
����������
�������

Citation: Kumar, P.P.P.; Lim, D.-K.

Gold-Polymer Nanocomposites for

Future Therapeutic and Tissue

Engineering Applications.

Pharmaceutics 2022, 14, 70. https://

doi.org/10.3390/pharmaceutics

14010070

Academic Editors: Alessandro

F. Martins and Matt Kipper

Received: 21 November 2021

Accepted: 14 December 2021

Published: 28 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Review

Gold-Polymer Nanocomposites for Future Therapeutic and
Tissue Engineering Applications
Panangattukara Prabhakaran Praveen Kumar 1 and Dong-Kwon Lim 1,2,*

1 KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro,
Seongbuk-gu, Seoul 02841, Korea; p4praveen.18@gmail.com

2 Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu,
Seoul 02841, Korea

* Correspondence: dklim@korea.ac.kr

Abstract: Gold nanoparticles (AuNPs) have been extensively investigated for their use in various
biomedical applications. Owing to their biocompatibility, simple surface modifications, and electrical
and unique optical properties, AuNPs are considered promising nanomaterials for use in in vitro
disease diagnosis, in vivo imaging, drug delivery, and tissue engineering applications. The func-
tionality of AuNPs may be further expanded by producing hybrid nanocomposites with polymers
that provide additional functions, responsiveness, and improved biocompatibility. Polymers may
deliver large quantities of drugs or genes in therapeutic applications. A polymer alters the surface
charges of AuNPs to improve or modulate cellular uptake efficiency and their biodistribution in the
body. Furthermore, designing the functionality of nanocomposites to respond to an endo- or exoge-
nous stimulus, such as pH, enzymes, or light, may facilitate the development of novel therapeutic
applications. In this review, we focus on the recent progress in the use of AuNPs and Au-polymer
nanocomposites in therapeutic applications such as drug or gene delivery, photothermal therapy, and
tissue engineering.

Keywords: gold nanoparticles; polymers; drug delivery; tissue engineering; photothermal therapy;
photodynamic therapy

1. Introduction

In ancient times, gold (Au) was used to treat various diseases, including fever, syphilis,
tuberculosis, and rheumatism [1]. It exists in the diverse oxidation states (−I), (0), (I),
(II), (III), (IV), and (V); however, only Au(0), Au(I), and Au(III) are stable in an aqueous
solution. Au(I) is highly water-soluble, may be easily stabilized by ligands, and was used as
a therapeutic agent in injectable and oral preparations, but later studies revealed the toxicity
of these formulations. The most common side effects associated with Au treatment are skin
and mucous membrane hypersensitivity reactions and allergies [2]. Conversely, Au(III) is
very rarely used as a therapeutic agent due to its strong oxidizing nature. Examples of Au
complexes used in clinical practices are Aurolate [3] and Auranofin [4], which are used in
psoriatic and rheumatoid arthritis and oral cavity treatment, respectively (Figure 1) [1].

In contrast, Au nanoparticles (AuNPs) are nanosized particles prepared via the re-
duction of Au(I) or Au(III) to Au(0), with toxicities that differ remarkably from those of
Au salts. The properties of AuNPs also differ considerably from those of bulk Au metal,
which is bright yellow and extremely inert. However, the colloidal Au displays a bright
red-wine color (Figure 1). The toxicity of colloidal Au is higher than that of bulk Au, but
the toxicity of colloidal Au is significantly lower than that of Au salts. Hence, AuNPs
exhibit completely different biological behaviors in terms of biodistribution, cellular uptake
efficiency, and therapeutic outcomes. Accordingly, the application of AuNPs in medicine
differs significantly from that of the previously reported Au salts (Figure 1).
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further expand the functionality of AuNPs [19,20]. Polymer shells promote the preserva-
tion of the optical properties of the Au core and induce responses to endo- or exogenous 
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Functionalization with polyethylene glycol (PEG), referred to as PEGylation, can extend 
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tem. For tissue engineering, extended retention and controlled release of active molecules 
are critical in achieving the intended functions [23,24]. In an active system, Au may me-
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AuNPs exhibit strong light absorption and scattering properties in the visible and near-
infrared (NIR) regions, owing to strong surface plasmon resonances at these wavelengths [5].
Based on their strong scattering properties, AuNPs were used as contrast-enhancing agents
in electron microscopes (Figure 1) [6,7]. Thereafter, diverse nanostructures, such as Au
nanospheres (AuNPs) [8], -rods (AuNRs) [9], -shells (AuNSs) [10], -stars (AuSTs) [11],
-cages (AuCGs) [12], and -clusters (AuNCs) [13], were prepared and evaluated for their
use in various applications in the field of nanomedicine. Along with their unique optical
properties, the biocompatibility and diverse surface chemistry—covalent or non-covalent—
of AuNPs facilitated their use in various biomedical applications as novel tools in biosensing
and -imaging and therapeutics (Figure 1) [14,15].

Diverse surface chemistry is required in various applications. Among the strategies
for surface modification of AuNPs, modification with polymers yielded considerably
improved performances in biomedical applications, particularly as drug delivery and tissue
engineering platforms [16–18]. Polymers can enhance stability and dispersity and further
expand the functionality of AuNPs [19,20]. Polymer shells promote the preservation of the
optical properties of the Au core and induce responses to endo- or exogenous stimuli, such
as enzymes, pH, temperature, or light [21,22]. For therapeutic application, high loading
and controlled release of active pharmaceuticals from the nanocarrier is critical and may be
modulated using polymers. Extended circulation of the nanocarrier in the bloodstream is
another key issue in designing an efficient drug delivery system. Functionalization with
polyethylene glycol (PEG), referred to as PEGylation, can extend the circulation of AuNPs
in the blood by minimizing opsonization by the immune system. For tissue engineering,
extended retention and controlled release of active molecules are critical in achieving
the intended functions [23,24]. In an active system, Au may mediate the external light
or electrical stimulus of the biological system, in addition to improving the mechanical
strengths of the scaffolds [25,26]. In this review, we focus on the recent progress regarding
Au and Au-polymer hybrid nanomaterials that were developed for therapeutic and tissue
engineering applications in nanomedicine.

2. Synthesis of Gold or Gold-Polymer Nanoparticles

The most common method used for the synthesis of AuNPs is the bottom-up chemical
approach method. In each of the synthetic methods, precise control over the shape, size,
and stability of the final AuNPs is taken care of. The first method for the synthesis of
colloidal AuNPs is considered to be the method by Faraday, in which NaAuCl4 is reduced
using phosphorous/carbon disulfide solution to obtain a ruby-colored colloidal solution of
AuNPs with an average size of particles 6± 2 nm [27]. The hydrothermal method, in which
sodium citrate was used for reducing HAuCl4, under reflux conditions, in which sodium
citrate acts as a reducing and stabilizing agent, was later used; this method is known as the
Turkevich method, which produced AuNPs with good dispersity [28].

Chemical reduction of HAuCl4 using NaBH4 as a reducing agent is another method
for synthesizing AuNPs with an average size of 3 nm with longer time stability [29]. Seed
mediated multistep method is also followed to synthesize AuNPs with different size and
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shape [30,31]. In this method, HAuCl4 is mixed with cetyltrimethyl ammonium bromide
(CTAB) to form the Au(III)-CTA complex, followed by the reduction of Au(III) using
NaBH4 or citrate to synthesize Au seeds. In the final step, various concentrations of Au
seed were added to a growth solution containing AgNO3 and ascorbic acid to form nanos-
tructures with different shapes, such as AuNPs, AuNRs, AuNSs, AuSTs, AuCGs, etc. [32].
Likewise, in recent years, interfacial synthesis [33], laser ablation [34], arc discharge [35],
microwave [36], electrochemical [37], and biological and green chemistry methods [38–40]
have also been investigated for the synthesis of AuNPs.

The stability and toxicity of the bare AuNPs is the most challenging issue in using
them directly for various biomedical applications. The stabilization of AuNPs can be
performed by either electrostatic or steric stabilization to avoid the aggregation of bare
AuNPs, and this can be achieved by using surfactants or functionalized polymers to prepare
Au-polymer nanocomposites.

Typically, polymers have an opposite charge to that of AuNPs that were physisorbed
on the surface of AuNPs to minimize the aggregation tendency by creating a passive
layer [41]. In the direct synthesis approach, reduction of HAuCl4 in the presence of sulfur
or amino terminated polymers is carried out to obtain the hybrid polymer AuNPs in a one-
step process [42,43]. Presently, the covalent bond formation between AuNPs and various
polymers is employed for the successful synthesis of various Au-polymer nanocomposites.
The covalent approach falls into the following categories: (i) graft-from approach, (ii)
graft-to approach, and (iii) grafting-through technique, as shown in Figure 2 [44]. In
the graft-from approach, AuNPs are first immobilized with the polymerization initiators
(e.g., chain transfer agents) and, subsequently, the polymer chains grew by the addition
of monomers, commonly known as the reverse addition-fragmentation chain transfer
(RAFT) process. Takara et al. synthesized glycopolymers of polyacrylamide derivatives
with mannose via the RAFT process, reducing the polymer terminal group to thiol, and
prepared polymer-coated AuNPs with an average diameter of 55–70 nm, used for the
mannose-protein interaction studies [45]. Otherwise, in the graft-to polymer method, the
polymers with end functionalities, such as thiols, amines, etc., were covalently linked
to the surface functionalities on AuNPs’ surface. In the grafting-through approach, the
polymerizable groups are anchored on the surface of AuNPs and the polymerization starts
in the solution containing the monomer, initiator, and the modified NPs, which act as a
cross-linking agent [46]. Suzuki et al. reported the use of thiol and amino-functionalized
polymer, poly(N-isopropyl acrylamide)-b-(glycidyl methacrylate), to stabilize AuNPs inside
the polymer shells via the graft-to method to synthesize AuNPs with an average size of
10 nm [47].

Post-modification can also be performed, in which the as such prepared AuNPs are
conjugated with the polymer, but this method lacks the low polymer loading efficiency
and unintended adsorption through polymer functionalities. Mostly biopolymers, DNA,
etc., are attached to the surface of AuNPs by post-modification methods [43,48]. For the
potential application in cancer therapy, the size of polymer AuNPs is very crucial, and
polymers such as polystyrene, polyethylene imine, poly(acryloyl amino-phenyl arsonic
acid), and xanthan gum are used as stabilizing and reducing agents for the Au(III) [49]. The
size distribution of AuNPs can be varied by using different molar mass polyethylene imine
polymers and by varying the number of branching units, as demonstrated by Cho et al. [50].
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Figure 2. A schematic representing the various synthetic methods involved for polymer AuNPs.
Reproduced with permission from [44]. Elsevier, 2015.

3. Therapeutic Applications

NPs with sizes < 100 nm were widely investigated to overcome the limitations of
chemotherapy, such as severe side effects of cytotoxic drugs, low maximum tolerable
doses, and multidrug resistance. Among the numerous nanomaterials investigated for
use in drug delivery systems, including polymeric micelles, polypeptides, and liposomes,
AuNPs exhibit unique optical properties, such as strong light scattering at visible and NIR
wavelengths, biocompatibility, and robust surface chemistry, which have accelerated their
study in diverse fields of nanomedicine as passive carriers or active vehicles responding to
light or electrical stimulus. In this section, we discuss the recent progress in drug delivery
systems for therapeutic applications, such as cancer therapy, gene delivery, photothermal
and -dynamic therapies, and cancer immunotherapy.

3.1. Drug Delivery

Compared with organic nanomaterials, AuNPs are inorganic nanomaterials that are
not decomposed, even at low concentrations. They are rigid, stable nanomaterials, and
the drug molecules may be loaded chemically or physically on AuNP surfaces. Cellular
uptake of AuNPs may occur via several mechanisms, depending on the sizes, shapes,
surface charges, and ligand functionality of the AuNPs [51]. The typical sizes of 10–100 nm
were widely investigated, and numerous studies reported the size- and shape-dependent
half-lives of AuNPs in the blood [52]. Polymer layers were easily introduced on AuNPs,
which enhanced their drug-loading efficiency and circulation in the blood, changed their
biodistribution, and added functionality [44].

AuNPs conjugated with anti-cancer drugs via electrostatic interactions or diverse
linkers, including thiol, amide, or hydrazine, were utilized as carriers of these drugs [53].
The covalent linkers between AuNPs and the drugs could be designed in such a way
that they are cleaved by a cancer cell-specific enzyme or low pH to efficiently escape
the endosomes. However, the carrier initially overcomes the defense mechanism of the
human body, the reticuloendothelial system, which is the primary barrier in the systematic
delivery system. PEG is the most widely used polymer to overcome this barrier, as it
absorbs numerous water molecules, which enables it to avoid recognition by macrophages.
PEGylation not only avoids the removal of the AuNPs and nonspecific binding of the
carrier during delivery but also improves the efficiency of drug delivery to the target cells.

For example, Yoon et al. proposed controlling drug release by changing the density
of PEG on the AuNP carrier. A low density of PEG results in the rapid release of drugs,
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whereas a high density of PEG results in the slow release of methotrexate (MTX) due to
protection by glutathione, as shown in Figure 3A,B [54]. Studies showed an increase in
PEG density resulting in low drug loading and anticancer activity, suggesting a grafting
density of 0.0011/nm2 PEG would be suitable for anticancer activity in HeLa cells. In vivo
studies showed that a 50% surface PEGylation could induce prolonged blood circulation
and tumor accumulation of 2 nm AuNPs [55].

In addition, Ghorbai et al. showed that multiple anti-cancer drugs may be loaded
simultaneously onto PEGylated AuNPs, with high tumor-targeting specificity. Doxoru-
bicin (DOX) and MTX were incorporated into AuNPs via ionic interactions, whereas
6-mercaptopurine was incorporated into AuNPs via disulfide bonds with the polymeric
shell [56]. DOX and MTX release occurred via changes in pH, whereas 6-mercaptopurine
was released via glutathione interaction. This study showed the stimuli-responsive release
of drugs from the carrier. Farooq et al. reported PEG-coated AuNPs that could simul-
taneously deliver bleomycin and DOX into the HeLa cancer cell line [57]. Meena et al.
prepared a pH-sensitive drug delivery system using PEG-coated AuNPs to simultaneously
deliver DOX and kaempferol for efficient colon cancer therapy [58]. Drug release could
be controlled using pH, and it exhibited an efficient cytotoxic effect compared to that of
the individual drugs. A significant reduction in tumor volume was observed without
significant side effects, highlighting the utility of the dual drug encapsulating nanocarrier
as a good candidate for treating colon cancer. These studies showed the significance of PEG
in improving the biocompatibility, non-immunogenicity, and dispersity and reducing the
enzymatic degradation of NPs in the biological environment.

Various other biocompatible polymers were also utilized in drug delivery systems.
For example, poly(sodium 4-styrenesulfonate) and AuNRs exhibited good biocompatibility
and sustained release of DOX [59]. Chitosan (CS)-oligosaccharide-stabilized AuNPs were
used in the controlled release of paclitaxel. The CS-oligosaccharide backbone improved
the solubility and uptake efficiency of paclitaxel in MDA-MB-231 breast cancer cell lines.
The nanocomposite displayed pH-dependent drug release in the endosome owing to the
repulsion between the drugs and the protonated amino groups of CS [60]. Suarasan et al.
reported gelatin-coated AuNPs as a controlled-release system for DOX. Their performance
was examined in vitro using MCF-7 breast cancer cells at different pH values (7.4, 5.3, and
4.6) and temperatures (22–45 ◦C). At high temperature (45 ◦C) and low pH (4.6), enhanced
release and the internalization of DOX were studied using time-resolved fluorescence and
surface-enhanced Raman scattering of the aggregated AuNPs [61]. Wu et al. reported a
NIR laser-triggered shrinkable formulation with poly(acrylamide-acrylonitrile)-PEG-lipoic
acid encapsulating AuNRs [62]. During laser irradiation, the AuNRs convert light to heat
energy, and the large micelles split into ultrasmall micelles (7 nm) that penetrate the tumor
cells deeply to achieve the in situ controlled release of the loaded drug (DOX), as shown
in Figure 3C. The reduction in the size of the tumor was monitored by incorporating a
fluorescent imaging agent (Figure 3D). Other than fluorescent dyes, the incorporation of
inorganic imaging agents, such as iron oxide or radioisotopes, is also extensively investi-
gated, as this enables monitoring of the disease state or the tracking of the cell or agent in
the body [63,64].

The rational design of stimuli-responsive Au-polymer nanocarriers for drug delivery
and chemotherapy in the NIR region resulted in promising results. Lian et al. synthesized
a coumarin derivative; 7-(diethylamino)-4-(hydroxymethyl)-2H-chromen-2-one (DEACM);
which then immobilized on cyclodextrin (β-CDs) bearing AuNRs. The choice of coumarin
derivative is meant to enhance the drug loading capacity of DOX via the µ-µ stacking
interactions. PEG functionalized with cycle RGD peptide was linked to β-CDs for active
targeting and long circulation process. The NIR light irradiation activated the gold nanorods
and accelerated the photosolvolysis of DEACM to trigger the rapid release of DOX. In vitro
studies showed the inhibition effect on the proliferation of 4T1 breast cancer cells, and
in vivo studies for breast cancer in mice showed excellent anticancer activity [63].
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Figure 3. AuNP-polymer nanocomposites for use in drug delivery systems. (A) PEG density-
dependent MTX release. (B) Live-cell fluorescent images of the MTX release from AuNPs of the
samples with MTX (1 µM): PEG ratios of 1:0.1 or 1:0.05 at 2 and 24 h. (C) Light-responsive na-
nomicelles with AuNRs and doxorubicin co-loaded for synergetic photothermal-chemotherapy.
(D) Fluorescence images of a tumor-bearing mouse after administration of AuNR/indocyanine
green (ICG) micelles. Reproduced with permission from [54], Elsevier, 2016 and reproduced with
permission from [62], American Chemical Society, 2021.

Studies showed that AuNPs with different sizes, morphologies, and surface modifica-
tions enhance the drug loading efficiency, and a comparative evaluation of drug loading
efficiency using Au polymer hybrid nanocomposite, with a few recent literature reports, is
described in Table 1. These studies showed that AuNPs with varying sizes, shapes, and
different polymer coatings possess different drug loading efficiency and, depending on the
mode of target action, one has to further optimize the conditions for efficient therapeutic
applications due to the different biological aspects of cancer cells.

Table 1. Application of Au-polymer hybrid nanomaterials for drug delivery.

Modification of AuNP Shape and Average
Diameter (nm)

Drug and Drug Loading
Capacity

Method of
Functionalization

Cells Lines or
Animal Stability Ref

PEG-folate Spherical (120 nm)
Curcumin (1.3 ± 0.3 mg of

Cur in 100 mg of
the conjugate)

Hyaluronic acid (HA)-
curcumin as linker

HeLa cells, C6
glioma cells,
and Caco 2

cells

3 months at
20 ◦C [64]

Polyacrylamide and folate Spherical (30 nm)
MTX

43.8 ± 3.1 µg/mg of the
nanogel

Covalent linking KB cells 6 months [65]

PEG Spherical (155 nm) Paclitaxel (36%) Paclitaxel-PEG-SH as
linker HepG2 cells Stable [66]

PEG-carboxylic acids Spherical (10 nm) DOX (33%) Covalent linking HeLa cells Stable [57]
poly(acrylic acid)-b-poly(N-
isopropylacrylamide)-b-poly

(e-caprolactone)-SH

Hollow Nanostar
(132 nm) and

nanocage (238 nm)

DOX 78% in hollow
nanostar and 84% using

nanocage

Ionic, covalent, hydrogen
bonding MCF7 cells 2 months at

4 ◦C [67]

Polydopamine and PEG Nanorod (94 nm) Methylene blue (42%) and
DOX (52%) Ionic and pi-pi interactions HeLa cells Stable [68]
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Thus, the use of Au and Au-polymer formulations resulted in smart drug delivery sys-
tems that minimized the side effects of cytotoxic anti-cancer drugs and enabled controlled
drug release. The unique optical properties of AuNPs and the functionality of polymers are
critical in these systems. Despite the significant progress, AuNPs cannot be easily replaced
with organic carriers, such as natural polymers or liposomes, because of their potential
toxicity compared with that of organic counterparts. Therefore, AuNPs should be used
when the benefits of their use are much pronounced than the drawbacks.

3.2. Gene Delivery

Gene therapy is used to treat genetic ailments via the transfer of therapeutic genetic
materials (e.g., deoxyribonucleic acid (DNA), messenger ribonucleic acid (mRNA), mi-
croRNA, small interfering RNA (siRNA), or short oligonucleotides) into cells to produce
or suppress the production of specific proteins or correct specific genes using clustered
regularly interspaced short palindromic repeats. Naked DNA or RNA molecules exhibit
very short half-lives in biological fluids and do not easily permeate cell membranes, due
to their negative charges. This limitation may be partially overcome using condensed
nucleic acid structures, such as random or ordered aggregates of nucleic acids with or
without template materials. A condensed structure of a nucleic acid may reduce the charge
repulsion between the nucleic acid backbone and cell membrane by decreasing the surface’s
negative charge, which may improve the uptake efficiency of the nucleic acid into the cell.
Similar to cationic nanomaterials, AuNPs may act as gene carriers via the loading of DNA
or RNA onto AuNP surfaces via covalent modifications, using thiol-modified nucleic acids
or electrostatic interactions using positively charged AuNPs [69–71]. The challenges in
gene delivery include the protection of therapeutic genes from the harsh conditions in
the bloodstream, permeating the cell membrane, and structural integrity in the cytoplasm.
These challenges were investigated using cationic polymeric materials (i.e., liposomes,
dendrimers, and positively charged branched polymers) or self-assembled DNAs (DNA
origami or nanocrystals) to protect the nucleic acids from enzymatic degradation and
facilitate cell membrane translocation [72,73]. Lipofectamine® and polyethyleneimine (PEI)
are widely used materials for gene delivery owing to their excellent transfection efficiencies;
however, their relatively high toxicity motivated extensive research for exploring novel
materials and strategies in this field.

The use of AuNPs in gene delivery may yield several advantages that cannot be
achieved using the polymeric counterparts, in terms of colloidal stability in the physiologi-
cal state, the tunable density of DNA, and the performance of controlled DNA release via
light stimulation.

The first example of the use of AuNPs in gene delivery was reported by Mirkin et al. in
Science in 2006 [74]. AuNPs modified with oligonucleotides were proposed as intracellular
gene regulation agents to control protein expression in cells. The oligonucleotide-modified
AuNPs were less susceptible to nuclease degradation and exhibited a 99% cellular uptake
efficiency, introducing oligonucleotides at a higher concentration than that of conventional
transfection agents. The density of DNA on AuNPs could be controlled, which enabled
tunable gene knockdown.

However, the loading amounts of nucleic acids on AuNPs were relatively low com-
pared with those on polymeric carriers. This may be addressed using Au-polymer hybrid
materials, such as the simple use of PEI-coated AuNPs, as proposed by Encabo-Berzosa et al.
In this study, three different plasmid DNAs were bound to the NPs, with plasmids of≤40 kb
transfected, with superior performance compared to Lipofectamine® [75]. Bishop et al.
showed that layer-by-layer biodegradable polymer coatings containing two different
polymers, 1-(3-aminopropyl)-4-methylpiperazine end-modified poly(N,N′-bis(acryloyl)
cystamine-co-3-amino-1-propanol) containing disulfide bonds and 1-(3-aminopropyl)-4-
methylpiperazine end-modified poly(1,4-butanediol diacrylate-co-4-amino-1-butanol), are
poly(β-amino ester) containing ester linkages. Thus, these polymer coatings may be
degraded in the cytoplasm via enzymatic hydrolysis and disulfide bond cleavage [76].
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Cationic dendrimers combined with AuNPs were also used in RNA delivery [77–79].
Mbatha et al. reported folic acid (FA)-modified AuNPs mounted on poly(amidoamine)
dendrimers. The sizes of the nano complex materials were optimal for bearing mRNA, and
the polymer coating protected mRNA in the cellular environment against RNases [80].

Natural cationic polymers, such as chitosan (CS), were also used in gene delivery.
Abrica-González et al. reported the use of CS-coated AuNPs as DNA carriers. AuNPs
conjugated with CS, acylated CS, or CS oligosaccharides were used to evaluate the transfec-
tion efficiency of plasmid DNA in cell culture (HEK-293). The percentages of transfection
obtained using CS, acylated CS, or CS oligosaccharides were 27%, 33%, and 60%, respec-
tively. The positive charges formed on AuNP surfaces by the cationic amino groups of CS
promoted the adsorption of plasmid DNA. The sizes of the AuNPs were 3–15 nm, and the
higher the CS amount in the hybrid materials, the higher the plasmid DNA adsorption was,
due to the positive charge [81].

Furthermore, controlled gene delivery was possible using AuNPs. An AuST-polymer
hybrid structure was demonstrated as a controllable siRNA delivery system for use in
cancer therapy [82]. The AuSTs absorbed the NIR light, even in deep tissues, thereby
inducing a strong photothermal effect to release DNA and enhance hyperthermia.

Overall, Au or AuNP-polymer systems have been widely investigated as intelligent
systems for use in gene delivery and exhibit promise for overcoming the existing issues in
gene delivery systems.

3.3. Photoablation Therapy

Photothermal (PTT) and photodynamic therapies (PDT) utilize light energy to destroy
abnormal cells [83]. PDT is an approved clinical therapeutic method, e.g., Visudyne®, for
treating age-related macular degeneration. AuNPs and carbon materials, such as carbon
nanotubes, were investigated as PTT agents owing to their strong absorption of light in
the visible and NIR regions. Depending on their sizes and shapes, Au nanostructures
exhibit considerably different light absorption and scattering properties in the visible and
NIR regions (NIR-I (700–950 nm) and NIR-II (1000–1700 nm)), as shown in Figure 4 [84].
Furthermore, small NPs or NCs (<5 nm) are also applicable in PTT via in situ formations
of large aggregates in cells. It was observed that the percentage increase in temperature
depends on the NIR absorption coefficient of the NPs as well as on the power of the
excitation source. Irradiation of NPs with NIR light increases the temperature of the
medium, and it reaches a maximum value when the NIR absorption of AuNPs resonates
with the laser wavelength. To attain this, AuNPs of different sizes and shapes are fabricated
(Table 2). It was observed that different AuNPs possess different excitation wavelengths
and unique light to heat conversion efficiency, from 22% to 103% depending on their size,
shape, and aggregation states. As shown in Figure 4A, Au nanospheres and Au nanocubes
possess a single surface plasmon absorption band, whereas nanorods, nanobranches,
and nanobipyramids exhibit two major absorption bands. It is clear from Figure 3 there
is a redshift in the absorption band from the nanosphere (Figure 4A, wave a) to the
nanocube (Figure 4A, wave b). In the case of AuNRs depending on the aspect ratios,
different absorption maxima are observed towards the red region in the spectra (Figure 4A,
wave c–e). This suggests that AuNRs are a better candidate than AuNPs for PTT. Due to
the longitudinal and transverse plasmon bands in AuNRs, they possess a reduced radiated
attenuation effect, resulting in narrower linewidths compared to spherical nanoparticles,
and possess strong NIR absorption efficiency, large scattering, and photothermal efficiency.
Au nanobipyramid also showed redshift plasmon bands compared to AuNR, due to the
strong electron oscillations in their conduction bands depending on the different aspect
ratios (Figure 4B, wave a–d). The highest redshift and NIR absorption were observed for
Au nanobranches, due to their considerable longitudinal electron oscillations (Figure 4B,
wave e). Despite this being the case, it cannot be easily concluded which Au nanostructure
would be best suited for particular cancer treatment, because of their respective advantages
and features.
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Table 2. Summary of photothermal conversion efficiency of gold nanoparticles for PTT and PDT. A
correlation between size, morphology, and photothermal conversion efficiency.

Type of Gold Size of Gold Photothermal
Efficiency Laser Treatment Ref.

AuNR 17 × 56 nm 22% 0.4 W/cm2, 808 nm PTT [85]
AuNR 10 × 38 nm 95% CW laser, 809 nm PTT [86]

AuCG 45 nm edge length, 5 nm
wall thickness 64% 0.4 W/cm2, 808 nm PTT/PDT [87,88]

AuNP 20 nm 97–103% 0.28 CW laser, 532 nm PTT [89]
AuNSs 50 nm 59% 815 nm PTT [90]
AuNSs 152 nm 39% CW laser, 2 W/cm2, 809 nm PDT [91]
AuNF 145 × 123 × 10 nm 74% 1 W/cm2, 809 nm PTT [92,93]

AuNRIs 400 nm 56% CW laser, 0.1 W/mm2,
700–900 nm

PTT [94]

3.3.1. PTT

PTT is based on the imperfect defense mechanisms of cancer cells against heat dam-
age, which are inferior to those of normal cells. Cancer cells are highly susceptible to
heat damage and, thus, PTT using anisotropic Au nanostructures has been extensively
investigated for use in cancer therapy [95]. Ideal nanostructures for use in PTT should
exhibit strong PT effects. Among various anisotropic structures, rod- or star-shaped or
nanoshell structure have attracted considerable attention for their strong absorption in the
NIR region, tunability, and relatively small sizes. Nanoshell structure has been investigated
for the treatment of prostate and breast cancers in clinical trials [96].

Similar to that in drug delivery systems, polymer layer formation on Au nanos-
tructures is required to improve their biological stability and achieve specific targeting.
Accordingly, PEGylation or various targeting strategies have been widely investigated
for use in PTT [97]. Shouju et al. showed that PEG-AuSTs exhibited high cell affinities
and therapeutic efficiencies at tumor sites without targeting the normal cells [98]. Xu et al.
reported Au nanocups with PEG surface modifications that exhibited PT efficiency and
eliminated tumor tissues, both in vivo and in vitro [99]. To improve the PTT efficiency,
a PEG-tethered AuNP-poly perylene-diimide semiconducting nanovesicle system was
synthesized by Yang et al. [100]. The interparticle distance between the AuNPs and poly
perylene derivative can be adjusted for better optical properties, and studies on U87MG
tumor-bearing mice showed that these nanovesicles can act as excellent photoacoustic imag-
ing agent. The in vivo PTT studies in tumor-bearing mice showed that laser irradiation of
the tumor region resulted in complete suppression in tumor growth, as compared to bare
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AuNR and perlyenediimide. In vivo imaging and therapeutic evaluation demonstrated
that the hybrid vesicle is an excellent probe for cancer theranostics.

Biocompatible polymers, besides PEG, have been widely studied to modify the sur-
faces of Au nanostructures to improve PT performance. Polypyrrole, -sarcosine (PS),
-methoxyaniline, and -dopamine were investigated to stabilize AuNRs to improve their
stability under irradiation. For example, polypyrrole is a conductive biomaterial recently
used in surface coating and biomedical applications. Owing to its high conductivity and
biocompatibility, the polypyrrole coating improves the biosafety and stability of AuNRs and
enhances their PT conversion efficiency [101]. Wang et al. synthesized AuNRs with (poly-o-
methoxyaniline) shells. The core-shell hybrid displayed an absorption band at 808 nm and
an excellent PTT effect upon irradiation with an 808 nm NIR laser [102]. Owing to the con-
ductive and electronic oscillation properties of the polymer, the poly-o-methoxyaniline shell
not only improved the NIR absorption but also increased the photostability of AuNRs un-
der NIR irradiation. Zhu et al. reported PS-modified AuNRs prepared via ligand exchange.
The hybrid showed good stability in a wide pH range and under physiological conditions
with the competitive ligand dithiothreitol. The Au-polymer hybrid exhibited an extended
circulation time in the body, which was superior to that of PEG-AuNRs [103]. Pan et al.
reported the use of Triton X-100 as an emulsifying agent in dopamine-conjugated AuNPs.
Spherical Au nanostructures (106 nm) with 10 nm polydopamine shells were produced. The
Au-polymer hybrid exhibited resistance to heat, acid, alkali, and irradiation at 808 nm, and
an improved PT conversion efficiency (33%) compared to that of the uncoated AuNPs [104].
The formation of silica shell on AuNRs resulted in an improved PT conversion efficiency
and improved stability of AuNR structure during light irradiation [105].

As spherical Au nanostructures only absorb light in the visible region, they are not
widely investigated for use in PTT. However, various polymer materials may be used as
templates for the assembly of spherical AuNPs with enhanced photostability and NIR
absorption. For example, Wang et al. prepared a fibrous nanostructure using spherical
AuNPs, with a silk fibroin (SF) template effect. The AuNP/SF nanofiber structure exhibited
NIR absorption at 808 nm, with a higher PT conversion efficiency under an 808 nm laser
than that of the non-assembled AuNPs (Figure 5A–C) [106]. In vitro and in vivo studies
showed that the assembled AuNPs on the nanofibers efficiently killed breast cancer cells
and destroyed breast cancer tumor tissues under PTT using a single NIR irradiation
for 6 min, whereas the non-assembled AuNPs failed. The acridine orange/ethidium
bromide (AO/EB) staining results showed that monodisperse AuNPs showed no dead
cells (green fluorescence), whereas AuNPs/SF fiber showed 50% dead cells on irradiation
(red fluorescence) with NIR laser, using 50 µg mL−1 of the nanomaterials.

Ultrasmall AuNCs (<5 nm) do not exhibit surface plasmon resonance effects. There-
fore, the use of NCs in PTT has not been investigated. However, AuNCs exhibit strong
luminescent properties and are sufficiently small for homogeneous distribution in the
body [107,108]. These ultrasmall particles may accumulate easily in cancer cells and exhibit
superior antitumor activities and homogeneous distribution in cell lines compared to those
of their large analogs. The incorporation of indocyanine green (ICG) into Au25-glutathione
leads to the effective transfer of ICG into tumor cells in vivo [109]. The ICG4-GS-Au25
(ICG4-glutathione-Au25NCs) enabled an effective NIR light-induced tumor PTT effect with
complete ablation of the tumor cells. Conversely, the untargeted AuNCs dissociated in the
liver and were removed via urine. This study highlights the role of integration of ICG in
targeted PTT and the potentially fewer side effects of AuNCs compared to those of other
AuNPs [110].

For improved therapeutic application, the PT effect may be combined with a drug
delivery system for utilizing the synergistic effect of PTT and chemotherapy with drugs.
Several studies using PTT and NIR-induced drug release systems have been reported.
Docetaxel-loaded poly(lactide-co-glycolide) AuNRs [111] and diblock PEG-block-poly(2-
hydroxyethyl acrylate) copolymer-coated AuNRs were proposed [112]. Xu et al. reported a
dual-responsive drug-releasing nanocomposite containing hyaluronic acid-functionalized
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AuNRs that showed pH- and NIR-induced drug release. The nanocomposite exhibited
a PTT-chemotherapy synergetic effect for treating breast cancer. The results of mouse
experiments showed that the NPs exhibited an extended blood circulation efficiency, a high
rate of accumulation in tumor cells, and excellent tumor suppression without toxicity over
20 days [113].

Tracking and quantifying internalized drugs in the various organs in the living system
allow more detailed study into the efficiency of the nanocarrier system and further modifi-
cations in chemophotothermal therapy. Song et al. synthesized a gold nanoflower-based
nanocarrier system for simultaneous DOX release, chemophotothermal therapy, and SERS
imaging studies [114]. The gold nanoflower-like structure possesses high photothermal
efficiency and hot spots needed for the SERS performance. Raman reporting molecule
4-mercapto benzoic acid was tagged with nanoflower, and further with cyclic peptide RGD,
to obtain the targeted SERS imaging of A549 human lung cancer cells. After this, to impart
stability, thiolated-polyacrylic acid was attached to the surface and DOX was loaded into
the polymer via electrostatic interaction. Studies showed that maximum release of DOX
was obtained at pH 5.3 and 37 ◦C under physiological conditions. SERs studies showed
that the gold nanoflower nanocarriers entered the cytoplasm with a strong Raman signal
intensity for the mercapto benzoic acid, and this incorporation study was further confirmed
by the dark field microscopy studies. A chemophotothermal therapy study towards A549
human lung cancer cells showed that the nanocarrier system exhibited cell viability of 20%
after NIR irradiation, indicating better antitumor efficiency than free DOX.

Recent studies reported diverse and improved therapeutic strategies designed based
on the PTT effects of Au and Au-polymer systems. Although unlimited Au nanostructures
with varying particles and complex geometry are available, ultrasmall NPs combined with
polymers have also been designed for use in PTT. PTT combined with chemotherapy may
improve the therapeutic effect, and controlled release is also possible. PTT may be further
combined with PDT or immunotherapy.
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3.3.2. PDT

PDT is based on the generation of singlet oxygen and reactive oxygen species (ROS)
upon light irradiation and is approved by the FDA for treating various diseases [115].
The critical component of PDT is a photosensitizer (PS) that generates ROS that is highly
cytotoxic and leads to cell death via apoptosis. Typically, PSs are porphyrin derivatives,
such as photofrin (630 nm), temoporfin (652 nm), verteporfin (690 nm), tookad (760 nm),
and talaporfin sodium (chlorin e6 (Ce6) derivative, 667 nm) [115].

These drugs exhibit relatively low toxicity before light exposure but are cytotoxic
when exposed to light. The non-selective activation and low solubility of PDT drugs are
limitations that must be overcome. Therefore, diverse formulations for specific targeting
and improved water solubility are widely investigated during PDT drug development.
For example, Visudyne® is formulated with liposomes and verteporfin, facilitating the
localization of drugs in blood vessels of the retina.

Similar to anti-cancer drug delivery using AuNPs, AuNPs were used as carriers
of PDT drugs for specific targeting to improve PDT [116–118]. The use of AuNPs as
carriers of PDT drugs improves the therapeutic results via the PT effects of AuNPs and
enhanced ROS generation. AuNRs may generate singlet oxygen, in addition to enhancing
the photosensitization properties of neighboring PSs by facilitating energy transfer between
donor-acceptor pairs [119]. For example, Li et al. prepared a two-photon excitation
nanocomposite for use in PDT and imaging studies [120]. In this system, the two-photon
absorption of tetraphenylporphyrin (TPP) is initially enhanced by the polymer backbone,
and later by AuNRs. A silica coating acts as a spacer between the AuNR and the organic
backbone to control the energy transfer. The two-photon excitation fluorescence and
induced singlet oxygen generation are enhanced 792-fold when silica thickness is 9 nm.
HeLa cells exhibited enhanced, bright fluorescence and effective PDT efficiency after
irradiation of the NP system with an 800 nm laser.

The loading efficiency and solubility of PDT drugs can be improved using Au-
polymers. For example, Kutsevol et al. prepared Au-polymer nanocomposites for use in
PDT applications [119]. AuNPs and Ce6 were loaded into a star-shaped polymer-dextran-
graft-polyacrylamide. The water solubility and pharmacokinetics of Ce6 are very poor, but
incorporation into the Au-polymer coating enhanced its solubility and ROS generation
properties. Even after prolonged heating, the sizes of AuNPs remained constant (10 nm),
and PDT was conducted on the sub-lines of breast carcinoma MCF-7/S- sensitive to cy-
tostatics, MCF-7/Dox- resistant to doxorubicin, and Jurkat cells’ suspension line of T-cell
origin. After laser irradiation, cell deaths of 68.4%, 24.9%, and 20% were observed for the
MCF-7/S, MCF-7/Dox, and Jurkat cells, respectively. The supramolecular three-component
nanosystem displayed enhanced PDT results compared to those of the individual Ce6 dyes.

To address the circulation time in the blood, AuNPs were combined with zwitterionic
polymers from the reticuloendothelial system; this combination resulted in an extended
circulation time [121,122]. This type of Au-polymer hybrid may be used in combined
PTT, PDT, and cell imaging studies. For example, Zheng et al. prepared a pH-responsive
zwitterionic polymer which was grafted onto DOX-incorporating Au@TiO2 core-shell
NPs. The acidic environment in cancer cells conferred a positive charge on the polymer
backbone, which enhanced the cellular uptake and controlled the release of DOX at lower
pH. Au@TiO2-core-shell exhibited enhanced PT and singlet oxygen generation properties,
with the polymer material acting as a stabilizing agent and switching material for releasing
DOX into human cervical cancer cell lines [123].

Rad et al. prepared functionalized acrylic copolymer NPs with spiropyran (SP) and
imidazole groups via emulsion polymerization, and Au3+ was immobilized and reduced
on the surface, yielding photoresponsive Au-bearing polymer NPs. The prepared nanocom-
posite was then further modified with folic acid (FA) as a site-specific tumor cell targeting
agent. Microscopic studies showed the internalization of these nanomaterials in rat brain
cancer cells (C6 glioma), with a 71.8% cellular uptake, in comparison with 28.8% for the
nonconjugated materials. The nonpolar SP groups were converted to zwitterionic merocya-
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nine isomers under UV irradiation at 365 nm, and their conjugation with AuNPs resulted
in enhanced photogeneration of ROS. This was confirmed via intracellular ROS analysis
and cytotoxicity studies using malignant C6 glioma cells. Owing to the strong surface
plasmon resonance absorption of AuNPs, the FA-PAuNPs exhibit an elevated local PT
efficiency under NIR irradiation at 808 nm. The prepared multifunctional FA-PAuNPs with
comprehensive integration of prospective materials represent promising nanoprobes with
targeting properties, enhanced tumor PDT, cell tracking, and PTT [124].

Liu et al. reported DOX loaded-polypeptide-based multilayer assembled AuNR (DH
AuNR) for the combined chemotherapy and PDT study [125]. To reduce the toxic effect of
CTAB coated AuNR and to improve the colloidal stability, the outer layer is coated with
multiple layers of polymers. For the positively charged DOX loading, layer by layer coating
of negatively charged polyglutamic acid (PGA) was used, and for further charge reversal,
positively charged polylysine (PLL) was used. For targeting, the positively charged AuNR-
PGA-PLL, nanoparticles were further modified with hyaluronic acid and helped to interact
with the CD44 receptor overexpressed cancer cells with enhanced internalization. NIR laser
irradiation-induced a burst release of DOX at pH = 7.4 and pH = 5, and the combination of
DOX chemotherapy and AuNR photothermal effect resulted in 82.5% apoptosis in SKOV3
cancer cell lines, compared with free DOX and DH-AuNR without NIR (Figure 6A–C). The
enhanced apoptosis rate is due to the generation of excessive reactive oxygen species from
DH-AuNR. Overall, Au or Au-polymers have been widely investigated to improve PDT.
Detailed studies may reveal novel Au-based smart nanomaterials for use in PDT and cell
imaging applications.
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and PI using flow cytometer and the results are represented as a bar diagram. and ** p < 0.001.
*** p < 0.001. Adapted with permission from [125]. Portland Press Ltd., 2019.
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3.4. PT Immunotherapy

Activation of the host immune system against cancer cells is the major objective of
cancer immunotherapy. With considerable advances in this field, drugs such as monoclonal
antibodies, dendritic cell-based vaccines, chimeric antigen receptor T cells, whole-cell
vaccines, and immune checkpoint inhibitors were applied in clinical studies. However,
inconsistent therapeutic responses of different patients, including organ toxicity and other
side effects, are the major limitation [126]. In addition, cancer cells develop varied defense
mechanisms to avoid recognition by the immune system via reducing surface antigen
expression, inhibiting dendritic cells, and inducing apoptosis [127].

Eliminating primary tumors, activating the host immune system, and eliminating
metastatic and residual tumor cells are critical for satisfactory cancer immunotherapy [3,128].
In this regard, the use of AuNPs is favorable because they may destroy primary tumors via
strong PT effects induced by light stimulation, in addition to delivering immunostimulants
or other drugs to enhance the antitumor immune responses of the body. Accordingly, com-
bining local therapy with immunotherapy is a promising method to overcome the current
limitations of immunotherapy. Furthermore, hyperthermia may cause dying tumor cells to
release antigens, pro-inflammatory cytokines, and immunogenic intracellular substrates,
thus promoting immune activation [129–131]. Therefore, the PTT effect achieved using
AuNPs, represented by PT immunotherapy, may induce not only direct cell death but also
immunogenic cell death (ICD).

However, applying the optimal thermal dose is critical for proper utilization of the
synergistic effect of PTT and ICD [132]. Extremely high or low, a thermal dose may fail to
properly induce ICD (Figure 7). This is one application of PTT in PT immunotherapy. Only
the PTT effect is applied, without relying on any molecules to induce the immune response.
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Although the tumor fragments produced via PTT can activate the anti-tumor immune
response, it is insufficient. The combined use of immunostimulants or immunotherapy
drugs can further improve PT immunotherapy. There are three different strategies, includ-
ing combination with immunoadjuvants, immune checkpoint inhibitors, or chemotherapy.

3.4.1. PT Immunotherapy with Immunoadjuvants

Zhou et al. synthesized AuNRs bearing mPEG-SH that, upon further surface modifica-
tion with bovine serum albumin (BSA), resulted in negatively charged mPEG-AuNRs@BSA
NPs. The immunoadjuvant R837 (imiquimod), which is positively charged, was adsorbed
on the NPs via electrostatic adsorption. These immunoadjuvant-bearing AuNRs were used
to treat melanoma via PTT and immunotherapy [133]. The nanocomposite increased the
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secretion levels of TNF-α and IL-6 and -12. The maturation level of dendritic cells was in-
creased by 65.1%. The nanocomplexes under NIR irradiation effectively killed tumors and
induced strong immune responses in treating metastatic melanoma in mice. Zhang et al.
reported AuNSs conjugated with CpG oligonucleotide immunoadjuvants that acted as
drug carriers, with PTT destroying cancer cells at the macro-level [134]. Immunotherapy
studies showed that these nanomaterials were distributed inside the cell and killed cancer
cells throughout the body. Chen et al. proposed the combination of PEI with AuNRs
via S-Au bonds. This AuNR-PEI/CpG nanocomposite exhibited a PT response in vitro,
and the immune system was activated following PTT, which was mainly attributed to the
generation of tumor-specific antigens and the CpG adjuvant in situ. These findings indicate
the potential use of cell-mediated nanoplatforms in tumor therapy via combining NIR PTT
and immunotherapy [135].

3.4.2. PT Immunotherapy with Immune Checkpoint Inhibitors

Immunotherapy with a specific immune checkpoint inhibitor is a promising method
to disrupt the tumor immunosuppressive environment. This technique aims to block the
overexpressing programmed cell death-1 (PD-1) in T cells and programmed cell death
ligand-1 (PD-L1) in cancer cells, with the cytotoxic T lymphocyte antigen-4 (CTLA-4)
protein receptors acting as checkpoints for cancer treatment. The PD-1/PD-L1 pathway
mediates tumor immunosuppression by inhibiting T-cell proliferation and inducing T-cell
apoptosis. To reverse tumor-mediated immunosuppression, anti-PD-1/PD-L1 antibodies
were designed to block the PD-L1/PD-1 interaction.

The combination of AuNPs and inhibitors of PD-L1/PD-1 exhibited considerable po-
tential in clinical applications [136]. The targeted delivery of immunoregulatory molecules
using AuNPs may not only eliminate dead primary tumor tissues, but also promote a
systemic immune response to treat metastatic lesions and prevent tumor recurrence [134].
Liu et al. reported plasmonic PEG-AuST-based NPs for use in PTT, in combination with
immune checkpoint inhibitors of PD-L1 [137]. Complete eradication of primary treated
and distant untreated tumors in several mice implanted with MB49 bladder cancer cells
was observed. The cured mice received a re-challenge of MB49 cells and exhibited no new
tumor formation after 60 days, which indicated the effectiveness of PT immunotherapy in
MB49 cells. A multifunctional PVP-AuCG-based nanocarrier was developed by Cheng et al.
to treat hepatocellular carcinoma [138]. The nanocarrier was loaded with ansamitocin
P3 (AP3) and anti-PD-L1 antibodies (AP3-AuCGs-anti-PDL1), potentially combining PTT,
chemotherapeutic agent-induced dendritic cell maturation, and checkpoint immunother-
apy in one platform. Irradiation for 10 min using a NIR laser led to the formation of
numerous dendritic cells with a significant release of AP3 and tumor-associated antigens,
resulting in T-cell activation.

3.4.3. PT Immunotherapy with Chemotherapy

Recent studies reported the improved performance of immunotherapy by combining
PTT and chemotherapy. Nam et al. reported that combined PTT and chemotherapy
induced potent anti-tumor immunity against disseminated tumors [139]. Polydopamine-
coated spiky AuNPs were used as PT agents with extensive PT stability and efficiency.
Remarkably, a single round of PTT combined with a sub-therapeutic dose of DOX elicited
robust anti-tumor immune responses and eliminated local and untreated, distant tumors
in >85% of animals with CT26 colon carcinoma. These studies provide novel strategies
regarding a previously unrecognized, immunological feature of chemo-PTT and may help
in developing novel therapeutic strategies against advanced cancer. Together, combination
strategies involving AuNPs in the field of immunotherapy are promising therapeutic
strategies for treating cancer.
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3.5. Au Nanozymes for Cancer Treatment

The term nanozymes was coined by Paolo Scrimin’s group in the early 2000s [140]
to represent the catalytic activity of AuNPs, such as their oxidase and peroxidase [141],
glucose oxidase [142], and reductase [143] type activities. Recent studies showed that Au
nanozymes can be used for biosensing and therapeutic applications. The excessive produc-
tion of reactive oxygen species can damage cancer cells; Au nanozymes with peroxidase
catalytic activities can induce hydrogen peroxide decomposition and ROS generation. This
induced toxicity can be used for the PDT studies by inoculating the AuNPs to the specific
tumor sites and activating their catalytic activity. For such actions, a low concentration
of nanomaterial is needed, and this reduces the chances of unwanted generation of ROS
in the other parts. The nanozyme activities are highly dependent on the size, shape, pH,
temperature, and surface modification of AuNPs [144]. It was reported that by using NIR
radiation in the therapeutic window, nanozymes can generate ROS for the PDT and PTT
studies. Zhang et al. reported a carbon-gold hybrid nanozyme material for simultane-
ous real-time imaging, PDT, PTT, and nanozyme oxidase activities [145]. Mesoporous
carbon nanospheres were doped with small AuNPs which were further complexed with
reduced serum albumin and folic acid. Carbon mesoporous material contains several
free carboxylic acid groups on the surface, which were further functionalized with serum
albumin and folate receptor targeting folic acid to target the gastric tumor site via the
1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) coupling chemistry and NIR dye
IR780 iodide via physical adsorption, which can act like a photothermal agent to enhance
the photothermal efficiency and for cell imaging studies. Incorporation of AuNPs utilized
as a nanozyme to catalyze the H2O2 located in the tumor cells can generate OH radicals for
the intracellular oxidative damage. Irradiation of the hybrid material using a 808 nm laser
resulted in enhanced PTT and PDT in MGC803 bearing mice. To confirm the nanozyme
activity of AuNPs, control studies were performed using 2′,7′-dichlorodihydrofluorescein
diacetate (H2DCFDA) dye, and it was observed that, in the absence of NIR light, cer-
tain green fluorescence was observed in the cell lines, indicating the nanozyme activity
of AuNPs to produce the OH radical. This resulted in enhanced PDT under NIR light
along with NIR dye IR780. In vivo experiments showed that the hybrid nanomaterial
can suppress the tumor for up to 30 days, allowing the regeneration of new cells. The
carbon mesoporous material enables the high drug loading efficiency of up to 33% for the
improved PTT and PDT.

Combining one- or two-metal metallic NPs to enhance the biocatalytic activity is quite
interesting in the nanozyme field. Gao et al. reported a dual nanozyme system containing
ultrasmall Au and Fe3O4 NPs coloaded with dendritic mesoporous silica NPs, which were
further functionalized with PEG for improved biocompatibility and physiological stability.
The nanozyme accumulated in the tumor cell via the enhanced permeability and retention
effect to activate the cascade catalytic reaction. AuNPs preserve the glucosidase activity
to produce gluconic acid and H2O2, which are then catalyzed by the peroxidase-mimic
Fe3O4 NPs to liberate high-toxic hydroxyl radicals (Figure 8) [146]. These OH radicals
induced a tumor-suppression rate of 69% in both in vitro and in vivo studies. These hybrid
nanozymes act like the natural Fenton type reaction to produce OH radical, so this hybrid
material can be considered as a biomimetic system.

In another study, Fan, et al. reported that AuNPs encapsulated with hollow carbon
shell nanospheres can be used for thermal cancer therapy along with the nanozyme activity
under acidic conditions. The study showed that the ROS generation can be enhanced
further with NIR laser irradiation in the therapeutic window, using a 808 nm laser to inhibit
the CT26 tumor growth in vivo [147]. The simulation of the peroxidase and oxidase-like
activities of Au nanozymes allows these nanozymes to treat tumors in human and animal
cells with enhanced PTT and ROS generation. Recently, many research groups have studied
the excellent therapeutic applications of nanozymes along with PTT and PDT activity, using
various hybrid AuNP materials [148,149]. The oxidase- and peroxidase-like activity of
AuNPs is the key feature for using nanozymes for cancer treatment. For example, studies
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performed by Maji et al. showed that graphene oxide-silicone-folic acid@AuNPs can impart
intrinsic peroxidase catalytic activity and generate OH radicals, which can improve the
therapeutic application of these nanozymes for cancer treatment in HeLa cells [150]. They
showed that the nanohybrid system does not produce any OH radical in the normal tissues,
so here, the folic acid receptor targeting action and acidity of the cancer cells play a key role
in the nanozyme activity and subsequent cancer therapy. The hypoxia effect in solid tumors
always renders the proper cancer treatment in radiotherapy. However, Yi et al. showed that
the nanozyme activity of Au nanozyme@manganese dioxide nanoparticles could increase
the oxygen in the radiotherapy-resistant hypoxia tumor tissue, despite reducing the toxic
effects of NPs in other tissues. In another study, Liu et al. showed that the drug-resistance
nature of cancer cells can be altered and anti-cancer drugs can be loaded into the tumor cell
by using Polyamidoamine (PAMAM) dendrimer encapsulated AuNCs, which increase the
consumption of H2O2 optimally by catalase to produce oxygen [151]. Quite interestingly,
the nanozyme showed catalase-type activity even in highly acidic pH conditions (pH = 4).
The enhanced amount of free amino groups in the PAMAM dendrimer become protonated
in the acidic environment, which favors the adsorption of OH on the metal surface to
trigger the catalyze type activity and generate 1O2 for PDT studies.
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Therefore, as a part of the discussion, the various studies showed that owing to the
higher biocompatibility of Au nanozymes, they can be used for various biosensing and
therapeutic applications. The nanozymes can act like model complexes for the biological
systems for mimicking various biochemical reactions. Most of the studies reported for Au
nanozymes are in vitro, so in the near future, more in vivo studies can occur in this field to
fully utilize the Au nanozymes for future therapeutic applications.
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4. Tissue Engineering

Tissue engineering restores, replaces, or regenerates defective tissues with the aid of
scaffolds. Various scaffolds for use in tissue engineering applications have been investigated.
Cells, scaffolds, and growth factors are the three key components in tissue engineering. The
normal cells in human tissues are partially anchored in a solid matrix represented by the
extracellular matrix. This matrix provides structural support and mechanical properties
and acts as a bioactive cue and reservoir for growth factors that mold the tissue during
healing. The design and synthesis of the scaffold for use in tissue engineering aim to mimic
the properties of the extracellular matrix [152,153].

The scaffolds should be biocompatible and biodegradable. In addition to the me-
chanical properties, porosity is also crucial. Polymeric and inorganic nanomaterials were
used to enhance the scaffold properties. Among the various NPs, AuNPs have attracted
considerable attention for their use in tissue engineering, owing to their diverse optical
properties, simple surface chemistry, and rigidity. AuNPs may alter the mechanical prop-
erties of the scaffold and improve cell adhesion. This is critical, because cell adhesion
and proliferation depend strongly on the elasticity and elastic moduli of the scaffolds.
AuNPs (5 nm) incorporated into electrospun fiber consisting of polylactic acid resulted in
an increase in Young’s modulus from ~30 to ~70 MPa, and the scaffold aided in the growth
of skeletal muscle tissue [154]. AuNP incorporation may improve electrical conductivity
and promote the propagation of electrical signals in cell-cell interactions, particularly in
cardiac tissue engineering. The diverse roles of AuNPs in fabricating scaffolds for use in
tissue engineering are shown in Figure 9 [155]. AuNPs of various sizes and shapes are
incorporated into natural or synthetic polymer matrices to improve performance in various
tissue engineering applications.
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Nanofiber structures with incorporated AuNPs are frequently used in tissue engineer-
ing scaffolds owing to their high surface:volume ratios, structural similarities to extracel-
lular matrices, and functions [156]. For example, Guterman et al. synthesized bacteria-
inspired nanofibers that reduce metal ions. Using these nanofibers, AuNPs were prepared
on a stable, conductive scaffold for use in tissue engineering [157]. While one method
synthesizes AuNPs using the common citrate reduction or seed-mediated methods and
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incorporates them into the polymer nanofiber during electrospinning, another method uses
the polymer in the in situ generations of AuNPs, and polymer selection depends on its
ability to reduce Au3+ to Au0 and stabilize the formed AuNPs during the formation of the
nanofiber scaffold [158].

Hydrogels are promising materials for use in tissue engineering owing to their tunable
mechanical properties, injectability, and stimuli-responsive nature. Similar to the nanofibers
and other scaffold structures, AuNP-hydrogel composites may yield novel advanced mate-
rials with good electrical and conductivity properties for use in tissue engineering. AuNPs
were integrated into numerous hydrogel systems derived from alginate, gelatin, gelatin
methacrylate, poly(N-isopropylacrylamide), and numerous other materials [159,160]. Such
hybrid scaffolds may be generated either by preparing the hydrogel in a preformed NP
solution or physically incorporating the AuNPs into the hydrogels. Grant et al. reported
that an AuNP-containing hydrogel could be injected into swine ears, with the presence of
AuNPs resulting in improved longevity of the material; in addition, the irritation level of
the material was retained, suggesting that it could be used as a soft tissue filler [160].

Furthermore, the peptide sequence Arg-Glu-Asp-Val was incorporated in AuNPs, and
the AuNPs were then used to produce hydrogel from alginate. This composite exhibited
selective adhesion and proliferation of human umbilical vein endothelial cells. Additionally,
the AuNP-alginate surface exhibited an improved cell adhesion rate and cell spreading
compared to those of the bare alginate surface, which could be due to the interactions
between AuNPs and vascular endothelial growth factor receptors on the plasma cell
membrane. Moreover, this might also be due to the increased stiffness of the scaffold
induced by AuNPs [161].

The uses of Au-polymer hydrogels in osteoblast cells are unlimited. Enhanced pro-
liferation and growth rates were observed in preosteoblastic mouse cells cultured on chi-
tosan/pectin thermosensitive hydrogels containing AuNPs [162]. Heo et al. reported that a
photocurable gelatin hydrogel bearing AuNPs could differentiate human adipose-derived
stem cells to osteoblast cell lines, with enhanced proliferation and growth rates [163]. This
indicates that these hydrogels and their activities are comparable with those of the os-
teoinductive protein BMP-2, and they may thus be used as alternatives to BMP-2 in bone
tissue engineering. AuNPs modified with N-acetyl cysteine were loaded into a gelatin
hydrogel, and the proliferation and differentiation of human adipose-derived stem cells
were studied in vitro and in vivo. The hydrogels loaded with AuNPs promoted the pro-
liferation, differentiation, and alkaline phosphate activities of human adipose-derived
stem cells, with dose-dependent differentiation towards osteoblast cells. Moreover, the
in vivo results showed that these hydrogels loaded with high concentrations of AuNPs
significantly influenced new bone formation [164].

The mechanical strength of scaffolds is critical for their application in tissue engineer-
ing. As their mechanical properties may affect the basic cell behavior, viability, proliferation,
and adhesion, scaffolds with different elasticities and mechanical strengths may alter the
rate of cell differentiation. Polymer materials may improve mechanical strength and stiff-
ness to the AuNP-based scaffolds. For example, in a study by Baei et al., AuNPs with
diameters of 7 nm were introduced into chitosan (CS) hydrogel. The AuNPs were formed
within the CS gel before crosslinking, with the compressive modulus of the hydrogel
increasing to 6.8 kPa. When mesenchymal stem cells (MSCs) were seeded within these scaf-
folds, a significant increase in the expression of the cardiac lineage differentiation markers
Nkx-2.5 and α-MHC was observed, compared to that observed using plain CS hydrogels
(Figure 10A,B) [165]. Hematoxylin and eosin (H & E) staining showed the even distribution
of MSCs throughout the samples for both CS and CS-2AuNPs in their pores, and DAPI
stain showed the homogenous pattern of MSCs after 14 days (Figure 10B). The role of Au
in MSC cardiogenic differentiation was studied using immunohistochemistry staining for
cardiac-specific markers α-MHC and Nkx-2.5; results showed the CS occasionally stained
for the markers, whereas several α-MHC-/Nkx-2.5-positive cells were detected within the
CS-2AuNP hydrogel. Both Nkx-2.5 and α-MHC proliferation rates were also increased,
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up to 24.3% and 35.3%, respectively, using CS-2AuNPs. Incorporation of large AuNPs
with sizes of 60 nm into methacrylate-CS gel increased Young’s modulus of the scaffold
from 450 Pa to 1.3 kPa, and these materials were used in cardiac tissue constructs [159].
Ahmed et al. prepared ε-polycaprolactone (ε-PCL) polymer nanofiber structures with
AuNPs that showed good adhesion and proliferation properties for osteoblastic cells [166].
This indicates that the incorporation of AuNPs may increase the stiffness and mechanical
strength of scaffolds. This increased stiffness is likely due to the electrostatic interactions
between AuNPs and polymeric materials.

Electrically conductive scaffolds are promising platforms for use in tissue engineer-
ing. These are often used to form an electronic interface with the cells and enable facile
stimulation of the tissues or recording of extracellular potentials [167,168]. This is par-
ticularly relevant for electrically active tissues, such as the cardiac muscle and neuronal
tissues, wherein propagation of electrical signals is crucial for proper tissue function. For
example, Nekounam et al. synthesized carbon nanofiber/AuNP-conductive scaffolds via
electrospinning and electrospraying method for bone tissue engineering applications [169].
Polyacrylonitrile polymer solutions were integrated into conductive nanofibrous scaffolds
and AuNPs were embedded either directly in the polymer solution or by co-electrospun
with the polymer solution. The incorporation of AuNPs improved the flexibility of the
process and the addition of 2.5% of AuNPs improved the conductivity of the material by
81%. This scaffold material exhibited no toxicity towards MG-63 cells, and SEM studies
showed a uniform distribution of the cells on the scaffold with high proliferation rates [170].
Studies showed that incorporation of AuNPs to conductive materials can tune the stiffness
and conductivity properties of the material with improved cell adhesion properties.
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The engineered cardiac patches for treating damaged heart tissues are quite remark-
able, and biocompatible 3D polymer materials are used for such purposes. However, these
materials exhibit poor conductivities, resulting in their strong contraction as a unit. Au
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nanowires exhibit excellent conductivity, and their incorporation into biomaterials, such
as alginate or polylactic acid, may yield scaffolds for use in cardiac tissue engineering.
Dvir et al. showed that incorporation of Au nanowires into an alginate scaffold bridged
the electrically resistant pore walls of alginate and improved electrical communication
between adjacent cardiac cells. The tissues grown on these platforms are much thicker
and more well-aligned than those grown on the pristine alginate scaffold. The major
limitations of poor conductivity and irregular contractions can be minimized using this
alginate-Au nanowire patches [25]. Recently, Li et al. showed that the incorporation of Au
nanowires into a gelatin methacrylate hydrogel resulted in improved electrical conductivity
and mechanical strength of the biomaterial scaffold [171]. The scaffold exhibited enhanced
proliferation, and the studies of cardiomyocytes showed synchronous beating and faster
spontaneous beating using the hybrid scaffold. This hybrid nanomaterial may be used for
further applications in cardiac tissue engineering and drug screening.

Electrically conductive scaffolds are beneficial for engineering nerve tissues. In the
field of nerve tissue engineering, nanofibrous Au-polymer scaffolds have shown promising
results, as the AuNPs and their controlled physicochemical properties modulated the nerve
signals due to the conductive cues developed by these nanocomposites. For example,
poly-ε-caprolactone/chitosan (PCL/CS) mixtures with different proportions were electro-
spun to produce fiber structures, and citrate-reduced AuNPs were embedded in the fibers.
Conductivity studies revealed that Schwann cells showed high conductance and biological
responses on the AuNP-doped scaffolds, with a high proliferation rate. This indicates that
the prepared AuNP-doped scaffolds may be used to promote peripheral nerve regener-
ation [172]. Kim et al. prepared a hybrid nanocomposite using Au and polyaniline that
was studied as a nerve regeneration model [173]. Manipulation of the sizes, shapes, and
conductivities of the hybrid materials was investigated in detail by varying the ratios of the
components; the most effective conductive nanocomposite was delivered directly into the
cells. Electroporation followed by mRNA-sequencing analysis of the conductive reinforced
nanocomposite (CRNc)-internalized cells confirmed that these cells exhibited patterns
similar to those of the positive group-induced neuron cells, with strongly expressed nerve
fibers. Moreover, neural differentiation was studied by monitoring the growth of neurites
from stem cells. The CRNc may be used to induce the formation of neuron-like cells by
applying electrical stimulation to stem cells.

The use of AuNPs also resulted in an improved performance in bone tissue engi-
neering. The formation of bone tissue is induced by the differentiation of MSCs toward
osteoblasts and subsequent mineralization of the collagenous extracellular matrix of the
bone. The addition of AuNPs into the cell culture media resulted in osteogenic differentia-
tion of stem cells with increased mineralization [174,175]. Silica-coated AuNPs (Au@SiO2)
were embedded in nanofibrous structures formed using biocompatible polymers. Poly-ε-
caprolactone (PCL), PCL/silk fibroin (SF), and PCL/SF/Au@SiO2 nanofibrous scaffolds
were prepared via electrospinning. Various microscopic studies showed that the addition
of SF and Au@SiO2 enhanced the mechanical strengths, porosities, and adhesion capacities
of the scaffolds for growing human MSCs into osteoblasts [176]. A 3D scaffold-based on
gelatin nanofibers was synthesized by Samadian et al. The polylactic acid (PLLA)/PCL
matrix polymer with gelatin nanofibers (GNF) was impregnated with AuNPs (Figure 10C).
The design strategy of this nanocomposite is based on the following properties. The poly-
mer materials PLLA/PCL act as matrix, and GNF mimic the bone extra cellular matrix,
and AuNPs will act like a healing agent for the tissue engineering application as shown in
Figure 10C. The addition of AuNPs increased the porosity of the material and maximum
porosity was obtained for AuNPs with 160 ppm concentration. The porosity increased to
88.1± 2.16%, which suggested that this nanomaterial can be used for the tissue engineering
applications. The LDH leakage assay showed that, PLA/PCL/GNF/AuNPs (160 ppm)
scaffolds induced cytotoxic effect on cells through the damage to the cell membrane, but
PLLA/PCL/GNF composite with 80 ppm AuNPs showed a higher proliferation rate, for
MG-63 cells on the scaffold. Even though AuNPs at 160 ppm concentration showed higher
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porosity for the scaffold, the generation of ROS induced cell damage (Figure 10D). The
resulting nanocomposite exhibited the highest neo-bone formation ability, osteocytes in the
lacunae of the formed woven bone, and angiogenesis at the defect sites [170].

Thus, AuNP-polymer materials may be useful scaffolds for engineering various tissues.
Along with the various advantages of AuNPs in improving mechanical strength, stiffness,
and scaffold conductivity, additional functional groups on the polymers may further
enhance the application of Au-polymer hybrid materials in nanomedicine.

5. Conclusions and Perspectives

Owing to the unique optical properties of Au, various novel applications and diverse
strategies have been extensively investigated in therapeutics and tissue engineering. In this
review, we focused on the recent progress in the use of Au and Au-polymer materials to
overcome the current limitations in therapeutic and tissue engineering applications. Au
nanostructures were used as carriers of drugs, such as anti-cancer drugs or PDT drugs,
and therapeutic genes, as well. Au nanoparticles can also convert external light energy
into thermal energy, which may be utilized to efficiently eliminate tumors. The PT-based
method could be applied in cancer immunotherapy by improving the immune response
using immunoadjuvants, immune checkpoint inhibitors, or chemotherapy. In the field
of tissue engineering, AuNPs improved cell adhesion and the mechanical properties of
polymer-based scaffolds; furthermore, Au can deliver external electrical stimuli to the cells,
which could not be achieved by other systems. Accordingly, numerous novel applications of
AuNPs and Au-polymer composites have been developed in therapy and tissue engineering.
In spite of the improved therapeutic performances by use of Au or Au-polymer composites,
it is expected that the clinical application of AuNPs will take time, until the potential toxicity
issues are sufficiently addressed in the associated fields. The robust quality control of Au
or Au-polymer systems is also a greatly important issue, in view of large scale production
and to ensure reproducible therapeutic outcomes. Nevertheless, owing to the increasing
number of clinical trials of novel formulations containing AuNPs, we expect that some of
the composites will be clinically utilized in the near future.
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