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Abstract: Bile acids (BAs) are a group of amphiphilic molecules consisting of a rigid steroid core
attached to a hydroxyl group with a varying number, position, and orientation, and a hydrophilic
side chain. While BAs act as detergents to solubilize lipophilic nutrients in the small intestine
during digestion and absorption, they also act as hormones. Farnesoid X receptor (FXR) is a nuclear
receptor that forms a heterodimer with retinoid X receptor α (RXRα), is activated by BAs in the
enterohepatic circulation reabsorbed via transporters in the ileum and the colon, and plays a critical
role in regulating gene expression involved in cholesterol, BA, and lipid metabolism in the liver.
The FXR/RXRα heterodimer also exists in the distal ileum and regulates production of fibroblast
growth factor (FGF) 15/FGF19, a hormone traveling via the enterohepatic circulation that activates
hepatic FGF receptor 4 (FGFR4)-β-klotho receptor complex and regulates gene expression involved in
cholesterol, BA, and lipid metabolism, as well as those regulating cell proliferation. Agonists for FXR
and analogs for FGF15/19 are currently recognized as a promising therapeutic target for metabolic
syndrome and cholestatic diseases.
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1. Introduction

Bile acids (BAs) are amphipathic steroidal molecules produced mainly in the liver and
partly in extrahepatic tissues, including macrophages and the brain. BAs are biosynthesized
via a series of enzymatic reactions in the liver, stored in the gallbladder, and postprandially
released into the small intestine as a detergent to facilitate digestion and absorption of fat-
soluble nutrients. BA biosynthesis is also crucial for cholesterol catabolism and responsible
for approximately 90% of daily cholesterol disposal in the body [1]. Hepatocytes synthesize
primary BAs, such as cholic acid (CA), in both humans and mice, chenodeoxycholic acid
(CDCA) in humans, and muricholic acid (MCA) in mice, and almost all primary BAs are
conjugated with glycine (humans) or taurine (rodents) to increase solubility and stored
in the gallbladder as bile salts. These primary BAs are converted to secondary BAs, such
as deoxycholic (DCA) acid, lithocholic acid (LCA), and ursodeoxycholic acid (UDCA), by
deconjugation and dehydroxylation enzymes in the enterobacteria during travel via the
intestinal tract. BAs are mostly reabsorbed through various transporters expressed in the
distal ileum. BAs are subsequently transported back to the liver via portal vein circulation
as deconjugated primary BAs or secondary BAs and conjugated again for recycling. BAs in
portal vein circulation also play multiple roles as endocrine hormones in the liver. To date,
BAs have been shown to activate farnesoid X receptor (FXR) [2–4], vitamin D receptor [5],
pregnane X receptor [6], Takeda G protein-coupled receptor 5 [7], sphingosine-1-phosphate
receptor 2 [8], and M2 muscarinic acetylcholine receptor [9]. Among those receptors, FXR
has been most extensively studied as it is the first-identified BA receptor, can be activated
by different BA species, induces gene expression beneficial for our health, and has potential
to develop novel interventions for liver disease.

FXR is also expressed in the distal ileum where BAs are actively reabsorbed and
induce fibroblast growth factor (FGF) 15 (rodents) and FGF19 (non-rodents, including
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humans) expression, in addition to BA transporters. Furthermore, FGF15/19 is delivered
to the liver via portal vein circulation and activates the receptor complex of FGF receptor 4
(FGFR4)-β-klotho (KLβ), an obligate co-receptor for FGF15/19 [10–14]. Collectively, BAs
have two signaling pathways from the ileum to the liver, namely the direct pathway and the
FGF15/19-dependent pathway. These signaling pathways are occasionally misinterpreted
as stimulations with BAs and FGF15/19 elicit similar responses in hepatocytes. For example,
both BAs and FGF15/19 increase levels of a small heterodimer partner (SHP) to suppress
cytochrome P450 7A1 (CYP7A1) levels in the liver [15–22], of which differences between
signaling pathways have received little research attention. The present review aims to
explore FXR in the liver and ileum, focusing on the molecular basis of the FXR-FGF15/19
axis in BA signaling.

2. BA Biosynthesis

BAs are the major component in bile and contain a cholanic acid-backbone. BAs
have both hydrophobic and hydrophilic properties and play a central role in emulsifying
hydrophobic compounds, such as lipids, cholesterol, and fat-soluble vitamins to help
absorption in the intestine [23]. There are over 30 different BA species in humans and
rodents possessing multiple hydroxyl groups with different distribution and orientation,
which determine potency of each BA [24,25]. BAs are biosynthesized mainly in the liver,
called primary BAs, via oxidation, reduction, epimerization, translocation of the side chain,
and conjugation of glycine or taurine to cholesterol catalyzed by 17 enzymes located in
the endoplasmic reticulum, mitochondria, cytoplasm, and peroxisomes either through
the primary pathway or alternative pathways [26]. Secreted BAs from the gallbladder are
converted to different BA species, called secondary BAs, by gut microbiota during travel
via the intestines [27].

2.1. Classic Pathway

The classic pathway is the principal cascade of BA synthesis (Figure 1), which is
responsible for producing more than 90% of the BA pool in humans [28]. The first step
is adding the 7α-hydroxyl group to cholesterol to produce 7α-hydroxycholesterol, which
is performed by a cytochrome P450 (CYP) member, CYP family 7 subfamily A member 1
(CYP7A1), located in the liver microsome. This reaction is considered to be the rate-limiting
step of this pathway and is also critical for cholesterol catabolism. In fact, both CYP7A1
deficiency in humans and CYP7A1 knockout mice exhibited hypercholesterolemia and
reduced fecal BA levels [29,30]. This step is followed by catalyzation by 3-β-hydroxy-
∆5-C27-steroid dehydrogenase (HSD3B7) to produce 7α-hydroxy-4-cholesten-3-one (C4).
Quantifying peripheral blood C4 levels is a non-invasive method for monitoring hepatic
CYP7A1 activity, as peripheral blood C4 levels are strongly correlated with CYP7A1 en-
zymatic activity [31,32]. This compound receives 12α-oxidation in a CYP8B1-dependent
manner, followed by side-chain oxidation by CYP27A1 and cleavage to produce CA. Alter-
natively, the compound can undergo aldo-keto reduction in an aldo-keto reductase (AKR1)
D1- or AKR1C4-dependent manner, followed by side-chain oxidation with CYP27A1 and
side-chain cleavage to produce CDCA. Finally, BA-CoA synthetase (BACS) and BA coen-
zyme A: amino acid N-acyltransferase (BAAT) catalyze conjugation of these BAs to glycine
(humans) or taurine (rodents) [33]. CDCA is further converted to α-muricholic acid (MCA),
followed with β-MCA by CYP2C70, which exists only in small rodents including mice [34],
then finally undergoes taurine conjugation to be completed as tauro-β-MCA (t-β-MCA).



Int. J. Mol. Sci. 2022, 23, 6046 3 of 20Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 3 of 22 
 

 

 
Figure 1. BA biosynthesis pathways in humans and mice. The classic bile acid biosynthesis pathway 
begins with converting cholesterol to 7α-hydroxycholesterol by CYP7A1 and subsequent conver-
sion to C4. C4 is then converted to CA or CDCA by multiple enzymes including CYP8B1 and 
CYP27A1. CA and CDCA are then conjugated with taurine (t-) or glycine (g-) by BACS and BAAT. 
In mice, CDCA is further converted to α-MCA, then β-MCA by CYP2C70, which is not present in 
humans. Alternative pathways are initiated by CYP27A1 in the liver, macrophages, and the adrenal 
gland, cholesterol 25-hydroxylase (CH25H) in the liver and CYP46A1 in the brain. Products of the 
first two pathways are further converted by CYP7B1 to different steroidal compounds to produce 
BAs, oxysterols, and steroid hormones. The last pathway is involved in regulating cholesterol levels 
in the brain and the final product by CYP39A1 is delivered to the liver for BA synthesis. Red boxes 
indicate enzymes and BAs in both humans and mice, blue boxes indicate BAs mainly in humans, 
and green boxes indicate enzymes and BAs existing only in mice. 

2.2. Alternative Pathway 

As shown in Figure 1, the alternative pathways involve three different BA biosynthe-
sis cascades [35]. Each pathway is primarily regulated by CYP27A1 [36], cholesterol 25-

Figure 1. BA biosynthesis pathways in humans and mice. The classic bile acid biosynthesis pathway
begins with converting cholesterol to 7α-hydroxycholesterol by CYP7A1 and subsequent conversion
to C4. C4 is then converted to CA or CDCA by multiple enzymes including CYP8B1 and CYP27A1.
CA and CDCA are then conjugated with taurine (t-) or glycine (g-) by BACS and BAAT. In mice,
CDCA is further converted to α-MCA, then β-MCA by CYP2C70, which is not present in humans.
Alternative pathways are initiated by CYP27A1 in the liver, macrophages, and the adrenal gland,
cholesterol 25-hydroxylase (CH25H) in the liver and CYP46A1 in the brain. Products of the first
two pathways are further converted by CYP7B1 to different steroidal compounds to produce BAs,
oxysterols, and steroid hormones. The last pathway is involved in regulating cholesterol levels in the
brain and the final product by CYP39A1 is delivered to the liver for BA synthesis. Red boxes indicate
enzymes and BAs in both humans and mice, blue boxes indicate BAs mainly in humans, and green
boxes indicate enzymes and BAs existing only in mice.

2.2. Alternative Pathway

As shown in Figure 1, the alternative pathways involve three different BA biosyn-
thesis cascades [35]. Each pathway is primarily regulated by CYP27A1 [36], choles-
terol 25-hydroxylase (CH25H), a non-cytochrome P450 enzyme [37], or CYP46A1 [38].
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The CYP27A1-regulated pathway is initiated by converting cholesterol into (25R)-26-
hydroxycholesterol by CYP27A1 and hydroxylation as the second reaction by CYP7B1
to produce (25R)-7α,26-dihydroxycholesterol, which is finally converted into CDCA in the
liver [37]. These enzymes are also expressed in extrahepatic steroidogenic tissues including
the adrenal gland for steroid hormone production and macrophages for oxysterol synthesis.
Abundantly circulating oxysterols, such as 24-hydroxycholesterol, 25-hydroxycholesterol,
and 27-hydroxycholesterol can be transported into the liver for conversion into CDCA and
CA [37]. CH25H is expressed in the liver and converts cholesterol to 25-hydroxycholesterol,
followed by conversion to 7α, 25-dihydroxycholesterol by CYP7B1. CYP46A1 (choles-
terol 24-hydroxylase) is almost exclusively expressed in the brain and plays a critical
role in cholesterol turnover, primarily converting cholesterol to 24S-hydroxycholesterol
to release into circulation by passive diffusion across the blood–brain barrier [39]. 24S-
hydroxycholesterol in the circulation is then associated with high-density lipoprotein (HDL)
and low-density lipoprotein (LDL) [40], incorporated in the liver and metabolized into
BAs [41,42]. Although Cyp7a1 and Cyp27a1 double-deficient mice exhibit a largely re-
duced BA pool size, they still retain a significant amount of BA species, including CA
and CDCA, combined with similar expression patterns to WT mice for genes involved
in BA regulation, synthesis, conjugation, and transport [43,44]. These data suggest that
both CH25H and CYP46A1 significantly compensate for BA production in the absence of
CYP7A1 and CYP27A1.

2.3. Metabolism of BA by Gut Microbiota

In the intestinal tract, primary BAs are converted into secondary BAs by the gut micro-
biota (Figure 2). In fact, eradicating gut microbiota by administering ampicillin significantly
reduces DCA levels in the BA pool and fecal excretion of BA in humans [45,46]. Although
DCA and LCA are the most abundant secondary BAs, approximately 50 secondary BA
species have been detected in human feces [47]. Here, we mainly deal with DCA, LCA,
ursocholic acid (UCA), and UDCA, the most abundant secondary BAs in both humans and
mice, and several excellent reviews highlight the roles of gut microbiota in transforming
other secondary BAs [27,48–50]. The first modification step involves deconjugation of
glycine or taurine by bile salt hydrolases (BSHs) [51]. BSHs are found in almost all known
major phyla of gut microbiota, including Bacteroidetes, Firmicutes, Actinobacteria, and Pro-
teobacteria [52], most of which reside in the ileum and large intestine [27]. The 7α-hydroxy
group is then removed by a series of enzymatic reactions from deconjugated CA and CDCA
for DCA and LCA, respectively, in humans. The enzymes responsible for 7α-hydroxylation
exist only in a few bacteria in Clostridium spp. and are named Bai enzymes due to their
encoding by bile acid-inducible (bai) operon [27,53]. CA and CDCA are also converted
to UCA and UDCA, respectively, from 7α-hydroxysteroid dehydrogenase (HSDH) and
7β-HSDH activities [27,48,54]. Eggerthella lenta strains contain 7α-HSDH and convert CA
to 7-oxo-DCA, which is further converted to DCA by 7β-HSDH in Clostridium spp. [55].
Eggerthella lenta also possesses 3α- and one 3β-HSDH for converting DCA to isoDCA to
reduce gut bacteria toxicity [56]. These HSDHs also convert LCA to 3-exoLCA and isoLCA,
both of which modulate Th17 populations in mice [57,58].

2.4. Recycling of BA

BAs traveling via the intestinal tract are actively transported into the portal circulation
via the apical sodium-bile acid transporter (ASBT), mainly in the apical brush border of ente-
rocytes in the ileum and colon [59], whereby ASBT mutations can cause idiopathic intestinal
disorder by primary BA malabsorption [60,61]. Approximately 95% of BAs reabsorbed
into the body and only approximately 5% of remainders undergo fecal elimination [62].
Inside the enterocytes, ileal bile acid-binding protein (IBABP) facilitates BA transport from
the apical to basolateral side of the cell [63]. IBABP deficiency indeed impairs apical to
basolateral transport of BAs in ileal enterocytes [64]. Organic solute transporter (OST) α
and β in the basolateral membrane of enterocytes transport BAs from enterocytes into
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portal vein circulation for delivery to the liver [63,65,66]. In the liver, Na+-taurocholate co-
transporting polypeptide (NTCP) incorporates BAs from portal circulation into hepatocytes
in a Na+-dependent manner [63,67–69], while organic anion-transporting polypeptide 1B1
(OATP1B1) and OATP1B3 recover BAs in a Na+-independent manner [63,70]. Reabsorbed
BAs are simply conjugated again mostly with glycine in humans, while some secondary
BAs, such as DCA, are 7α-hydroxylated again by CYP2A12, a non-human enzyme, prior
to taurine conjugation in mice. These BAs are secreted into the canaliculus through ABC
transporters for gallbladder delivery [71] and released into the duodenum with de novo
synthesized BAs. Approximately 20% of the BA pool is occupied by DCA in human bile
due to the absence of CYP2A12 [72], while only less than 1% of DCA is detected in the
murine BA pool [73].
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Figure 2. Secondary BA biosynthesis. Primary BAs are initially deconjugated by BSH, which is
encoded by most gut microbiota. Deconjugated CDCA is then converted to UDCA and by 7α- and
7β-HSDH expressed in different bacteria or LCA by multiple steps of catalytic reactions by Bai
enzymes in Clostridium spp. Deconjugated CA is also converted to UCA by 7α- and 7β-HSDH or
DCA by Bai enzymes.

3. FXR

FXR is a nuclear receptor family consisting of 48 and 49 members in humans and
rodents, respectively, and originally discovered by two independent groups. Seol et al.
isolated two FXR splicing variants as the other part of retinoid X receptor alpha (RXRα)
in the yeast two-hybrid screening library using human RXRα ligand-binding domain as
bait [74]. Forman et al. found a novel orphan receptor by PCR screening using degenerate
primers corresponding to the highly conserved DNA-binding domain of nuclear receptors
in a rat cDNA library and was named according to its activation by farnesol metabolites [75].
In 1999, FXR was finally identified as a BA receptor by three independent groups [2–4].
Most natural BA species can somehow activate FXR and major BA activation is ranked
in order of potency as CDCA > DCA > LCA > CA [76]. However, ASBT presence in the
plasma membrane is necessary, particularly for primary BA species conjugated with glycine
or taurine, since they show higher hydrophilicity than other unconjugated BAs and cannot
cross the plasma membrane via passive transport [5]. In mice, tauro-β-MCA can antagonize
intestinal FXR activity in mice [77,78], while natural human BA or its derivative equivalent
to tauro-β-MCA has not yet been identified.

3.1. FXR Structure

FXR shares common structural features with other NRs. The amino acid sequence
identity of FXR with other NRs reveals it is categorized as an NR1 (thyroid hormone
receptor-like) subfamily member within the seven subfamilies (NR1-7) of the nuclear recep-
tor superfamily. Other NR1 subfamily members include constitutive androgen receptor,
liver X receptor α (LXRα) and β (LXRβ), peroxisome proliferator-activated receptor α
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(PPARα), β/δ (PPARβ/δ), and γ (PPARγ), retinoic acid receptor α (RARα), β (RARβ), and
γ (RARγ), reverse Erb α (Rev-Erbα) and β (Rev-Erbβ), thyroid hormone receptor α (TRα)
and β (TRβ), and vitamin D receptor (VDR). Among them, LXRs, PPARs, RARs, TRs, VDR,
and FXR, form a functional heterodimer with RXRα with their DNA-binding element [79].

There are two FXR genes, FXRα (NR1H4) and FXRβ (NR1H5). FXRα contains four
isoforms produced from the Nr1h4 gene using either exon 1 (isoform 1 and 3) or exon 3
(isoform 2 and 4) for the different N-terminus and either includes (isoform 1 and 2) or
excludes (isoform 3 and 4) an additional 12 bases resulting in insertion of four amino acids
(=YMTG) in the hinge region [80,81]. Although the physiological role of this diversity is
not completely characterized, significant differences were observed in tissue distribution
of these isoforms and expression patterns of the four isoforms are involved in regulating
FXR-dependent expression of target genes [82], BA and lipoprotein metabolism [83], as well
as hepatic lipolysis and fatty acid metabolism [84]. FXRβ exists in human chromosomes as
a pseudogene and the biological function of FXRβ is not well characterized, even in other
species. In this review, we will only discuss FXRα, which hereafter is referred to simply
as FXR.

FXR consists of N-terminal activation of the function-1 (AF-1) domain, the DNA-
binding domain (DBD), the ligand-binding domain (LBD), the C-terminal ligand-dependent
activation of function-2 (AF-2) domain, and the hinge region (H) located between DBD and
LBD as a flexible linker (Figure 3). Although the functions of AF-1 domain in FXR are not
completely understood, AF-1 domain in other NRs is structurally variable and is more sus-
ceptible to post-translational modifications, such as phosphorylation and SUMOylation for
ligand-independent activity regulation [85]. The only evidence regarding functions of AF-1
in FXR identified so far is its interaction with β-Catenin and attenuating β-Catenin/TCF4
complex formation upon ligand binding [86].
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Figure 3. Protein structure of FXR. (A) General structure of nuclear receptors. A typical nuclear
receptor consists of functional domains, such as activation of function 1 domain (AF1), DNA-binding
domain (DBD), hinge region (H), ligand-binding domain (LBD), and activation of function 2 domain
(AF-2). (B) Schematic representation of ligand-FXR-RXRα complex bound to IR1 element. Arrows
indicate the inverted repeats of FXRE. Red pentagon and blue rhombus represent a bile acid molecule
and an RXRα agonist, such as 9-cis-retinoic acid, respectively.

The DBD of FXR consists of two α-helices (H1 and H2) and two Cys4 zinc fingers, and
amino acid sequences of this domain are highly conserved among all NRs. This domain
specifically recognizes the DNA motif called FXR responsive elements (FXREs). FXR in
general forms a heterodimer with RXRα and recognizes inverted repeats of two FXREs sep-
arated by one nucleotide spacer (Figure 3B), called inverted repeat 1 (IR1) [75,87,88] or ev-
erted repeats separated by two or eight nucleotide spacers, called everted repeat 2 or 8 (ER2
or ER8) [89,90]. From genome-wide chromatin immunoprecipitation sequencing (ChIP-seq)
studies on murine liver and ileum, and human primary hepatocytes have revealed that FXR
binds to diverse FXRE architectures with consensus sequences of IR1: 5′-AGGTCANTGACCT-
3′ (palindromic sequences are underlined) and ER2: 5′-TGACCTNNGGGTCA-3′ (everted
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sequences are underlined) [91,92]. A negative FXR responsive element has been identified as
5′-GATCCTTGAACTCT-3′ in the promoter region of apolipoprotein A-I (apoA-I), a major
component of high-density lipoprotein, and expression of apoA-I is repressed following
stimulation with synthetic FXR agonist GW4064 [88]. Patients with progressive familial
cholestatic liver or bile duct-related cholestatic liver disease indeed exhibit reduced serum
apoA-I concentrations. However, the detailed molecular mechanisms behind how the
agonist-bound FXR reduces apoA-I transcription remains unidentified.

The LBD of FXR consists of multiple α-helices (H3-H12) and has a typical ligand-
binding pocket (LBP) observed in most nuclear receptors. LBP volume is approximately
300–400 Å3 when binding to most agonists, while the volume expands up to 1081 Å3 when
FXR binds to the antiparasitic drug ivermectin [93–95]. Amino acid residues composing the
LBP are mostly hydrophobic for stabilizing interactions with the ligand, but also contain
some polar residues for critical hydrogen bond formation for correct ligand orientation
and selectivity. For example, the carboxyl group on the side chain and the hydroxyl group
on carbon-3 (C3) of 6-ECDCA form a hydrogen bond with Arg328 on H5 and His444 on
H10/11 of FXR, respectively, for correct orientation. Interestingly, the hydroxyl group on
C3 of 24(S),25-epoxycholesterol forms a hydrogen bond with Arg319 on H5 of LXRβ and
this difference makes orientation of both ligands completely opposite to their receptors,
despite the structural similarity between these ligands [96–98]. Upon agonist binding, FXR
is allowed to interact simultaneously with two coactivators through intermolecular contact
with the LXXLL sequence motif by altering the position of H12 in the AF2 domain. The
ligand sensor assay using surface plasmon resonance showed that LBD in a liganded state
with CDCA or its conjugates increased affinity to a peptide of coactivator SRC1 containing
LXXLL sequence motif approximately ten times higher than an unliganded state [99]. When
FXR binds to an antagonist, such as ivermectin, H12 increased its flexibility and dynamics
to become invisible in the crystal structure, and only deformed H11 associated with NCoR
peptide was observed.

3.2. Liver- and Ileum-Specific Function of FXR

FXR is widely distributed in tissues, such as liver, intestines, kidney, and adrenal gland.
In the kidney, FXR is abundantly expressed in the proximal tubules and induces aquaporin
2 levels to decrease urine osmolarity [100], playing a beneficial role against acute kidney
injury [101]. In the adrenal gland, FXR contributes to glucocorticoid synthesis [102]. How-
ever, the detailed functions of FXR in these tissues has not been completely characterized,
thus we focus on hepatic and intestinal functions.

BA biosynthesis is an important part of cholesterol catabolism and impaired regulation
of BA metabolism can disrupt cholesterol metabolism, resulting in serious health damage.
Indeed, FXR knockout mice exhibit elevated serum BA, triglycerides, total cholesterol, LDL,
and HDL, as well as increased hepatic cholesterol and triglycerides, particularly in mice on
high-cholesterol diets [103]. Based on the fact that active FXR reduces Cyp7a1 expression
and subsequent CYP7A1-dependent conversion from cholesterol to BA, phenotypes ob-
served in FXR knockout mice appear to contradict our expectations, except for elevated
BA levels. The hypercholesterolemia is actually explained by evidence that FXR activation
inhibited phosphorylation levels of jun N-terminal kinase (JNK) to elevate mRNA levels
of ABCG5, ABCG8, and scavenger receptor B1 (SR-B1) levels through HNF4α elevation,
resulting in increased HDL uptake into the liver [104,105]. Regarding hyperlipidemia, FXR
overexpression suppresses mRNA levels of SREBP-1c, PEPCK, and G6Pase in the liver to
reduce plasma free fatty acid levels to subsequently improve insulin resistance in db/db
mice [105]. FXR is thus considered the pharmaceutical target for developing drugs for
non-alcoholic steatohepatitis (NASH) and non-alcoholic fatty liver disease (NAFLD), and
synthetic agonists, such as obeticholic acid, tropifexor, cilofexor, EDP-305, and MET-409
have been developed and used in clinical practice or under clinical trials [106–108].

FXR also plays a critical role in the ileum to regulate BA transport from the enterocyte
to enterohepatic circulation by increasing IBABP [109] and OSTα/β [110] levels. FXR
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activation instead suppresses BA absorption from the intestinal tract to the enterocytes by
reducing ASBT levels on the apical surface via elevated SHP expression [111,112]. One of
the most physiologically significant ileal gene targets of FXR is Fgf15/FGF19 and the detailed
mechanism how FXR regulates gene expression will be discussed below. Genome-wide
analysis of FXR binding in mouse intestine and liver identified tissue-specific FXR binding
sites on promoter regions. For example, multiple FXR binding sites in Slc51a (Ostα) were
found only in the intestine, but not the liver, while a FXR binding site in Slc10a1 (NTCP)
was detected only in the liver, but not the intestine [91]. These data demonstrate that the
activity of FXR is regulated in a coordinated manner for tissue-specific functions.

4. Regulation, Production and Biological Function of FGF15/19

FGF15/19 is an endocrine hormone secreted from the distal ileum and its production
is critically controlled by ileal FXR activity and regulated by a variety of BA species with
varying concentrations in the intestinal tract [108,113]. FGF15/19 regulate de novo BA syn-
thesis, cholesterol catabolism, glycogen synthesis, fatty acid metabolism and regeneration
in the liver, skeletal muscle mass, and appetite in the brain (Figure 4). The mechanism
behind FGF15/19 production in the ileum and biological action to the liver are summarized
in Figure 5. The FGF19 analogs lacking its mitogenic activity are also considered as a
promising candidate for hepatic disorders, such as NASH and NAFLD [114–116].
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Figure 5. Regulation of BA synthesis by FXR-FGF15/19 signaling axis. Primary BAs (green pentagons)
are synthesized from cholesterol (black pentagons) by a series of enzymatic reactions initiated with
CYP7A1 in hepatocytes, and are exported from hepatocytes through BSEP, delivered to the duodenum,
and converted to secondary BAs (red pentagons) by gut microbiota when traveling through the
intestinal tract to help incorporation of fat-soluble nutrients. The rest of BAs are mostly reabsorbed
through ASBT on the apical brush border of enterocytes in the ileum and bind to IBABP. The majority
of BAs are then transported to the basolateral membrane to be exported into enterohepatic circulation,
whereas a fraction of them is transported to the nucleus to form a complex with FXR and liganded
RXRα on IR1 located between exon 2 and 3 of Fgf15/FGF19. The complex is then given access
to general transcription factor (GTF) complexes on the promoter region (Prom), mediated by the
mediator complex (MC), to initiate RNA polymerization by RNA polymerase II (R). Synthesized
FGF15/19 (F15/19) is released into enterohepatic circulation and reaches the FGFR4-Klβ complex to
activate intracellular events and induce SHP expression in hepatocytes for subsequent suppression of
CYP7A1 expression. Exported BAs into enterohepatic circulation are incorporated into hepatocytes
through NTCP or OATP and bind to hepatic FXR-RXRα complex on IR1 of SHP to induce expression.
The SHP protein then binds to the HNF4α homodier-LRH-1 complex to suppress CYP7A1 expression.

4.1. Discovery of FGF15/19

FGF15 was originally discovered by the representational difference analysis in a
murine fibroblast cell line NIH3T3 transfected with either an empty vector or vector
containing cDNA of E2A-Pbx1b, a fusion protein with pre-B cell leukemia containing the
t(1;19) chromosome translocation [117,118]. The most striking feature in the structure of
FGF15 was that the predicted amino acid sequence has a putative signal peptide, which
does not exist in the canonical FGF family members [119]. The later discovery of FGF21 and
FGF23 demonstrated that these FGFs share structural features with FGF15, such as a signal
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peptide and a short heparin binding domain, and are currently divided into a hormone-like
subfamily within the FGF superfamily [120,121]. FGF19 was found by searching a human
expressed sequence tag database [122]. Although different numbers are assigned, as a
result of the relatively low amino acid sequence identity (approx. 50%), FGF19 was soon
identified as a human orthologue of FGF15. In fact, both human FGF19 and mouse Fgf15
genes form a syntenic cluster with two other FGF genes, FGF3/Fgf3 and FGF4/Fgf4 in their
genome [123].

Earlier research on the biological function of FGF15/19 mainly revealed that FGF15/19
is expressed in the fetal brain, is responsible for developing the nervous system and sensory
organs, and is critical for survival during late embryonic development [118,124–127]. The
first evidence on the biological function of FGF15/19 in hepatic physiology and pathology
was discovered in human FGF19 transgenic mice. These FGF19 transgenic mice exhibited
increased proliferation of pericentral hepatocytes and later development of hepatocellular
carcinoma, mediated through FGF receptor 4 (FGFR4) [128]. They also exhibited reduced fat
mass due to increased energy expenditure, which is accompanied with reduced expression
of acetyl-CoA decarboxylase 2 in the liver [129]. Soon after this discovery, FGF19 was found
to suppress CYP7A1 expression in primary human hepatocytes and mouse liver through a
c-JNK pathway. Further studies then identified a synthetic agonist FXR GW4064 [130] and
natural agonist CDCA robustly and dose-dependently increased FGF19 expression through
the FXR-RXRα heterodimer on their binding element IR1 located on intron 2 in primary
human hepatocytes [11], despite later investigations clarifying these compounds do not
induce hepatic FGF15/19 expression in vivo. The milestone discovery on the biological
function of FGF15/19 in the liver was reported by Inagaki et al., showing that expression of
Fgf15 was abundantly detected in the ileum and strongly induced by oral administration of
either CA or GW4064, whereby subsequent suppression of Cyp7a1 levels was observed in
the mouse liver [18]. They also observed the Fgf15- or Fgfr4-deficiency diminished Cyp7a1
suppression levels by agonist administration. Later studies revealed the presence of KLβ in
the liver as an obligatory co-receptor for FGF15/19. Collectively, FGF15/19 was discovered
as a hormone for signaling from the ileum to the liver to regenerate and facilitate feedback
regulation of BA synthesis.

4.2. Molecular Biological Basis for FXR-Dependent Regulation of FGF15/19

Expression levels of Fgf15/FGF19 are principally regulated by FXR. Although FXR
is highly expressed in the liver, kidney, and small and large intestines, Fgf15/FGF19 are
expressed the most in the ileum, slightly higher than the detection limit in the jejunum
and colon, and undetectable in the liver and kidney. The mechanism underlying this
tissue-selective expression of Fgf15 remains unknown. Fgf15/FGF19 genes have a typical
IR1 element for binding the FXR-RXRα complex located between exon 2 and exon 3, and
the electrophoretic mobility shift assay and luciferase reporter assay show this element is
functional in BA-dependent regulation [18,131]. Disrupting FXR in the ileum completely
abolished responsiveness of Fgf15 expression upon BA stimulation [132]. However, FXR
is not essential for basal expression of Fgf15, since the Fxr-disrupted ileum still expressed
minimum, but significant, Fgf15 levels [132]. Regarding the effect of natural antagonist
tauro-β-MCA on Fgf15 expression, Cyp2c20-deficient mice were previously used to remove
β-MCA production to reveal basal Fgf15 mRNA levels and responsiveness to FXR agonists
were normal [133]. Furthermore, mice lacking both Cyp2a12 and Cyp2c70 genes to humanize
BA metabolism exhibited no change in ileal Fgf15 expression levels, although significant
elevation was observed in some FXR-regulated genes, such as Cyp3a11, Mdr1a, Srebf1, and
Abca1 [134]. These data suggest that tauro-β-MCA has little effect on Fgf15 expression
in vivo.

Expression levels of Fgf15 varied depending on intestinal microbiota conditions,
whereby primary BAs were converted to secondary BAs. First, the eradication of mouse
intestinal microbiota with antibiotic treatment greatly reduced ileal Fgf15 levels, which was
accompanied by deconjugated primary BAs, such as CA and β-MCA, and secondary BAs,
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such as DCA and HDCA, to faint levels in the BA pool [46,135,136]. Oral administration of
CA to antibiotic-treated mice greatly elevated ileal Fgf15 expression levels while tauro-CA
did not, suggesting BA deconjugation by gut microbiota is critical for BA-induced Fgf15
production [136]. The reduced Fgf15 expression by antibiotic treatment was largely in-
creased following subsequent colonization of human or mouse microbiota in the mouse
ileum [137].

4.3. Interaction of FGF15/19 with FGFR4-KLβ Heterodimer

Expression of FGFR4 was observed mainly in the adrenal gland, kidney, liver, and lung,
while KLβ mRNA was highly detected in adipose tissues and the liver [13,138]. Therefore,
the primary target tissue of FGF15/19 is the liver, where FGFR4 is the predominant isoform
of all FGFRs [138]. The potency of FGF19 on FGFR4 and KLβ ectopically expressed in
HEK293 cells were evaluated by phosphorylation levels of FGFR substrate 2 (FRS2) and
ERK1/2, and those were far greater when FGFR4 and KLβ were co-expressed compared
with FGFR4 expression alone [12–14]. Furthermore, global or liver-specific KLβ deficiency
not only abolished Cyp7a1 repression in the liver after administering human FGF19 or
murine FGF15, but also increased basal Cyp7a1 levels due to the lack of endogenous FGF15
signaling [139–141]. The Fgfr4 knockout mice or FGFR4 antisense oligo-treated mice also
showed elevated expression of Cyp7a1 levels [142,143], revealing that both KLβ and FGFR4
are critical for FGF15/19-dependent Cyp7a1 suppression in the liver. Interestingly, FGF15
plasma concentrations in liver-specific KLβ-deficient mice were almost 30-fold higher than
WT, suggesting that KLβ plays a central role in clearing circulating FGF15/19 [141].

The 3D structure of the FGF23-FGFR1c complex determined by X-ray crystallography
revealed it requires an obligatory interaction with KLα and heparan sulfate (HS) for a
1:1:1:1 assembly for signaling [144]. Based on these data and biochemical evidence of FGF19
signaling accumulated in the past [10–14], FGF15/19-FGFR4 also requires interaction with
KLβ and HS for signaling with a 1:1:1:1 ratio [145,146]. Furthermore, FGF19 mutants with
reduced dimerization potential elicit lower mitogenic activity accompanied with lower
induced ERK1/2 phosphorylation, whereas hepatic Cyp7a1 expression reduced to similar
levels as liver treated with WT [145,147,148]. These results suggest dimerization of the
FGF15/19-FGFR4-KLβ-HS complex is required for eliciting mitogenic activity of FGF19,
whereas dimerization is dispensable for FGF19-mediated Cyp7a1 repression in the liver.
Conversely, FGF15 induces weaker mitogenesis with ERK1/2 phosphorylation to a lesser
extent than FGF19 in hepatocytes, while both FGF15 and FGF19 reduced Cyp7a1 expression
with almost equal potency [141,147]. These data suggest that FGF15 exists as a monomer
or a dimer with a configuration quite different from FGF19.

4.4. Regulation of CYP7A1 Expression by FGF15/19

As described above, CYP7A1 is the critical enzyme for regulating BA production and
is one of the most important targets of FGF15/19 signaling. However, the detailed mecha-
nism by which FGF15/19 represses Cyp7a1 levels in the liver is not completely understood.
Cyp7a1 transcription is maintained by two key nuclear receptors, the HNF4α homodimer
and LRH-1 monomer, both of which show binding elements flanking each other on the
5′-upstream of the transcription initiation site [11,15,149]. In fact, the liver-specific disrup-
tion of Hnf4a and Lrh-1 genes significantly reduced Cyp7a1 expression levels [150]. Both
FXR activation by BA and FGFR4 by FGF15/19 in hepatocytes results in SHP induction,
an atypical nuclear receptor that lacks DBD and suppresses activity of their binding tar-
gets [151,152]. The promoter region of Shp has an IR1 FXR-RXRα binding element and
Shp expression levels are induced following stimulation with BA, revealing that FXR is
one of its principal regulators. Both intraperitoneal injection of FGF15/19 and oral ad-
ministration of FXR agonist GW4064 strongly elevated Shp expression levels, whereas
Fgf15-deficiency abolished only GW4064-dependent Shp elevation. These results suggest
FGF15/19 themselves potently induce Shp expression without FXR activation [141]. ChIP
data revealed that both HNF4α and LRH-1antibodies enriched the binding element on the
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Cyp7a1 promoter from the liver chromatin and re-ChIP assays, in which chromatin in liver
overexpressing epitope-tagged SHP was first immunoprecipitated with an LRH-1 antibody,
then subjected to a second round of ChIP with an epitope antibody that also enriched the el-
ement. This data confirmed that SHP actually binds to HNF4α and LRH-1 to suppress their
activity [150]. However, in addition to oral administration of GW4064 by Shp-deficient mice
suppressing hepatic Cyp7a1 levels, intraperitoneal FGF19 administration also suppressed
Cyp7a1 transcription levels without changing SHP protein levels in the liver overexpressing
Shp [153]. These data strongly suggest the existence of SHP-independent machineries for
FGF15/19-mediated Cyp7a1 suppression. For example, JNK phosphorylation was induced
in hepatocytes following FGF19 stimulation and is involved in SHP-independent Cyp7a1
suppression [11,153]. Recent evidence further revealed that FGF15/19 inhibited nuclear
translocation of transcription factor EB (TFEB), which binds to the promoter region of
Cyp7a1 to induce transcription by inducing phosphorylation via mTOR/ERK activation in
an SHP-independent manner [154]. Collectively, FGF15/19-dependent and independent
suppression of Cyp7a1 levels may be regulated with more complicated machinery.

4.5. Regulation of Other Biological Events by FGF15/19

FGF15/19 induces different biochemical events via the FGFR4-KLβ heterodimer com-
plex located in the plasma membrane. FGFR4 itself harbors an intracellular tyrosine kinase
domain and elicits tyrosine phosphorylation on FRS2 upon FGF15/19 binding. Tyrosine-
phosphorylated FRS2 is allowed to bind to growth factor-bound protein 2 (GRB2) to activate
downstream signaling cascades to induce phosphorylation of ERK1/2 [155–157], after which
phosphorylated ERK1/2 promotes mitogenesis of hepatocytes to regenerate liver tissue un-
der physiological conditions [158–160] and progress hepatocarcinoma [128,161,162], neck
squamous cell carcinoma [163], and gallbladder carcinoma cells [164] under pathogenic
conditions. To eliminate these potentially harmful side effects, FGF19 analogs lacking
mitogenic activity have been developed for future medication based on the aforemen-
tioned fact that some FGF19 mutants elicit normal Cyp7a1 reduction in the liver, but do not
induce mitogenesis.

FGF15/19 reduces transcription of metabolic enzymes by inhibiting the cAMP respon-
sive element-binding protein (CREB)-peroxisome proliferator-activated receptor-gamma
coactivator (PGC)-1α pathway [165] and inducing phosphorylation of p90 ribosomal S6
kinase to increase protein synthesis in the liver without inducing Akt or p70 ribosomal S6
kinase phosphorylation, which activates mechanistic targets of rapamycin (mTOR) signal-
ing. FGF15/19 also induced phosphorylation of glycogen synthase kinase (GSK) 3α and
GSK3β to suppress these activities and enhance glycogen synthesis in the liver [141,166].
For de novo lipogenesis, FGF19 inhibits hepatic lipogenesis by increasing STAT3 activity
and decreasing PGC-1β expression to suppress sterol regulatory element-binding pro-
tein (SREBP)-1c activity [21]. FGF19 can inhibit SREBP-1c and 2 activities via increased
SHP [21,167]. In addition, oral administration of GW4064 to WT mice induced hepatic ex-
pression of Insig2, a negative regulator of SREBP activity, whereas Fgf15 deficiency abolished
induction [141]. FGF19 levels can increase following bariatric surgery and this increase
is involved in postoperative body weight loss [168]. Collectively, FGF15/19 positively
impacts our health status through these intracellular events. In fact, FGF19 analogs are
now considered promising medication for hepatic disorders, such as NASH and NAFLD,
whereby NGM282 is currently part of clinical trials [169,170].

4.6. Non-Hepatic Targets of FGF15/19

Recent publications show FGF15/19 plays a role in non-hepatic tissues. The most
extensively studied tissue is skeletal muscle, in which FGF19 stimulates ERK and S6
phosphorylation to induce hypertrophy [171]. FGF19 can also ameliorate sarcopenia
and skeletal muscle atrophy induced by glucocorticoid treatment or obesity, suggesting
that FGF19 and its analogs has potential therapeutic application for these symptoms.
FGF19 is also considered to stimulate the FGFR4-KLβ complex in the central nervous
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system (CNS) to improve energy metabolism in addition to its role in neural development.
Administering FGF19 into a liver-specific Klb-deficient mouse with diet-induced obesity
can still significantly reduce body weight accompanied with lower food intake, reduced
serum plasma concentration, and hepatic triglyceride levels [172,173]. Administering BA
stimulated FGF15 secretion, leading to activated receptors and silencing hypothalamic
AGRP/NPY neurons to improve glucose tolerance [174]. Furthermore, a transgenic mouse
model of FGF19 generated by hydrodynamic gene transfer technology showed that FGF19
increased water intake, which appeared to be mediated via CNS receptors [175]. FGF15
can be detected in neurons in the dorsomedial hypothalamus, where glucagon secretion is
negatively controlled and reduced vagal nerve firing improves glucose tolerance [176,177].
However, a comprehensive analysis using a highly sensitive RNAscope in situ hybridization
and droplet digital PCR technology failed to detect neurons expressing both Fgfr4 and
Klb in the mouse brain [178]. Detail analyses are necessary to understand how FGF15/19
stimulates neural cells to elicit these functions.

5. Perspective

Due to the benefits of the FXR-FGF15/19 signaling axis on human health, signifi-
cant research effort has focused on developing medication to target this axis mainly for
liver disease, such as NASH and NAFLD. We are currently expanding beyond basic re-
search to unravel the underlying mechanisms of the FXR-FGF15/19 signaling axis for
successful clinical usage of their agonists/antagonists, primarily for hepatic disorders.
However, relatively less attention has been paid in understanding the relationship between
FGF15/19-dependent and independent signaling of FXR in the liver. Regarding the effect
of FXR agonists on the FGF15/19 expression, it is already known that oral administration
of GW4064 increases Shp expression in the liver of WT mice, but not FGF15-deficient mice.
Although GW4064 has been removed as a potential FXR agonist in future medical appli-
cation, due to its low solubility to water, the results strongly suggest newly-developed
FXR agonists similarly affect the liver, at least partly via FGF19 signaling in humans. Since
endogenous FGF19 may unavoidably influence proliferation of hepatocarcinoma cells,
using FXR agonists on patients for long term or in high dosages may result in serious side
effects. Conversely, regarding FGF19 activity and its analogs in the liver, we do not have
enough data to understand how these compounds suppress Cyp7a1 and genes that facilitate
hepatic disorder development. Unidentified biochemical and molecular biological events
remain to be explored and, ultimately, the hope is we can unravel the detailed machinery
of the BA-FXR-FGF15/19 signaling axis.
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