5A).

The Altered Microbial Diversity in
HIV-1-ART Cases Compared to Negative
Controls
A decreased tendency of microbial richness and Shannon
diversity at species level was observed in HIV-1-ART cases
compared to HIV-1-negative controls, though differences
were not statistically significant (p > 0.05) (Figure 4A). Beta
diversity assessed with Bray–Curtis, unweighted UniFrac,
and weighted UniFrac dissimilarities was significantly
higher in the case group compared to that in the control
group (p = 0.0025, p = 0.0031, p = 0.047, respectively)
(Figure 4B). NMDS with Bray–Curtis distance (Figure 4C)
and UniFrac distances (data not shown) showed no significant
separation between cases and controls, although samples
from cases were more diversely distributed as compared to
controls. Based on IGC analysis, no statistically significant
difference was found in microbial gene richness between
cases and controls.

Microbial Functional Genes and
Pathways in Cases and Controls
To assess the potential functionality of gut microbiota in
HIV-1 infection, microbial genes were annotated and analyzed
using different databases and functional systems: KEGG and
MetaCyc pathways, KO. We found that 94.6% of filtered
reads were unmapped or unintegrated against the KEGG
database. The most abundant KEGG pathways identified in
this study were biosynthesis of ansamycins (ko01051), valine,
leucine and isoleucine biosynthesis (ko00290), ribosome
(ko03010), D-Glutamine, and D-glutamate metabolism
(ko00471) (Supplementary Figure 3a). Similarly, 95.4%
of filtered reads were unmapped or unintegrated against

the MetaCyc pathway database; the top MetaCyc pathways
were adenosine ribonucleotide de novo biosynthesis (PWY-
7219) (MetaCyc pathways class: nucleoside and nucleotide
biosynthesis), UMP biosynthesis (PWY-5686) (nucleoside
and nucleotide biosynthesis), UDP-N-acetylmuramoyl-
pentapeptide biosynthesis II (lysine-containing) (PWY-6386)
(cell structure biosynthesis), L-isoleucine biosynthesis I (from
threonine) (ILEUSYN-PWY) (amino acid biosynthesis),
pyruvate fermentation to isobutanol (PWY-7111) (generation
of precursor metabolites and energy), and L-valine biosynthesis
(VALSYN-PWY) (amino acid biosynthesis) (Supplementary
Figure 3b). No statistically significant difference of these main
pathways was found between the case and control groups.
We found that one MetaCyc pathway, Bifidobacterium shunt
(P124-PWY), also known as fructose-6-phosphate pathway, was
statistically significantly enriched in the case group compared
to the control group (Supplementary Table S5B). Additionally,
the microbial communities in the case group were significantly
enriched in genes encoding for enzymes such as xylulose-5-
phosphate/fructose-6-phosphate phosphoketolase (K01621),
which is key enzyme in fructose-6-phosphate pathway, as
well as pyridoxamine 5’-phosphate oxidase (K00275), and
dihydropteroate synthase (K00796) (Supplementary Table S5C).

Association Between Gut Microbiome
and CD4 + T-Cell Counts
The relative abundance of bacterial species, functional genes,
and pathways in relation to the CD4 + T-cell counts were
analyzed by LDA, Wilcoxon rank sum test, as well as Spearman’s
correlation analysis. LDA identified five species biomarkers
(shown in Supplementary Figure 4 including Lactococcus lactis)
for the lower CD4 + T-cell counts (LC) group and one
(Alistipes putredinis) for the higher CD4 + T-cell counts (HC)
group. Wilcoxon rank sum test was consistent with LDA
with two exceptions (Supplementary Table S6A). Consistently,
A. putredinis was positively correlated to both nadir CD4 + T-
cell count (rho = 0.603, p = 0.0290) and current CD4 + T-
cell count (rho = 0.779, p = 0.0017), while Lactococcus
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FIGURE 3 | Bacterial composition and difference between HIV-1-antiretroviral therapy (ART) individuals (cases) and HIV-1-negative controls. (A) Taxonomic tree of
bacterial taxa identified in this study. Each dot represents a taxonomic entity. From the inner to outer circles, the taxonomic levels range from phylum to species.
Different colors of dots indicate different taxonomy levels according to the color key shown. Numbers in parentheses indicate the total number of unique taxonomies
at each taxonomic level. (B,C) Barplots of main bacterial taxa at family and genus levels between cases and controls (average abundance >1% in either group).
Main taxa at order level are shown in Supplementary Figure 2. (D) Heat map of abundant bacterial species (average abundance >1%) among individuals between
cases and controls. The relative abundance of bacterial species is represented by a color gradient as indicated. The species were ordered by decreasing relative
abundance. (E) Species biomarkers identified by linear discriminative analysis (LDA) effect size (LEfSe) analysis between cases (in red) and controls (in green). LDA
scores (log 10) for the enriched species in controls are represented on the positive scale, while LDA-negative scores indicate enriched species in cases. The
threshold used to consider a discriminative feature for the LDA score was set at >2. Taxonomic biomarkers at higher levels are shown in Supplementary Figure 2.

lactis was inversely correlated to nadir CD4 + T-cell count
(rho = −0.733, p = 0.0044) and current CD4 + T-cell count
(rho = −0.717, p = 0.0058) using Spearman’s correlation analysis
(Figure 5A). The total ART duration was positively correlated to
Ruminococcus lactaris (rho = 0.580, p = 0.0375) while inversely
correlated to Streptococcus sanguinis (rho = −0.638, p = 0.0191),
Streptococcus gordonii (rho = −0.554, p = 0.0497), Megamonas
unclassified (rho = −0.620, p = 0.0237), and Aggregatibacter
unclassified (rho =−0.559, p = 0.0470) (Figure 5A).

LDA identified one MetaCyc pathway biomarker, i.e.,
phosphopantothenate biosynthesis I (PANTO-PWY) among
patients in the lower current CD4 + T-cell counts (LC) group
compared to those with higher current CD4 + T-cell counts
(HC) group (data not shown). Using Wilcoxon rank sum test,
22 additional MetaCyc pathways and one KEGG pathway
chlorocyclohexane and chlorobenzene degradation (ko00361)
were found to be significantly enriched in the LC group

(Supplementary Tables S6B,C). At the gene family level, 57 KOs
with characterized function were found to be significantly
different between LC and HC groups (Supplementary
Table S6D). The Spearman’s correlation analysis showed
that three MetaCyc pathways were inversely correlated to
both nadir and current CD4 + T-cell counts (Figure 5B).
Of these, phosphopantothenate biosynthesis I (PANTO-
PWY) showed strongly inverse correlations with both nadir
CD4 + T-cell count (rho = −0.784, p = 0.0015) and current
CD4 + T-cell count (rho = −0.780, p = 0.0017). Consistently,
phosphopantothenate biosynthesis I (PANTO-PWY) and
glycerol degradation to butanol (PWY-7003) pathways were
significantly enriched in the LC group (p = 0.0012 and p = 0.0082,
respectively) by Wilcoxon rank sum test (Supplementary
Table S6B). These data suggested that MetaCyc pathways
related to phosphopantothenate biosynthesis I and glycerol
degradation to butanol were associated with low CD4 + T-cell
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FIGURE 4 | Alpha and beta diversity of bacterial species between cases and controls. (A) Alpha diversity assessed by observed species richness and Shannon
diversity. (B,C) Beta diversity assessed with Bray–Curtis, weighted UniFrac, unweighted UniFrac dissimilarities, as well as non-metric multidimensional scaling
(NMDS) based on Bray–Curtis distance. ∗Statistically significant.
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FIGURE 5 | Correlation analysis of gut microbiome and clinical variables. Correlations between clinical variables and bacterial species (A), MetaCyc pathways (B),
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (C), virulence factors genes (D), and antimicrobial resistance genes (E). Spearman’s correlation rho
values are represented by color gradient as indicated (red is for positive, green is for negative correlation). Only statistically significant correlations (p < 0.05) are
shown on the plots.

count. We also observed correlations between three KEGG
pathways and CD4 + T-cell counts (Figure 5C). For instance,
linoleic acid metabolism pathway (ko00591) was inversely
correlated to both nadir CD4 + T-cell count (rho = −0.630,
p = 0.0211) and current CD4 + T-cell count (rho = −0.577,
p = 0.0391), which was consistent with an earlier study
(Vesterbacka et al., 2017).

Difference of Bacterial Virulence Factors
and Antimicrobial Resistance Genes
Between Cases and Controls
We identified multiple bacterial virulence factors genes and
AMR genes in the full dataset (Supplementary Tables S7, S8).
It is noteworthy that more than 200 virulence factor genes
were detected exclusively in HIV-1-ART cases, though their
relative abundance was low. These genes encode critical bacterial
virulence factors such as adhesion, toxin, hemolysin, type III
secretion system, etc. (Supplementary Table S7). We found
that 173 AMR genes were present in cases only; in addition,
cases were significantly enriched in genes associated with
tetracycline antibiotic resistance and antibiotic efflux pumps
(p < 0.05) (Supplementary Table S8). Rarefaction analysis

showed that sequencing depth critically affected the recovery
of bacterial virulence factors genes and AMR genes, which was
dramatically different from taxonomic profiling. A sequencing
depth of 57 million reads per sample was insufficient to capture
full spectrums of bacterial virulence factors genes and AMR
genes in human fecal samples in this study (Supplementary
Figures 5a,b).

We observed correlations between virulence factors genes,
AMR genes, and clinical variables (Figures 5D,E). Both current
and nadir CD4 + T-cell counts were correlated inversely to
virulence genes encoding 6-phosphogluconate dehydrogenase
(gnd), E. coli common pilus structural subunit EcpA (ecpA),
ferrienterobactin outer membrane transporter (fepA), and
oxygen-independent coproporphyrinogen III oxidase (chuW)
(Figure 5D). While nadir CD4 + T-cell count was inversely
correlated to several important virulence genes such as type
VI secretion system ATPase TssH (tssh) (rho = −0.625,
p = 0.0224), fimbria adhesin EcpD (ecpD) (rho = −0.596,
p = 0.0317), type II secretion system protein L (gspL)
(rho = −0.702, p = 0.0074), polysialic acid transport protein
KpsM (kpsM) (rho = −0.588, p = 0.0346), and enterobactin
synthase component E (entE) (rho = −0.556, p = 0.0483).
Additionally, current CD4 + T-cell count was inversely
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correlated to genes encoding outer membrane usher protein
EcpC (ecpC) (rho = −0.652, p = 0.0157), type II secretion
system protein C (gspC) (rho = −0.765, p = 0.0023),
permease of iron compound ABC transport system (shuU)
(rho = −0.592, p = 0.0330), and type 1 fimbriae regulatory
protein FimB (fimB) (rho = −0.584, p = 0.0362). Our
study also indicated that HIV-1 infection is correlated to
changes in AMR genes. Both current and nadir CD4 + T-
cell counts were inversely correlated to genes associated with
beta-lactam antibiotic resistance (TEM-108 and TEM-219) and
peptide antibiotic resistance (icr-Mo and ugd) (Figure 5E).
While nadir CD4 + T-cell count was inversely correlated
to tetracycline antibiotic resistance gene tetX (rho = −0.694,
p = 0.0085), current CD4 + T-cell count was inversely
correlated to mdtA (rho = −0.624, p = 0.0226), which encodes
for resistance-nodulation-cell division (RND) antibiotic efflux
pump, and glycopeptide resistance gene vanWG (rho = −0.584,
p = 0.0362). Total ART duration was strongly positively
correlated to aminoglycoside antibiotic resistance gene APH(3’)-
Ia (rho = 0.725, p = 0.0050).

DISCUSSION

In this study, we set up a standard shotgun metagenomics
workflow through methodologies assessment including sample
preparation in order to get a precise gut microbiome profile.
We did a literature review and selected and evaluated two
fecal DNA extraction protocols that performed better than
other methods used in gut microbiome studies (Angebault
et al., 2018; Lim et al., 2018; Fiedorova et al., 2019). We
found the IHMS Protocol Q yielded significantly higher gDNA
quantity and more stable gDNA quality than the commercial
kit QP. It is possible that different gDNA quantity and
quality may have an impact on the microbial structures and
downstream analysis; further studies are warranted to investigate
this. Notably, we found that only ∼40% of the total reads
were assigned to known microbial taxa, whereas 60% of
the reads could not be mapped to any known taxonomic
group by MetaPhlAn 2.0. This was in line with previous
studies estimating that approximately 40–60% of human gut
microbes cannot be captured by current genome-based methods,
despite the considerable efforts that have been made to culture
and sequence members of the gut microbiome (Sunagawa
et al., 2013; Nayfach et al., 2019). We assessed the shotgun
metagenome sequencing depth required for characterizing
human gut microbiome at microbial species and gene level.
We found that less than 5 million reads per sample were
sufficient to achieve almost a full bacterial composition, whereas
an increasing number of microbial genes, including virulence
factors genes and AMR genes, were still being recovered at a
sequencing depth of 57 million reads. This finding is consistent
with a recent metagenomics study performed on animal and
environmental samples, indicating that taxonomic profiling
is much more stable to sequencing depth than AMR gene
content (Gweon et al., 2019). To the best of our knowledge,
this is the first study depicting the shotgun metagenome

sequencing depth requirement for simultaneously characterizing
gut microbiome, virulome, and resistome in human fecal
samples. Our findings will facilitate the selection of appropriate
sequencing depth for human gut microbiome studies to obtain
reliable results.

Accumulating studies, including ours, have shown that HIV-1
infection is associated with gut dysbiosis, reduced alpha diversity,
and increased beta diversity of microbiota (Nowak et al., 2015;
Kang and Cai, 2019; Flygel et al., 2020), which may persist
after ART assumption (Vujkovic-Cvijin et al., 2013; Vazquez-
Castellanos et al., 2015; Ji et al., 2018). Despite the study
limits, e.g., small sample size and lack of treatment-naive HIV-1
patients, we observed similar microbiota alteration in HIV-1-
ART individuals compared to negative controls. It should be
noted that previous studies were mostly based on 16S rRNA
gene sequencing, which can profile microbiota at the genus
level. Our data showed similar changes of microbial diversity in
HIV-1-infected individuals at the species level. We found that
several bacterial species were significantly enriched in HIV-1-
ART individuals. Three of these species, at their higher taxonomic
level (i.e., Peptostreptococcus, Erysipelotrichaceae, and Dorea),
have earlier been reported to be enriched in HIV-1-infected
subjects (McHardy et al., 2013; Vujkovic-Cvijin et al., 2013; Dinh
et al., 2015; Ling et al., 2016), indicating the potential role of these
bacteria in HIV-1 pathogenesis.

To date, only a few studies have investigated functional
genes and pathways in microbial communities and their roles in
HIV-1 infection using whole metagenome sequencing (Vazquez-
Castellanos et al., 2015; Lu et al., 2018; Guillen et al., 2019;
Rocafort et al., 2019). None of these studies has assessed the
proportion of functionally characterized genes in the samples.
Remarkably, we found that more than 94% of filtered reads
were unmapped or unintegrated against two established pathway
databases, which was in line with a previous study using
similar methods (Abu-Ali et al., 2018). These data suggest
that most microbial genes in human feces remain functionally
unknown. We found that “Bifidobacterium shunt,” also known
as fructose-6-phosphate pathway, was significantly enriched in
the case group. Consistently, gene encoding for the key enzyme
in this pathway, i.e., xylulose-5-phosphate/fructose-6-phosphate
phosphoketolase, which plays a key role in carbohydrate
metabolism in a number of bacteria, was also enriched in the
case group. This may indicate the potential role of the fructose-
6-phosphate pathway in HIV-1 infection. Further larger studies
with matched groups are essential to confirm this and unravel the
potential underlying mechanisms.

We observed correlations between CD4 + T-cell count and
gut microbiome in HIV-1-ART patients. For instance, both
current and nadir CD4 + T-cell counts were inversely correlated
to linoleic acid metabolism pathway, which is corroborated
by previous findings that the fatty acid metabolism has an
important role in the regulation of immune responses and
immunological diseases (Yaqoob, 2003; Hosomi et al., 2020).
Additionally, both current and nadir CD4 + T-cell counts were
inversely correlated to pathways related to phosphopantothenate
biosynthesis I, myo-inositol degradation I, glycerol degradation
to butanol, implying that these pathways might play a role in
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the mechanism of immune cell regulation in HIV-1 infection.
A previous study indicated that the microbial shift associated
with immune deficiency in HIV-1 infection was related to
increased bacterial virulence factors and AMR genes in the
gut microbiome (Guillen et al., 2019). Consistently, we found
important bacterial virulence factors such as adhesion, toxin,
hemolysin, type III secretion system encoding genes that were
exclusively present or enriched in the HIV-1-ART patients.
AMR genes associated with tetracycline antibiotic resistance
were significantly enriched in the case group. Several virulence
factors genes and AMR genes were found to be correlated to
CD4 + T-cell count and total ART duration. It is notable that
the total ART duration was strongly positively correlated to
abundance of aminoglycoside antibiotic resistance gene APH(3’)-
Ia. We did not have access to earlier antibiotic treatment
in HIV-1-ART individuals, but it is not unlikely that a
more frequent use of antibiotics preceding the study in these
patients could have contributed to these findings. Further
studies are needed to validate the associations between HIV-
1 infection, degree of immunodeficiency, and gut microbiome
observed in this study.

We acknowledge limitations in this study. First, it is an
exploratory microbiome study using deep shotgun metagenome
sequencing on a small sample size, as its purpose was mainly
to set up a standard whole metagenomics pipeline, thereby
characterizing the gut microbiome profile associated with HIV-
1 infection at the bacterial species and functional levels. Second,
previous studies indicated that antiretroviral drugs themselves
may impact the gut microbiota (Nowak et al., 2015; Ray et al.,
2020). Since all HIV-1-infected participants in this study were
on ART at the time of sampling, we could not differentiate
the effect of ART and HIV-1 infection itself, respectively, on
gut microbiome dysbiosis. Third, the associations between gut
microbiome alteration and HIV-1 infection might be cofounded
by factors such as gender, age, and sexual preference, which were
not evaluated due to the small sample size. It should be noted
that the gender difference in cases and controls might also be
a confounder. In addition, it is difficult to identify microbial
differences in composition and functions associated with disease
status, as such differences can be partly due to genetic diversity
among the human samples (Goodrich et al., 2014; Tierney et al.,
2019). Furthermore, statistical correction for multiple testing was
not applied because of the low sample size and the exploratory
focus of the study. Therefore, further longitudinal studies on a
larger scale of treatment-naive patients before and after ART,
with matched groups by other confounders, are essential to
validate our findings.

In conclusion, we set up whole metagenomics workflows
and characterized gut microbiome in HIV-1-infected individuals
on ART. The results indicate that gut dysbiosis in HIV-1
infection is potentially associated with changes in bacterial
composition, functional genes and pathways, as well as gut
microbial virulome and resistome. Further studies are essential
to validate these findings and to evaluate potentially unmeasured
confounders that might impact the gut microbiome. The
methodological assessment shows that different DNA extraction
protocols significantly affect the gDNA quantity and quality, and

metagenome sequencing depth critically affects the recovery of
microbial genes including bacterial virulence factors genes and
AMR genes in human metagenomic samples. These findings will
support the design of future human gut microbiome studies,
particularly when virulome and resistome are of study interest.
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