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Abstract

Domains are distinct units within proteins that typically can fold independently into recogniz-

able three-dimensional structures to facilitate their functions. The structural and functional

independence of protein domains is reflected by their apparent modularity in the context

of multi-domain proteins. In this work, we examined the coupling of evolution of domain

sequences co-occurring within multi-domain proteins to see if it proceeds independently, or

in a coordinated manner. We used continuous information theory measures to assess the

extent of correlated mutations among domains in multi-domain proteins from organisms

across the tree of life. In all multi-domain architectures we examined, domains co-occurring

within protein sequences had to some degree undergone concerted evolution. This finding

challenges the notion of complete modularity and independence of protein domains, provid-

ing new perspective on the evolution of protein sequence and function.

Introduction

Domains are basic functional and structural elements of proteins. In addition to sequence

mutations, protein evolution is driven by combining existing domains into novel arrange-

ments. The modular nature of domains arises from their ability to adopt well-defined three-

dimensional (3D) structures (Fig 1A) that often facilitate their functions independently

of their sequential surroundings. [1–3] Most eukaryotic proteins contain multiple domains

[4, 5], and interactions among these domains can mediate allosteric regulation [6] or give

rise to novel domain functions different from those found in isolation or other domain

arrangements.

Structural changes driven by mutations in the primary sequence are one mechanism under-

lying the acquisition of novel domain functions. [4, 7, 8] Structural and functional constraints

often require that evolution be coordinated between groups of amino acid residues in proteins

(Fig 1B). [9–11] Covariation in amino acid composition between positions in multiple

sequence alignments (MSAs) can be indicative of physical interactions between the residues

PLOS ONE | https://doi.org/10.1371/journal.pone.0203085 August 31, 2018 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Jakubec D, Kratochvı́l M, Vymĕtal J,
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and has been used to aid prediction of protein 3D structures and conformational diversity.

[12–17] Massive utilization of coevolutionary information has been made possible recently by

the availability of high-quality MSAs containing data from high-throughput sequencing exper-

iments. [14, 16, 17, 19, 20] Coevolutionary signals have been described both within and among

domains that coexist within protein chains. [12, 21] In addition, coevolution has been also

observed between proteins and their protein or nucleic acid interacting partners. [22–24]

Fig 1. Representations of a two-domain architecture. A: Example structure of a two-domain protein. Chain A in Protein Data

Bank [18] entry 1WAK contains two PF00069 (protein kinase) domains, shown here in blue and red. B: Correlated mutations in

multi-domain proteins. Blue and red areas schematically depict individual domains involved in an interaction. Dots connected by

solid lines represent pairs of coevolving positions. Coevolving positions within individual domains are shown in yellow. Coevolving

positions localized in different domains are shown in black and brown. These can involve both positions forming physical contacts at

the inter-domain interface (black) as well as positions separated by large distances (brown). C: General structure of a mutual

information matrix for a two-domain architecture AB. White A and B labels denote individual domains. Diagonal dark blue and

dark red elements describe the entropy of individual positions within domain A or B, respectively. Off-diagonal light blue and light

red elements describe the mutual information between pairs of positions within domain A or B, respectively. Off-diagonal pink

elements describe the mutual information between pairs of positions belonging to different domains.

https://doi.org/10.1371/journal.pone.0203085.g001
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In this work, we present an information-theoretic analysis of coevolutionary signals among

protein domains in multi-domain arrangements. Based on the functional implications these

signals carry, we test the notion of evolutionary and functional independence of domains and

examine their adaptability to their primary sequence context. In contrast to the aforemen-

tioned studies, we examine coevolution as a global property of a domain pair, and introduce

an appropriate continuous measure to quantify its effect. Using this measure, we show that

coevolution among protein domains is a much more widespread phenomenon than previously

anticipated.

Materials and methods

Data set construction

We defined protein domains as sequence families recognized in release 31.0 of the Pfam data-

base. [19] Pfam 31.0 provides a collection of 16,712 profile hidden Markov models (HMMs),

each representing one protein sequence family, as well as MSAs containing alignments of

sequences in UniProtKB [20] and other databases to these profile HMMs. Alignments of

sequences included in release 2016_10 of the UniProt reference proteomes (URPs) to the Pfam

31.0 profile HMMs were obtained from the Pfam FTP repository. This URPs release contains a

total of 26,742,727 protein sequences comprising the proteomes of 6,266 completely sequenced

organisms. At least one match to a Pfam 31.0 profile HMM was recognized in 19,419,549 of

these sequences. A total of 16,479 Pfam 31.0 profile HMMs matched to at least one sequence

from the URPs.

Domain architecture was established for each URPs sequence. We defined the domain

architecture of a protein as a vector of Pfam 31.0 sequence families identified within the pro-

tein sequence ordered according to their proximity to the N-terminus. A total of 278,458 dis-

tinct domain architectures were recognized. In order to reduce small-sample effects [25, 26],

only architectures realized in at least 500 URPs sequences were considered; a total of 2,063

such architectures contained two or more domains and were thus selected for this study. A

total of 4,240,857 URPs sequences were recognized as having one of these highly populated

multi-domain architectures (HPAs). A total of 2,599 distinct Pfam 31.0 sequence families were

identified within these sequences.

For each HPA, we compiled a list of all URPs sequences in which it was realized. Sequences

of domains found in these proteins aligned to the respective Pfam 31.0 profile HMMs were

retrieved from the Pfam family MSAs. Proteins that contained only standard amino acid,

insert, and delete state symbols in the alignments of sequences of each of their domains to the

respective Pfam 31.0 profile HMMs were identified for all HPAs. The lists of UniProt identifi-

ers of these proteins for individual architectures are available in S1 File; the distribution of the

numbers of sequences with these architectures is shown in S1 Fig.

Residue symbols found at positions corresponding to match or delete states (consensus

columns) in the alignments of the respective domain sequences to the profile HMMs were

extracted from each domain sequence within these proteins. This action corresponds to local-

izing all but the insert state positions in the respective MSAs, as residues assigned to insert

states are, by definition, unaligned, and therefore irrelevant to this study. [27] Sequences of

domains composed of the residues found in the consensus columns were then concatenated

for each protein, creating a string composed of residues characteristic of each domain identi-

fied within the URPs sequence. For example, if protein i contained two domains A and B with

respective sequences Ai and Bi, the concatenated sequence AikBi was created. By generating

this string for each protein, we created a multi-domain MSA for each HPA.
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PLOS ONE | https://doi.org/10.1371/journal.pone.0203085 August 31, 2018 3 / 13

https://doi.org/10.1371/journal.pone.0203085


Normalized mutual information measure

Individual columns in a MSA can be viewed as random variables, with residue symbols found

in the columns acting as the values of their respective observations. The Shannon entropy H

(X) of a random variable X taking on values from a finite alphabet K ¼ fx1; x2; . . . ; xKg can be

estimated as

HðXÞ ¼ �
XK

i¼1

f ðxiÞ log 2 f ðxiÞ; ð1Þ

where f(xi) is the relative frequency of observing xi and 0 log2 0 is defined as zero. The mutual

information MI(X, Y) of a pair of random variables X, Y can be estimated as

MIðX;YÞ ¼
XK

i¼1

XL

j¼1

f ðxi; yjÞ log 2

f ðxi; yjÞ

f ðxiÞf ðyjÞ
; ð2Þ

where f(xi, yj) is the joint frequency of observing xi and yj simultaneously. Since 2 is chosen as

the base of the logarithms in Eqs 1 and 2, values of entropy and mutual information are in bits.

[28] Throughout this work, K and L are equal to 21, as all sequences in the MSAs contain only

symbols for the standard amino acids and the delete state.

A mutual information matrix (MIM) showing the values of mutual information between

each pair of columns within a MSA was calculated for multi-domain MSAs corresponding to

the 2,063 selected multi-domain HPAs. The general structure of a MIM for a two-domain

architecture is shown in Fig 1C, and an example of a MIM for an architecture consisting of

two protein kinase (Pfam entry PF00069) domains is shown in Fig 2. In addition to correlated

mutations within individual domains, these representations reveal positive values of mutual

information between positions corresponding to different domains.

We calculated the average entropy H D of positions corresponding to domain D for each

domain within each HPA as

H D ¼
1

n

Xn

i¼1

HðXi;DÞ; ð3Þ

where n is the number of positions Xi,D corresponding to domain D. This corresponds to

calculating the average values of the dark blue or dark red elements for the MIM shown in

Fig 1C.

There are a total of N
2

� �
unique domain pairs for an architecture consisting of N domains.

For all such pairs of domains D, E within each architecture (regardless of whether they are

sequential neighbors or not), the average value of mutual information MI � MI D;E between

positions corresponding to the two domains was calculated as

MI D;E ¼
1

mn

Xm

i¼1

Xn

j¼1

MIðXi;D;Yj;EÞ; ð4Þ

where m, n are the numbers of positions Xi,D, Yj,E corresponding to domains D and E, respec-

tively. This corresponds to calculating the average value of matrix elements in pink rectangles

in the general MIM shown in Fig 1C.

We calculate the normalized average inter-domain mutual information nMI � nMI D;E as a

ratio of the average inter-domain mutual information MI D;E and the arithmetic average of
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average entropies of positions corresponding to domains forming the respective pair, i.e.,

nMI D;E ¼
2

H D þH E

MI D;E: ð5Þ

The value of nMI obtained in this way is equivalent to the statistical measure known as

symmetric uncertainty. [29] It represents, on the scale from 0 to 1, the extent of evolutionary

coupling between domains D and E, independent of the internal sequence variability of each

domain. There were a total of 5,205 domain pairs for which the value of nMI was calculated

according to Eq 5.

Information-theoretic analysis

To compare the extent of evolutionary crosstalk among protein domains in the selected multi-

domain architectures with the crosstalk in sequences that share no evolutionary history, we have

designed the following test. First, we split strings consisting of concatenated domain sequences

at the domain boundaries. If domain architecture AB was found in N protein sequences and the

Fig 2. Mutual information matrix for the native PF00069–PF00069 (protein kinase–protein kinase) two-domain architecture.

Each protein kinase domain contains 264 residues. A total of 8,753 URPs sequences have this architecture. The respective MSA

consists of sequences of the two domains found within each of these URPs sequences. Note the non-linear color scale and the

positive values of mutual information between positions corresponding to different domains (highlighted with the blue square).

Values of entropy and mutual information are in bits.

https://doi.org/10.1371/journal.pone.0203085.g002
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corresponding multi-domain MSA contained sequences A1kB1, A2kB2, . . ., ANkBN, then

two sets of sequences, {A1, A2, . . ., AN} and {B1, B2, . . ., BN}, were obtained after the original

sequences had been split. After this splitting, sequences of individual domains within these sets

were then randomly shuffled and rejoined so that the original architecture was reestablished.

For example, if protein i with domain architecture AB originally contained a concatenated

domain sequence AikBi, the shuffling process resulted in the sequence AikBj, with j being a dif-

ferent URPs sequence with an AB architecture. This way, any native evolutionary coupling

among protein domains was disrupted.

For each HPA, we calculated a second MIM from the perturbed MSA of disrupted

sequences in which fragments corresponding to individual domains almost certainly origi-

nated from different proteins. For each pair of domains in each architecture, the value of nMI
was calculated based on the respective perturbed MSA as described above for the case of native

sequences. An example of such a MIM for the architecture consisting of two protein kinase

(PF00069) domains is shown in Fig 3. Here, one can clearly see that the inter-domain mutual

information decreased remarkably in comparison with Fig 2.

To further examine the influence of background information noise arising among uncorre-

lated sequences, we studied the effects of random sequence composition fluctuations on the

Fig 3. Mutual information matrix for the perturbed PF00069–PF00069 (protein kinase–protein kinase) domain architecture.

Sequences of individual domains were randomly shuffled and rejoined. Note how the mutual information between positions

corresponding to different domains (blue square) has vanished. Values of entropy and mutual information are in bits. The color

scale is the same as in Fig 2.

https://doi.org/10.1371/journal.pone.0203085.g003
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resulting values of nMI . A total of 100,000 amino acid sequences, each containing 100 ran-

domly selected residues, were generated. The probabilities of choosing individual amino

acids were the same at each position within the sequences and were obtained from the average

primary sequence composition of proteins in release 2017_08 of the UniProtKB/Swiss-Prot

database. [20] For each of the 2,599 unique Pfam 31.0 sequence families identified within

the HPAs, 500 sequences were randomly chosen from the corresponding MSA of domain

sequences. Each of these sequences was then concatenated with a randomly chosen sequence

from the set of 100,000 sequences with random composition. In this way, a sort of a two-

domain MSA was generated, in which very high-entropy positions correspond to one of the

domains. The value of nMI was then calculated for each of these pseudoarchitectures.

Results

There were a total of 5,205 domain pairs for which the values of nMI were calculated before

and after intra-architectural domain sequence shuffling. The distributions of resulting nMI
values are shown in Fig 4A and 4B, respectively; the raw obtained values are available in S1

File. The difference between these values was calculated for each domain pair. The distribution

Fig 4. Distributions of the values of nMI for various domain pairings. A: Distribution of the values (N = 5, 205) of nMI for

domain pairs in native (non-disrupted) multi-domain protein sequences. B: Distribution of the values (N = 5, 205) of nMI for

domain pairs after intra-architectural domain sequence shuffling. C: Distribution of differences (N = 5, 205) between the values of

nMI for individual domain pairs before and after intra-architectural domain sequence shuffling. D: Distribution of the values (N = 2,

599) of nMI for domain–random sequence pairs.

https://doi.org/10.1371/journal.pone.0203085.g004
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of these differences is shown in Fig 4C. For illustration, the value of this difference is� 0.068

bits for the exemplary PF00069–PF00069 two-domain architecture.

It is clear from Fig 4C that all differences between the values of nMI before and after intra-

architectural domain sequence shuffling are greater than zero, i.e., the nMI is always greater

before the domain sequence shuffling. As a hypothesis, this is confirmed by performing the

Wilcoxon signed-rank test [30] on the distribution of these differences, which yields both the

value of the test statistic and the p-value of 0.0. The difference between the distributions shown

in Fig 4A and 4B can also be confirmed by performing the two-sided two-sample Kolmogo-

rov–Smirnov (KS) test [31], which yields the value of the KS statistic of�0.869 and the corre-

sponding p-value effectively zero.

It should be noted that both the distribution of the values of nMI in native sequences (Fig

4A) and the distribution of the nMI differences (Fig 4C) have means of around 0.1 bits, which

can be considered significant, given that maximum entropy of individual positions in the

MSAs is on the order of 100 bits.

Fig 4D shows the distribution of the values of nMI for sequences consisting of natural

domains and random sequences. Here, one can see that the distribution differs significantly

from that observed for native multi-domain sequences (Fig 4A) and appears to be more similar

to the distribution obtained after domain sequence shuffling (Fig 4B). However, a deeper

statistical inspection performed using the two-sided two-sample KS test and the two-sided

Mann–Whitney U test [32] shows that both non-random distributions are significantly differ-

ent (all p-values are effectively zero). This result shows that, even though each individual posi-

tion in the artificial random sequences has nearly maximum possible entropy, and thus has a

large potential to generate considerable values of mutual information with positions in genu-

ine protein sequences due to statistical noise, the observed values of nMI differ significantly

from those observed in natural multi-domain architectures. Therefore, it seems unlikely that

the evolutionary coupling observed among domains in genuine multi-domain proteins would

be a result of random fluctuations in amino acid residue frequencies.

In addition, the apparent similarity of the distributions shown in Fig 4B and 4D implies

that the domain sequence shuffling procedure has reduced the inter-domain sequence covaria-

tion score almost to the level expected to result from statistical noise. However, it should be

noted that there is a weak–intermediate positive linear correlation between the values of nMI
before and after domain sequence shuffling for individual domain pairs (Fig 5). Therefore, it

seems that not all contained information could be eliminated using this approach. This could

be related to a similar positive linear correlation observed between the non-normalized values

of MI (Eq 4) and the respective average domain pair entropies
H DþH E

2
(Fig 6). We provide an

explanation for the observation of these correlations in Discussion.

It is worth noting that the values of nMI and the respective average domain pair entropies

are virtually uncorrelated (Pearson correlation coefficient r� −0.001; Spearman’s rank corre-

lation coefficient ρ� −0.005).

Discussion

While most studies of coevolution to date (for example, [11–17, 21–24] and many others) have

treated it as a discrete property, in this paper we study the degree of coevolution as a continu-

ous property. Unlike the mentioned studies, our aim has not been the identification of precise

“coevolving” pairs of residues in close spatial proximity, but rather the mapping of the overall

tendency of residues in a pair of domains to respond to mutations in their partner. The value

of nMI introduced here is an intrinsically global measure which quantifies this effect for a pair

Widespread evolutionary crosstalk in multi-domain proteins
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of domains without specifying which precise residue pairs contribute to this measure signifi-

cantly. This makes it serve a different and unique role compared to recent coevolutionary anal-

yses for 3D contact prediction, such as DCA [12] and PSICOV. [33]

In this analysis, we deliberately ignored the issue of transitivity, where two domains may

appear to be coevolving if they share a common partner which is coevolving with both of

them. It may not be possible to reliably quantify and filter out such effects from purely numeri-

cal data when coevolution is treated as a continuous property and some signal is observed for

all pairs of domains (a possible linear optimization-based solution is highly numerically unsta-

ble). In addition, a pair of domains could, in principle, be coevolving with some other con-

served non-domain region, such as a linker, and these effects could not be filtered out even if

an appropriate method existed. It is worth noting that most (1,390 out of 2,063) architectures

studied in this work consist of only two protein domains, which rules out the possibility of

domain-related transitivity effects.

We explain the correlation between the values of nMI before and after domain sequence

shuffling, and the related correlation between the non-normalized values of MI and the

respective average domain pair entropies as follows. When two variables (positions in a MSA)

each have a large entropy, there is a greater chance that mutual information will appear

between the variables due to random noise, as mutual information can only increase with

increasing entropy. Therefore, if one calculates the value of MI for a pair of domains with

Fig 5. Correlation between the values of nMI before and after intra-architectural domain sequence shuffling. Number of

domain pairs (data points) N = 5, 205. The value of the Pearson correlation coefficient r� 0.345; the value of the Spearman’s rank

correlation coefficient ρ� 0.432.

https://doi.org/10.1371/journal.pone.0203085.g005

Widespread evolutionary crosstalk in multi-domain proteins

PLOS ONE | https://doi.org/10.1371/journal.pone.0203085 August 31, 2018 9 / 13

https://doi.org/10.1371/journal.pone.0203085.g005
https://doi.org/10.1371/journal.pone.0203085


large average entropies, one can expect the result to be greater as a consequence of an increased

statistical noise (Fig 6). As the intra-architectural domain sequence shuffling has no effect on

entropies of individual positions, the increased chance to generate mutual information from

random noise remains unchanged after domain sequences are shuffled. This mutual informa-

tion can compensate some of the loss introduced by the domain sequence shuffling. Therefore,

domain pairs with large average entropies can produce larger values of MI both in native and

in shuffled multi-domain sequences, leading to the observed correlation (Fig 5).

In addition to the random noise factor described above, there is another contribution to the

correlation observed in Fig 6, caused by the natural bounds on the value of mutual information

between two variables. This value can never exceed the intrinsic entropy of either variable.

Therefore, two positions with small entropies can never produce a large value of mutual infor-

mation, whereas positions with large entropies may yield both small and large mutual informa-

tion. This asymmetry can contribute to the observed correlation.

The value of nMI calculated for a pair of protein domains after intra-architectural domain

sequence shuffling serves as a proxy for the value expected if domains from different proteins

were paired randomly and thus shared no evolutionary history with each other. We found

that the corresponding value of nMI calculated from the alignment of native (non-disrupted)

multi-domain sequences is always greater (Fig 4C). This result implies that, in the context of

Fig 6. Correlation between the non-normalized values of MI and average domain pair entropies. Number of domain pairs (data

points) N = 5, 205. The value of the Pearson correlation coefficient r� 0.464; the value of the Spearman’s rank correlation coefficient

ρ� 0.460.

https://doi.org/10.1371/journal.pone.0203085.g006
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multi-domain proteins, a portion of domain sequence variation can always be attributed to

coordinated evolution among different domains.

Coordinated evolution can be intuitively understood by the need to preserve essential pro-

tein function in cases in which multiple domains form a ligand-binding or catalytic site (Fig

1B). [12, 21] We propose the following possible explanation for observation of this phenome-

non even among domains lacking such apparent functional constraints: Co-localizing multiple

domains into the same polypeptide chain may influence the folding pathway or open new

paths to optimize protein function via inter-domain interactions. These interactions may

enable direct or allosteric modulation of the function of the complete protein or its individual

domains. If a vital function of a multi-domain protein depends on the cooperative action of

its domains, evolution may opt to distribute mutations needed to preserve this function across

the domains in a coordinated fashion. Residues preferentially mutated in this way may consti-

tute nodes of energetic connectivity in the protein structure analogous to those observed at

the single domain level. [34] It should be noted that nMI , as defined, is a measure representing

overall evolutionary coupling of two domains, and does not provide detailed insight into

which specific amino acid residue pairs contribute significantly to this coupling.

In either case, additional domains act as buffers or reservoirs of evolutionary capacity that

can be utilized to either mitigate the impact of mutations required to maintain proper protein

function or, alternatively, to optimize the respective functions of individual domains. The pre-

cise mechanism through which this functional modulation is realized and its full impact on

protein evolution remain to be established.

Conclusion

We showed that, in the context of multi-domain proteins, evolution of domain sequences pro-

ceeds in a coordinated fashion. We proved this by comparing a mutual information-based

measure between native multi-domain sequences and artificial sequence constructs which

share no common evolutionary history and further showed that the observed evolutionary

coupling is distinct from statistical noise.

Supporting information

S1 File. Primary data archive for the studied architectures. This archive contains a file pre-

senting the list of UniProt identifiers of the URPs sequences included in the multi-domain

MSAs for each of the 2,063 studied multi-domain architectures, and files containing the values

of MI and nMI for individual domain pairs before and after domain sequence shuffling.

(GZ)

S1 Fig. Distribution of the numbers of sequences in the MSAs. Total number of architec-

tures (MSAs) N = 2, 063.

(TIF)
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