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Abstract: 26 

Hyperactive and damaging inflammation is a hallmark of severe rather than mild COVID-19 syndrome. 27 

To uncover key inflammatory differentiators between severe and mild COVID-19 disease, we applied an 28 

unbiased single-cell transcriptomic analysis. We integrated a bronchoalveolar lavage (BAL) dataset with 29 

a peripheral blood mononuclear cell dataset (PBMC) and analyzed the combined cell population, 30 

focusing on genes associated with disease severity. Distinct cell populations were detected in both BAL 31 

and PBMC where the immunomodulatory long non-coding RNAs (lncRNAs) NEAT1 and MALAT1 were 32 

highly differentially expressed between mild and severe patients. The detection of other severity 33 

associated genes involved in cellular stress response and apoptosis regulation suggests that the pro-34 

inflammatory functions of these lncRNAs may foster cell stress and damage. The lncRNAs NEAT1 and 35 

MALAT1 are potential components of immune dysregulation in COVID-19 that may provide targets for 36 

severity related diagnostic measures or therapy. 37 

 38 
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Introduction:  42 

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic continues around the 43 

world,(1,2) but the underlying pathophysiology of coronavirus disease 2019 (COVID-19) is ill-defined. 44 

Symptoms and progression of COVID-19 vary widely(3) as some patients may be asymptomatic while 45 

others exhibit disease with varying severity.(4,5) Common symptoms include fever, cough, and fatigue, 46 

which generally appear 2 to 14 days after exposure,(6,7) while rarer symptoms include dyspnea, 47 

headache/dizziness, nausea, diarrhea, and hemoptysis.(8) Severe cases of COVID-19 are distinguished by 48 

strong inflammatory responses that can lead to multiorgan damage and death.(9) The mechanisms that 49 

separate mild and severe disease remain poorly understood.  50 

After viral exposure, the inflammatory response to COVID-19 commences with signaling 51 

cascades that lead to secretion of type I interferons, cytokines and chemokines.(10) This initial exposure 52 

also activates inflammasomes, multimeric protein complexes that play an important role in triggering 53 

inflammation and the subsequent initiation of an adaptive immune response.(11–13)  The Nod-like 54 

receptor pyrin domain-containing 3 (NLRP3) inflammasome is a major cause of cytokine storm 55 

associated the with clinical manifestations of severe COVID-19 disease.(14)  Furthermore, coronavirus 56 

viroporin proteins activate the NLRP3 inflammasome which regulates the secretion of IL-1β and IL-57 

18.(15) Pyroptosis, a programmed cell death pathway that leads to immune cell depletion, is also 58 

regulated by activation of the NLRP3 inflammasome and is an important mechanism of viral 59 

pathogenesis in both SARS-CoV-2 and SARS-CoV.(16–18) These studies suggest that investigation of 60 

inflammasome regulation may elucidate understanding of COVID-19 disease pathophysiology. 61 

Single-cell studies of COVID-19 patients have found dysregulated immune compartments in the 62 

respiratory tract as well as peripheral blood.(19–24) However, it is challenging to directly compare 63 

results across studies in different tissues due to differences in cell cluster identification between 64 

physiological compartments. We postulated that simultaneous analysis of severe versus mild COVID-19 65 
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patients across respiratory and peripheral immune compartments using integrated clustering would 66 

uncover overall effectors of immune dysregulation in the COVID-19 immune response. To achieve this 67 

goal, we integrated single-cell datasets, one from bronchoalveolar lavage (BAL) and one from peripheral 68 

blood mononuclear cells (PBMC),(19,20) in order to examine disease transcriptomics across severities as 69 

well as between local and peripheral cellular environments. We utilized an unbiased analytical strategy 70 

that was agnostic to specific gene functions and focused on genes with severity dependent expression 71 

across different cell types. Taken together, we uncovered genes contributing to the dysregulated COVID-72 

19 immune response prominent in severe relative to mild disease. Moreover, we identified cell types 73 

where these inflammatory regulators manifest in local and peripheral compartments.   74 

  75 
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Methods: 76 

Dataset preprocessing and integration 77 

 We selected publicly available single-cell datasets with patient severity metrics and ample 78 

sequencing depth to pass our quality filters for integration into our combined dataset. The raw count 79 

matrices for BAL cells and PBMC cells were downloaded from the NCBI Gene Expression Omnibus 80 

(accession number GSE145926) and the COVID-19 Cell Atlas (https:/www.covid19cellatlas.org/#wilk20), 81 

respectively. Patients who were mechanically ventilated or had PaO2/FiO2 I≤I300 mmHg indicating 82 

hypoxemia consistent with acute respiratory distress syndrome (ARDS)(25) were designated as severe 83 

patients while all others were considered to have mild disease (Table S1). The BAL dataset contained 84 

three healthy controls, while the PBMC dataset contained six (Table S2). Both datasets were 85 

preprocessed using the R program Seurat.(26) Briefly, cells were filtered to only include cells with 86 

unique molecular identifier (UMI) counts greater than 1000, gene count between 200 and 6000, and less 87 

than 10% of genes mapping to mitochondrial genes. The function SCTransform from the Seurat package 88 

was applied to each dataset separately to regress out technical variability as well as the percentage of 89 

mitochondrial gene expression.(27) Transformed BAL and PBMC datasets were integrated with 3000 90 

integration features and 50 integration anchors as recommended in Seurat.(28) We found that the “M3” 91 

mild patient sample from the BAL dataset contained only 369 total cells, while every other patient 92 

sample for BAL or PBMC had at least 1200 cells. The M3 sample was removed before differential 93 

expression analysis to avoid skewing results due to extremely low cell counts. 94 

 95 

Clustering and Identification 96 

 The integrated dataset was dimension reduced using principal component analysis (PCA) and 97 

clustered with a resolution set to 0.5 and including the top 30 principle components. The clustering was 98 
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visualized using uniform manifold approximation and projection (UMAP).(29) The raw integrated dataset 99 

was normalized by applying SCTransform to the full integrated dataset. This normalized count matrix is 100 

utilized for all subsequent analysis. Marker genes for each cluster were computed using the 101 

FindAllMarkers function with the Model-based Analysis of Single-cell Transcriptomics algorithm (MAST) 102 

for differential expression with UMI count as a latent variable.(30,31) Cluster markers were then 103 

inspected and labeled according to known cell markers(Supplemental file 1).(32,33) A second round of 104 

clustering with a resolution of 1 was then conducted to further classify subtypes of identified cells. 105 

Clusters with fewer than 300 cells were reassigned to larger clusters using Seurat integration label 106 

transfer. Cluster identities were scored and verified using a signature matrix generated from flow 107 

cytometry sorted RNA-seq data of immune cells.(34) Plots of cell clusters and key cell type markers were 108 

generated using Seurat’s plotting functions. 109 

 110 

Cell Proportions 111 

 Cell types were tallied for each sample, and the percentage abundance of each cell type was 112 

calculated. Cell proportions for healthy controls, mild patients, and severe patients were compared 113 

using a two-sided pairwise test of equal proportion with false discovery rate (FDR) p-value adjustment. 114 

The resulting proportions were plotted using the ggplot2 R package.(35) 115 

 116 

Differential Expression 117 

 For each cell type, differentially expressed genes (DEGs) were calculated separately for BAL and 118 

PBMC cells using MAST with UMI count as a latent variable. To support MAST differential gene 119 

expression analysis between three sample groups, the Seurat built-in differential expression function 120 

FindMarkers was modified to generating iterations of the hurdle model corresponding to each set of 121 
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two compared conditions. Genes from each cell type that were differentially expressed across all three 122 

comparisons between healthy controls, mild, and severe patients were tallied. For BAL, only genes with 123 

FDR adjusted p-values less than 1e-7 across all comparisons were considered (17.4% of all DEGs in BAL), 124 

while PBMC DEGs were considered if all FDR adjusted p-values across comparisons for that gene were 125 

less than 0.05 (16.4% of all DEGs in PBMCs). The difference in p-value threshold was used to filter a 126 

similar proportion of genes from BAL and PBMC data due to the smaller number of DEGs detected in 127 

PBMCs (200-400 in PBMCs, 1000+ in BAL). These highly differentially expressed genes were further 128 

filtered by removing genes that were not differentially expressed across all conditions in at least 5 129 

different cell types (1/3 of our total cell types). The lists of PBMC and BAL highly differentially expressed 130 

genes were then combined, removing duplicates.  131 

Some of the genes identified were highly cell type specific. These genes also had the highest 132 

residual variance. Since these genes represent intrinsic cell type differences rather than biologically 133 

interesting differentially expressed genes, they were removed. To determine this filter threshold, the 134 

residual variance of the top 100 variable genes were plotted in decreasing order to determine the 135 

“elbow” point where the variance stops decreasing at a rapid rate.(Figure S1) This resulted in the 21 136 

most variable genes being removed. We termed the 50 remaining differentially expressed genes 137 

recurrent differentially expressed genes (rDEGs) since they were found in multiple cell types and showed 138 

differential expression between patients and healthy controls as well as between severities. The rDEG 139 

expression data was exported to Monocle 3 to generate modules for gene ontology (GO) enrichment 140 

analysis. We generated 4 modules from the 50 rDEGs using the find_gene_modules function in Monocle 141 

3 with 30 principle components and a resolution of 0.8.(36–38) Differential module expression was 142 

calculated using ANOVA using aggregated module expression levels and processed with a tukey posthoc 143 

test. Module gene ontology enrichment was computed topGO with default settings.(39) Module and 144 

gene level plots were generated using the R packages ggplot2, ComplexHeatmap, and Circlize.(35,40,41) 145 
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 146 

Validation 147 

We compared rDEG trends from our analysis with two additional COVID-19 datasets, one with 148 

nasopharyngeal data to compare against the local inflammatory environment of our BAL data, and one 149 

in PBMCs to compare against the peripheral environment in our PBMC data.(22,23) Cell types from our 150 

analysis were transferred onto the validation datasets using Seurat to identify the validation cells for 151 

comparison. Each validation dataset was filtered and preprocessed separately using the same 152 

parameters as the main dataset. After preprocessing and label transfer, DEGs were generated 153 

independently for each validation set for our transferred cell types. We compared the rDEGs we focused 154 

on in the manuscript with DEG results from each validation set, noting whether the same DEG was 155 

detected and whether the direction of change was the same.  156 

 157 

Results: 158 

Integrated PBMC and BAL analysis identified 26 clusters consolidated into 15 cell types. 159 

After quality filtering, we recovered 100,739 single cell transcriptomes. From these, we 160 

recovered 26 cell clusters from Seurat. (Figure S2). Since we identified cell types from the integrated 161 

dataset containing both PBMC and BAL cells, we were able to examine how each of our cell clusters 162 

behaves across both physiological compartments. The clusters did not aggregate based on sample type 163 

or patient condition (Figure S2), indicating successful integration clustering of the two datasets.  164 

From the 26 clusters, 11 were identified as monocyte/macrophage (Mo/Ma) clusters. Since our 165 

clusters contain both monocytes from the PBMC sample as well as macrophages from the BAL, we 166 

designated them as MoMa clusters. Six of the MoMa clusters showed classically M1 associated 167 

transcriptomes with increased expression of VCAN, FCN1 and CD14 expression.(42,43) These clusters 168 
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also expressed other pro-inflammatory factors such as S100A8, CCL2, CCL3, CCL7, and CCL8.(44,45) 169 

Three other MoMa clusters showed M2 polarization with increased FN1 expression along with 170 

decreased VCAN and FCN1 expression. These M2 MoMa clusters also expressed Th2 associated 171 

inflammatory factors such as MRC1 and CCL18.(45) All MoMa clusters expressed FCGR3A (CD16a).(42)
 

172 

Two additional clusters were labeled as intermediate MoMa because they did not show distinct 173 

transcriptomes corresponding to either M1 or M2 groups. One intermediate MoMa cluster 174 

overexpressed MALAT1, while the other overexpressed metallothionein proteins including MT1F and 175 

MT1G.  176 

We also identified two clusters of CD4+ T cells (CD4 and IL7R), one cluster of T regulatory cells 177 

(IL2RA and LAG3),(46,47) and three clusters of CD8+ T cells (CD8A). Two of the CD8+ T cell clusters were 178 

labeled as CD8+ memory cells due to their high CCL5 and GZMH expression.(48) Other identified 179 

immune cell clusters include natural killer (NK) cells (SPON2 and NCAM1), neutrophils (NAMPT),(34) 180 

naïve B cells (MS4A1), plasmablasts (IGJ and MZB1), plasmacytoid dendritic cells (IRF8 and PLD4),(49,50) 181 

and myeloid dendritic cells (CD1C)and LGALS2).(34,51) In addition to immune cell types, we also found 182 

two epithelial clusters. One contained a mixture of epithelial and granulocyte markers including KRT19 183 

and SLPI(34,52) while the other also contained the additional markers PPIL6 and CFAP300 for 184 

pneumocytes and ciliary cells, respectively.(53,54)  185 

The 26 clusters were consolidated into 15 cell types (Figure S2) to streamline further analysis by 186 

combining clusters that are not distinguishable when examining their canonical marker expression 187 

levels. This consolidation also prevents cell groups with many clusters such as the M1 MoMa group from 188 

overshadowing those with fewer clusters in our subsequent differential gene expression ranking 189 

analysis. Cells within each cluster were compared against their original identifications from both their 190 

respective dataset, and most clusters identifications were consistent. The one exception was the 191 
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intermediate MoMa type, which was predominantly composed of macrophages from BAL, but also 192 

contained a mixture of monocytes, CD4+ and CD8+ T cell identifications from PBMCs (Table S3).  193 

 194 

Proinflammatory cell types are enriched in severe COVID-19 patients.  195 

 Cell type proportions within BAL and PBMC sample groups showed distinct differences between 196 

patients and healthy controls as well as between mild and severe patients (Figure 1). In BAL samples of 197 

patients with severe disease, proinflammatory cells such as M1 MoMa and neutrophils showed 198 

increased abundance (p<<<.01, Table S4), while immunoregulatory cell types including M2, intermediate 199 

MoMa, and Tregs were less abundant (p<<<.01). BAL samples of patients with mild disease showed 200 

decreased abundance of M1 MoMa and neutrophils and increased Tregs and CD8+ memory T cells 201 

compared to healthy controls and severe patients.  202 

Fig 1: Severe patients show increased proportions of proinflammatory cell types.  A. Overall average abundance of each major 203 

cell type for all cells. B. Per patient abundance of all major cell types for all cells. C. Per cohort (bronchoaveolar lavage (BAL) and 204 

peripheral blood mononuclear cells (PBMC)) and per condition (healthy, mild, severe) abundance for each cell type. Conditions 205 

that are significant versus their respective controls are labeled with a triangle (p<.05). Conditions that are significant between 206 

severe and both mild as well as healthy controls are labeled with a star (p<.05). Conditions that are significant between severe 207 

and mild, but not between severe and healthy controls are labeled with a diamond (p<.05). 208 

 209 

 In PBMCs, the trends in M1 MoMa and neutrophils are reversed. Tregs and CD8+ memory T cells 210 

are less abundant in PBMCs of mild patients. These opposing patterns may illustrate heavy recruitment 211 

of the cell types abundant in BAL, resulting in depletion in the PBMCs that results in an increase in 212 

relative abundance of non-recruited cells in PBMCs. Mild patients also showed an increase of 213 

intermediate MoMa in PBMCs, reinforcing the pattern of relative increases in abundance of 214 

immunoregulatory cell types in mild patients in both BAL and PBMC compartments.   215 
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 216 

Recurrent DEG (rDEG) modules highlight key pathways in COVID-19 immune response.  217 

We identified an average of 1158 DEGs per cell type for BAL samples, and 260 DEGs per cell type 218 

for PBMC samples.(Table S5,S6) After filtering, we identified 50 rDEGs across our 15 cell types that 219 

formed 4 distinct modules (Figure 2). Module 1 showed significant GO enrichment for developmental 220 

processes (p<.05) but did not show differential expression between conditions. Module 2 showed 221 

significance for viral defense and Type I interferon GO terms. Most genes in this module were interferon 222 

induced genes including the first three IFIT family genes, ISG15, CXCL10, and MX1. This module was 223 

significantly overexpressed in BAL of all patients versus healthy controls (p<.01).  224 

 225 

 226 

Fig 2: rDEGs grouped into four distinct modules with immune regulation enriched GO terms. A. Heatmap of modules 227 

generated from the recurrent differentially expressed geens (rDEGs). Triangles indicate significance (p<.05) versus healthy 228 

control within the sample cohort; diamonds indicate significance between severe and mild patients (p<.05). B. Module 229 

membership for each module. Modules 1 and 4 contain a mixture of metabolic and immune response related genes. Module 2 230 

contains genes related to interferon activated viral defense. Module 3 contains other inflammatory regulation genes and stress 231 

response genes (generated using the Circlize R package).  C. Per module GO term enrichment showing the top enriched terms 232 

for each module and their respective p-values with the red line indicating -log10(0.05). The first three modules contain 233 

inflammation related terms in their most enriched terms, while module 4 only contains metabolism related terms.  234 

 235 

Module 3 was enriched for macromolecule synthesis and cellular processes. This module 236 

includes the immunomodulatory lncRNAs NEAT1 and MALAT1.(55,56) It also includes MTRNR2L12, an 237 

anti-apoptotic lncRNA, and NFKBIA which is an NF-κB inhibitor. The module was significantly 238 

underexpressed in BAL of mild patients versus healthy controls, and it was overexpressed in BAL of 239 

severe patients versus mild patients. Module 4 had significant terms related to negative regulation of 240 
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metabolic processes. This module included the NUPR1 stress response gene, and CSTB which is an 241 

inhibitor of cathepsins like CTSL and CTSB that are involved in COVID-19 viral entry.(57) Module 4 was 242 

significantly underexpressed in BAL of severe patients versus healthy controls.  243 

 244 

Stress response, apoptosis, and viral entry related genes show severity dependent expression. 245 

We analyzed individual rDEGs in each of our five most abundant cell types: M1 MoMa, M2 246 

MoMa, CD4+ T cells, NK cells, and CD8+ memory T cells (Figure 3). This analysis confirmed previous 247 

reports of downregulation of HLA genes(20,58) such as HLA-DRA and HLA-DRB5 in COVID-19 patients, 248 

with severe patients showing the most downregulation. We also saw upregulation of interferon related 249 

genes including MX1, and IFIT1-3. This increase was greatest in mild patients, correlating with previous 250 

findings of immune exhaustion (Table S7).(59,60) Further examination showed additional severity 251 

dependent patterns of differential expression of transcripts related to the stress response, cell death, 252 

and viral entry in cell types involved in the viral immune response. 253 

Fig 3: rDEG expression in most abundant cell types highlights differential immune regulation between mild and severe 254 

patients in both BAL and PBMC cohorts. A. Heatmaps visualizing rDEGs within each of the top five most abundant cell types in 255 

our dataset (generated using the ComplexHeatmap R package). For each cell type, the full rDEG list was filtered via the same p-256 

values (p<10e-7 for BAL, p<.05 for PBMC) and only rDEGs that are differentially expressed below these thresholds for either BAL 257 

or PBMC are included in the plot. Expression levels are normalized separately for each cohort. The first sidebar indicates which 258 

cohort the particular gene passed the rDEG threshold for, while the second sidebar indicates the ratio of expression of the 259 

particular gene between BAL and PBMC with green (positive values) indicating higher expression levels detected in BAL. B. 260 

Visualization of select rDEGs representing pathways outside of the main interferon activated gene group that are relevant to 261 

disease. These genes are visualized separately for each cohort and condition using the sample UMAP projection of cell types 262 

from Figure 1. Each gene shows cell type, cohort, and condition specific differences in localization across the dataset. 263 

 264 
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The NF-κB inhibitor NFKBIA was upregulated in all five most abundant cell types within the BAL 265 

of severe patients compared to healthy controls and mild groups. In PBMCs of severe patients, NFKBIA 266 

was downregulated compared to healthy controls and mild patients except in CD8+ memory T cells. This 267 

pattern of localized overexpression in BAL may indicate increased NFKBIA activity in response to local 268 

hyperactivity of NF-κB. Furthermore, the stress response gene NUPR1, whose downregulation leads to 269 

cell death, was downregulated in M1 and M2 MoMa in the BAL of severe patients and upregulated in 270 

mild patients, indicating a pro-apoptotic shift in severe patient MoMa clusters. NUPR1 was 271 

downregulated in BAL of both mild and severe patients for NK cells, CD4+ T cells, and CD8+ Memory T 272 

cells.  273 

Mild and severe patients also had variable expression of two anti-apoptotic genes, the BCL2 274 

inhibitor BCL2A1 and the lncRNA MTRNR2L12. BCL2A1 was significantly upregulated in BAL of severe 275 

patients over healthy controls and mild groups for M1 and M2 MoMa, NK cells, and CD4+ T cells. Mild 276 

patients showed downregulation of BCL2A1 versus healthy controls in NK and CD4+ T cells. Additionally, 277 

MTRNR2L12 was upregulated in BAL of both mild and severe patients in M1 and M2 MoMa, NK cells, 278 

CD4+ T cells and CD8+ Memory T cells. The upregulation of these anti-apoptotic genes shows a 279 

defensive response to apoptotic cell stresses, particularly in BAL. 280 

 CTSL, which is a critical protein in the viral entry pathway for COVID-19, was upregulated in BAL 281 

of severe patients in M1 and M2 MoMa in mild patients and healthy controls. This suggests a faster viral 282 

entry pathway in severe patients, which may contribute to the formation of a hyperinflammatory 283 

response. In BAL of NK, CD4+ T cells, and CD8+ Memory T cells, CTSL was downregulated in mild patients 284 

and upregulated in severe patients. CTSB, also implicated in viral entry, showed similar patterns.  285 

 286 

NEAT1 and MALAT1 are differential regulators of inflammation in severe COVID-19.  287 
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The pro-inflammatory lncRNA NEAT1 passed our rDEG threshold in BAL samples for nine 288 

different cell types, more than any other gene in our analysis. These cell types include M1, M2 and 289 

intermediate MoMa, NK cells, CD4+ T cells, CD8+ memory T cells, naïve B cells, myeloid dendritic cells, 290 

and epithelium/basal cells (Figure 4). NEAT1 is localized to the site of infection and inflammation since it 291 

is not differentially expressed in PBMCs. Additionally, among rDEGs, it has one of the highest averages in 292 

log2-fold change between severe and mild patients (Figure 4). NEAT1 is overexpressed in BAL of severe 293 

patients and underexpressed in mild patients. The epithelial/basal cell group is the exception where mild 294 

groups also show NEAT1 overexpression over healthy controls, but expression is still significantly higher 295 

in severe patients versus mild patients.  296 

  297 
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 298 

Fig 4: lncRNAs NEAT1 and MALAT1 are strongly differentially expressed between severe and mild patients and represent key 299 

inflammatory regulators in BAL and PBMC respectively. A. Violin plots showing overall expression level density across patient 300 

conditions in the entire dataset. Even at the full dataset scale, these distributions show that NEAT1 is overexpressed in BAL of 301 

severe patients while MALAT1 is underexpressed in PBMCs of severe patients. B. Frequency of detection across cell types for 302 

rDEGs shows NEAT1 as the most detected rDEG in BAL, with MALAT1 tied for second among rDEGs in PBMC. The top log2-fold 303 

change of rDEGs in severe versus mild patients also shows NEAT1 and MALAT1 among the rDEGs with the highest absolute 304 

change between severe and mild conditions. C. Visualization of NEAT1 and MALAT1 via UMAP projection shows more cell type 305 

localized expression in NEAT1. It is also clearly underexpressed in mild BAL cases. MALAT1 also shows a more subtle but 306 

significant underexpression in severe patient PBMCs.    307 

 308 

Another immunomodulatory lncRNA, MALAT1, was the second most frequent rDEG in PBMCs. It 309 

passed our rDEG threshold in 6 cell types (tied with ISG15) and 3 cell types in BAL. In BAL derived M1 310 

and M2 MoMa, MALAT1 was underexpressed in mild patients compared to both healthy controls and 311 

severe patients. In CD4+ T cells, MALAT1 shows consistent overexpression in mild patients and 312 

underexpression in severe patients. In PBMCs, MALAT1 was underexpressed in severe patients versus 313 

both healthy controls and mild patients in M1, M2 and intermediate MoMa, NK cells, plasmablasts, and 314 

epithelial/basal cells.  315 

 316 

Validation of rDEG expression patterns. 317 

 We projected the cell type classifications in our analysis via Seurat’s label transfer feature to two 318 

other COVID-19 datasets, one with nasopharyngeal samples(22) and one with PBMC samples(23). 319 

Comparison of cell labels from the original datasets versus our transferred labels shows general 320 

agreement among the cell IDs, allowing us to use our cell type labels for direct comparison of rDEG 321 

patterns in the validation data (Figure S3&S4). We compared rDEG expression patterns of the genes 322 
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analyzed in the previous two sections in the same five cell types. Among each gene’s statistically 323 

significant changes in our analysis between healthy, mild, and severe cases, 36.3% were significant in 324 

our validation cohorts. However, more than two thirds of the non-significant findings in validation were 325 

from comparisons with healthy control in the nasopharyngeal dataset. This is likely due to the small 326 

number of cells recovered from these controls after filtering. Only 1148 cells were recovered from 327 

control samples after filtering compared to 35715 and 25546 for moderate and severe cases 328 

respectively. Among the findings that were significant in both our data and in validation, we found that 329 

79% were significant in the same direction. Notably, NEAT1 showed 100% agreement in validation of 330 

BAL, while MALAT1 showed 100% agreement in validation of PBMCs (Table S8,S9 & S10). 331 

Discussion: 332 

 Our analysis of BAL and PBMC single cell data in COVID-19 patients has elucidated key 333 

differences between mild and severe disease. We were able to combine cells from both PBMC and BAL 334 

in an integrated analysis. Although our intermediate MoMa group had a mixed group of PBMC cells, our 335 

overall identifications were consistent across both datasets. Furthermore, the cells in the intermediate 336 

MoMa group consisted of cells with weak expression of a wide range of canonical markers. These cells 337 

may be intermediate immune cells from different lineages that share a similar transcriptomic profile. By 338 

conducting analysis simultaneously on cells from the local infection site in the lung as well as the 339 

peripheral immune system, we contrast how the disease manifests and interacts across both  340 

compartments. We have identified differentially expressed genes that vary with severity, are highly 341 

differentially expressed across multiple cell types, and represent key functions related to the 342 

hyperinflammatory disease state. NEAT1 was the most widely differentially expressed gene across cell 343 

types within BAL; it also exhibited a high log-fold change that correlated with disease severity. The 344 

ubiquity of NEAT1, its specific localization to BAL cells, and pro-inflammatory functions suggests that it 345 

may be a key mediator of the inflammation seen in severe COVID-19. NEAT1 is a well characterized 346 
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activator of the NLRP3 inflammasome, as well as NLRC4 and AIM2 inflammasomes, which in turn  347 

amplify the inflammatory response.(55) However, an overactive immune response contributes to lasting 348 

tissue damage in severe COVID-19 disease. Intense inflammation through activation of the NLRP3 349 

inflammasome can also lead to pyroptosis, driven by the upregulation of NEAT1.(55,61) These highly 350 

inflammatory and damaging effects of NEAT1 illustrate how overexpression in severe patients might 351 

lead to the inflammatory tissue damage seen in severe COVID-19. 352 

MALAT1 also exerts various immunological effects including the mediation of NLRP3 353 

inflammasome activation.(62,63) MALAT1 has been linked to M1-like activity in macrophages, 354 

promoting inflammation.(64) Our finding that MALAT1 is overexpressed in BAL MoMa of severe versus 355 

mild patients suggests that it might be involved in precipitating a shift towards M1 macrophages that 356 

exacerbates inflammation. This is further supported by our findings that severe patients show expansion 357 

of M1 macrophages and decrease of M2 and intermediate macrophages in BAL, while mild patients 358 

show decrease of M1 macrophages. Furthermore, MALAT1 was overexpressed in CD4+ T cells of mild 359 

patients. This is also reflective of MALAT1’s protective role in T cells. Loss of MALAT1 expression has 360 

been shown to push T cells towards the inflammatory Th1 and Th17 phenotype while also decreasing 361 

Treg differentiation.(65) This function matches our observed increase in abundance of Tregs in mild 362 

patients. Thus, the upregulation of MALAT1 we see in mild patients may be contributing to the more 363 

subdued immune response observed in these patients.  364 

The severity dependent differential expression of other genes in our analysis provides further 365 

evidence of increased cellular stress reflective of a NEAT1 and MALAT1 enhanced hyperinflammatory 366 

state. NF-κB is induced in COVID-19 infection.(66) Although we did not detect differential activity of NF-367 

κB directly, we found upregulation of its inhibitor NFKBIA in BAL of severe patients which suggests a 368 

feedback response to strong NF-κB activity. NFKBIA’s downregulation in PBMCs of severe patients may 369 

be due to localization of cells expressing NFKBIA to the site of infection in attempts to regulate the 370 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 31, 2021. ; https://doi.org/10.1101/2021.03.26.21254445doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.26.21254445
http://creativecommons.org/licenses/by/4.0/


19 

 

hyperactive inflammatory state.(67) The upregulation of BCL2A1 and MTRNR2L12 is also indicative of 371 

extensive cellular stress.(68,69) While MTRNR2L12 is upregulated in both mild and severe disease, 372 

BCL2A1 is upregulated exclusively in severe disease. The increased activity of these anti-apoptotic genes, 373 

particularly in BAL of severe patients, shows additional evidence of the cellular stress induced by 374 

infection and inflammation. These genes may be responding to pyroptosis pathways triggered by 375 

inflammasome activation via NEAT1 and MALAT1. Further evidence of inflammatory cell damage is seen 376 

in the downregulation of NUPR1 in BAL of M1 and M2 macrophages of severe patients with 377 

upregulation in mild patients. Downregulation of this stress response gene has been shown to cause 378 

mitochondrial dysfunction and ROS production that can lead to cell death.(70) Lastly, our observation 379 

that CTSL, a protein crucial for COVID-19 viral entry is upregulated across multiple cell types in severe 380 

patients provides a potential initial mechanism for the induction of the NEAT1 and MALAT1 mediated 381 

inflammatory state through increased efficiency of viral entry.(57)   382 

 Limitations in our study include the small sample size, variable clinical presentation and 383 

treatment. Additionally, time from presentation to sample collection varied across patients. The 384 

stratification of patients as severe or mild may also introduce unknown factors due to patient variability 385 

in presentation and classification. Although our validation shows promising reproduction of expression 386 

patterns, additional studies with more subjects and stringent recruiting and sample collection would 387 

further elucidate these findings. 388 

 We have demonstrated a clear ensemble of differential gene activity associated with severe 389 

disease in COVID-19 infection that revolves around the lncRNAs NEAT1 and MALAT1. Their specific 390 

activity changes in severe patients coupled with inflammasome promoting functions, suggest important 391 

roles in the COVID-19 hyperinflammatory process. These findings indicate that NEAT1 and MALAT1 may 392 

be candidates for treatment targeting or biological marker exploration.   393 

 394 
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Supplementary Figures 631 

S1 Figure: Filtering of genes with extremely high residual variance. A. A plot of mean expression levels 632 

versus residual variance for all genes detected in dataset. Genes with the highest residual variance are 633 

nearly all immunoglobulin and ribosome genes. B. Plot of 100 genes with highest residual variance in 634 

descending order. The rate of variance decrease stabilizes after the 21
st

 gene. C. Table of top 21 genes 635 

filtered out of downstream analysis due to very high residual variance.  636 

 637 

S2 Figure: Unbiased clustering of combined BAL and PBMC data reveals common cell types between 638 

cohorts and sample conditions. A/B. UMAP plots showing the distribution of all cells in both cohorts 639 

within defined cell types. Plot A shows the 15 major cell groups we identified with labels over the cluster 640 

centers. Plot B shows the subclusters making up those groups. The major groups are abbreviated as 641 

prefixes with a letter suffix indicating subgroup. M1, M2 and Int are the macrophage/monocytes. NK is 642 

natural killer cells, E/G is epithelial cells and granulocytes, and E/P/C is epithelia, pneumocyte, and ciliary 643 

cells. C. Select markers for major cell groups plotted on the same UMAP projection. This illustrates the 644 

specificity of these markers for different regions of the plot corresponding to our respective cell types. 645 

D. Dot plot visualization of top markers utilized for identification of each cell cluster. The size of each dot 646 

indicates the percentage of cells with detectable expression of each gene, with color indicating 647 

expression level. E. Splitting the UMAP by cohort and by severity, with “H” indicating healthy control, 648 

“M” indicating mild disease, and “S” indicating severe disease illustrates that cell clusters do not 649 

organize according to sample type or patient condition, indicating successful integration of the datasets.  650 

S3 Figure: Transferred cell identities correspond to original cell identities from the nasopharyngeal 651 

validation set. Dot plot shows cells from the nasopharyngeal validation dataset, identified by their 652 

transferred labels on the Y axis and their original labels on the X axis. Color of each dot indicates the 653 
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numeric log frequency of cells that fit each corresponding set of labels. The size of each dot represents 654 

the percentage of each transferred cell types which is represented by each original cell type. From left to 655 

right, the full cell type names from the nasopharyngeal dataset are: non-resident macrophage (nrMa), 656 

monocyte-derived macrophage (MoD-Ma), monocyte-derived dendritic cell (moDC), resident 657 

macrophage (rMa), cytotoxic T cell (CTL), regulatory T cell (Treg), natural killer T cell (NKT), proliferating 658 

natural killer T cell (NKT-p), natural killer cells (NK), neutrophils (Neu), B cells, plasmacytoid dendritic cell 659 

(pDC), basal cell, ciliated cell, differentiating ciliated cell, FOXN4+ epithelial cell, ionocyte, interferon 660 

responsive cell (IRC), mast cell (MC), epithelial outliers, secretory, differentiating secretory, squamous, 661 

and unknown epithelial.  662 

S4 Figure: Transferred cell identities correspond to original cell identities from the PBMC validation 663 

set. Dot plot shows cells from the PBMC validation set, identified by their transferred labels on the Y axis 664 

and their original labels on the X axis. Color of each dot indicates the numeric log frequency of cells that 665 

fit each corresponding set of labels. The size of each dot represents the percentage of each transferred 666 

cell types which is represented by each original cell type. This dataset contained several cell types where 667 

the same label was applied to more than one subcluster, resulting in numeric suffixes for similar cell 668 

types. mDCs correspond to myeloid dendritic cells and pDCs correspond to plasmacytoid dendritic cells.  669 

 670 

 Supplementary Excel Tables 671 

S1 Table: Key characteristics of patients within each dataset. Patient information from the BAL and 672 

PBMC cohorts used in this analysis. Patients who were intubated or had PaO2/FiO2 Y≤Y300 mmHg were 673 

classified as severe. In BAL, patient “Mild 3” had only 369 cells recovered after filtering and was only 674 

used for initial clustering. Most patients in the BAL cohort. Exact ages were not available in the PBMC 675 

cohort. The first patient in this cohort was sampled twice, once while classified as a mild patient, and 676 
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once after their symptoms worsened and required mechanical ventilation. Several patients in the PBMC 677 

cohort received azithromycin, which can have immunomodulatory effects before sample collection. 678 

S2 Table: Demographic characteristics of healthy subjects. All healthy controls used from both the BAL 679 

and PBMC cohorts are listed. 680 

 681 

S3 Table: Cell identities from original datasets versus new combined identification. For BAL and 682 

PBMCs, each cell’s original cell identification and new identification are tabulated for the 26 clusters in 683 

the subgroup sheets, and the 15 consolidated cell groups in the coarse sheets. 684 

S4 Table: P-value tables for cell proportion comparisons across each cell type. Conditions compared 685 

are listed in the first two columns, and FDR adjusted p-values are listed in the third column. Each sheet is 686 

labeled by cell type. 687 

S5 and S6 Tables: DEGs for BAL and PBMC samples respectively, separated by cell type, with raw p-688 

values as well as FDR adjusted p-values. Each sheet is labeled by cell type. Column headings include 689 

indicators for which conditions are being compared where applicable. The conditions are numbered: 690 

“1=healthy control”, “2=mild COVID-19 patient”, “3=severe COVID-19 patient”. For example, the prefix 691 

“g2_1” indicates the comparison of mild patient expression levels minus healthy control expression 692 

levels. Log-fold change is reported relative to the natural log. Columns labeled “pct.1”, “pct.2”, or 693 

“pct.3” indicate the percentage of cells in the condition corresponding to that number with detectable 694 

expression of a particular gene.  695 

S7 Table: rDEGs with their expression levels in each cell type where each rDEG’s adjusted p-values 696 

passed the p-value filter as defined in our Methods section. Column headings include indicators for 697 

which conditions are being compared where applicable. The conditions are numbered: “1=healthy 698 
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control”, “2=mild COVID-19 patient”, “3=severe COVID-19 patient”. For example, the prefix “g2_1” 699 

indicates the comparison of mild patient expression levels minus healthy control expression levels. Log-700 

fold change is reported relative to the natural log. Columns labeled “pct.1”, “pct.2”, or “pct.3” indicate 701 

the percentage of cells in the condition corresponding to that number with detectable expression of a 702 

particular gene. The “celltype” and “sample” columns indicate which cell type and which sample 703 

condition the rDEG passed filter in. 704 

S8 Table: Comparisons between differentially expressed rDEGs discussed in our results shows strong 705 

agreement in validation datasets. A/B. Tables representing the tally of differential expression results of 706 

our discussed rDEGs which agreed or disagreed between analysis and validation groups based on the 707 

direction of detected differential expression. Tables are split by BAL/nasopharyngeal and PBMC groups. 708 

The first three columns correspond to cases where a comparison is not available due to a lack of 709 

differential expression detected in the original analysis (na.orig), the validation set (na.val), or both 710 

(na.all). The top half of each table reports the results for severe vs mild cases only (SvsM) while the 711 

bottom half reports results for all three comparisons: healthy vs mild, healthy vs severe, and severe vs 712 

mild. 713 

S9 and S10 Tables: Per gene level validation tables for BAL and PBMC groups respectively. Each sheet 714 

name corresponds to the cell type presented. Row names indicate the gene being compared, and 715 

column names indicate the cohorts being compared: healthy (H), mild COVID (M), severe COVID (S). 716 

When differential expression is detected in both the original analysis and validation, the column is labled 717 

agree if the change occurred in the same direction and disagree if it is opposite. Other labels indicate 718 

where a comparison is not available due to a lack of differential expression detected in the original 719 

analysis (na.orig), the validation set (na.val), or both (na.all).   720 

 721 
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