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Abstract

Biological organisms experience constantly changing environments, from sudden changes in 

physiology brought about by feeding, to the regular rising and setting of the Sun, to ecological 

changes over evolutionary timescales. Living organisms have evolved to thrive in this changing 

world but the general principles by which organisms shape and are shaped by time varying 

environments remain elusive. Our understanding is particularly poor in the intermediate regime 

with no separation of timescales, where the environment changes on the same timescale as the 

physiological or evolutionary response. Experiments to systematically characterize the response to 

dynamic environments are challenging since such environments are inherently high dimensional. 

This roadmap deals with the unique role played by time varying environments in biological 

phenomena across scales, from physiology to evolution, seeking to emphasize the commonalities 

and the challenges faced in this emerging area of research.
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1. Introduction

The natural world is ever changing, and living organisms evolve to thrive in these changing 

circumstances. Available sugars change over the course of a bacterium’s lifetime, pathogens 

seen by our immune systems change with the seasons, and an organism’s ecological 

niche can change over evolutionary timescales. Biological organisms have mechanisms 

to respond to such dynamical environments on all these scales. However, the response to 
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dynamical environments has been hard to study in a systematic manner since the space 

of dynamical environments is inherently high dimensional, requiring high-throughput time-

resolved measurements. What are the outstanding challenges and opportunities in studying 

such dynamic phenomena? In this roadmap, we present perspectives from such diverse fields 

as evolution and ecology, cellular signaling, development, and circadian biology.

Biology in time-varying environments has been mostly studied when there is a separation 

of timescales between environmental dynamics and the biological response. Such dynamics 

fall into two limits that we can understand using effective static frameworks. Slow changes 

in the environment elicit a ‘quasi-static’ response that is well-adapted to the effectively 

static environment at that moment in time. Conversely, rapid environmental variations faster 

than biological response timescales are filtered out, and enter only as enhanced fluctuations 

around a static backdrop.

In contrast to such fast or slow variations, if the environment changes on an intermediate 

timescale—that is, on timescales comparable to the biological response—adaptation to one 

environmental condition is only partially complete when adaptation to another condition 

must begin. The dynamics of the environment thereby couple to biological transients, and 

adapting organisms must reckon with both changes in their surroundings as well as the 

precise time over which they occur.

In this roadmap, we present perspectives from diverse fields of biology, highlighting 

how probing biological systems at these intermediate timescales can elicit novel, history-

dependent responses from cells, organisms, and populations. These include regular 

environmental rhythms, such as the 24 h day–night cycle. Rust explores how the need to 

reliably process temporal information constrains the architecture of biological circuits, while 

Hepler and Bass describe the delicate coupling between metabolic and circadian cycles 

that underlie health and disease. Other temporal cues may be less predictable, such as the 

intermittent onset of extracellular stresses. New technologies are required to probe cellular 

responses to these signals. Pietsch and Swain describe how microfluidics, combined with 

single cell imaging, can be used to study the encoding of extracellular stimuli in intracellular 

dynamics, while Jena and Toettcher draw lessons from optogenetic studies of the metazoan 

Ras/Erk system to outline the role of signaling dynamics in homeostasis and development.

Time varying environments can also be exogenously applied as a control strategy, directing 

biological processes to desirable outcomes. Chakraborty and Sprenger describe temporal 

vaccination protocols that direct the immune system toward broadly neutralising antibodies 

(Abs) that can bind multiple antigens. In contrast, Wood describes how time-varying doses 

of antibiotics can slow the evolution of microbes resistant to multiple drugs. Mora, Walczak, 

and Rivoire situate these protocols in classic strategies for bet-hedging, while Wang 

describes how immune systems learn from, generalise, and affect a changing pathogenic 

environment.

Time-varying environments on longer timescales can shape evolutionary processes. Skanata 

and Kussell describe the evolution of regulated cellular growth as a response to fluctuating 

environments seen over evolutionary history. Further, time-varying environments seen in 
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the past may imprint themselves physically into the products of evolution, as described by 

Ranganathan for the evolution of allostery in proteins. Finally, Shih and Goldenfeld take into 

consideration that time-varying environments are often not set externally by abiotic factors 

but by other coevolving species, giving rise to a rich set of self-tuned, eco-evolutionary 

dynamics.

2. Biological oscillators as signal processing devices

2.1. Status

Most laboratory experiments in biology involve cells or organisms in culture living either 

in constant conditions, or in conditions that have a simple time-varying structure. In 

contrast, the natural environments under which these organisms evolved have rhythms and 

fluctuations on many timescales. Some of this temporal structure corresponds to signals 

that are potentially actionable in the sense that they carry predictive information about the 

future. Familiar examples include the daily rhythm of day and night, the annual rhythm 

of seasons, and the diurnal, semidiurnal, and monthly rhythms of the tides. Beyond these 

astrophysical rhythms, many microbes may live in environments with varying degrees of 

regularity. For example, bacteria living in the human gut may experience pulsatile nutrient 

rhythms corresponding to human mealtimes.

These potentially predictive signals are usually contaminated with noise, irrelevant 

fluctuations that do not contain usable information. For any particular case, noise will be 

strongest at different parts of the frequency spectrum. As an example, consider the obvious 

day–night rhythm in illumination. This signal is partially obscured by higher frequency 

fluctuations due to cloud cover etc. Temperature also exhibits daily cycles, but these rhythms 

are more prominently obscured by low frequency fluctuations due to longer timescale 

change in the weather (figure 1(A)).

2.2. Current and future challenges

These observations naturally raise the question of which strategies living systems might use 

to deal with the challenge of perceiving an informative signal in the presence of irrelevant 

noise. In the case of daily cycles, two general behaviors have been observed experimentally. 

The first is physiology that responds rhythmically to daily rhythms in the environment, 

but these rhythms fade out when the environment is held constant. Damped daily rhythms 

have been reported in many organisms, especially microbes, including budding yeast [2], 

pseudomonads [9], purple bacteria [4], and the cyanobacterial clade Prochlorococcus [3]. An 

alternative is rhythmic physiology that is self-sustaining in constant conditions, known as a 

circadian rhythm, the name referring to internally generated rhythm that is about a day in 

period. Most animals and plants, some fungi, and many cyanobacteria show self-sustaining 

rhythms. These timing mechanisms are in general implemented by elaborate biochemical 

circuitry, and as the details may vary markedly from species to species, it may be impossible 

to make truly general statements about molecular mechanism.
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2.3. Advances in science and technology to meet challenges

To attempt to make generic statements about physiology in time-varying environments, we 

turn to an idea from the study of dynamical systems called normal form theory. The idea 

is that, sufficiently close to a fixed point of the system, many features of the system can 

be approximately understood in terms of a low-dimensional description that is universal, 

in the sense that almost all systems with the same qualitative behavior should follow 

equivalent equations. As a first step, consider the behavior of a system, such as an hourglass 

mechanism, which decays to a stable steady state when the environment is constant. 

Sufficiently close to the steady state, the dynamics can treated by a linear approximation. In 

general, the eigenvalues of the resulting linear system with the least negative real part (and 

hence slowest decaying) will be a complex conjugate pair. This results in the normal form 

for a spiral node (figure 1(B)):

d
dt

x
y = μ −ω

ω μ
x
y

where x and y are the most slowly decaying eigenvectors of the system’s state variables, 

transformed so that the steady state lies at the origin. When μ < 0, the solutions to this 

equation spiral into the origin, completing one revolution in a time 2π/ω, and losing half of 

the radial amplitude in a time −ln 2/μ.

To simulate the behavior of this system in a fluctuating environment, we can add a driving 

term representing an external signal with frequency Ω and study the behavior of the resulting 

equations:

d
dt

x
y = μ −ω

ω μ
x
y + I cos Ωt

sin Ωt

The linearity of this equation allows an exact solution. At long times, the system will show 

sinusoidal oscillations at the same frequency as the driving term. Assuming μ < 0, the 

amplitude A of these oscillations, which is a measure of signal amplification, depends on the 

mismatch between the natural frequency ω and the driving frequency Ω as:

A = I
μ2 + (Ω − ω)2

The phase θ of oscillations relative to the driving signal is given by:

tan θ = Ω − ω
μ

This analysis may be familiar from introductory mechanics or engineering. My hope here 

is to provide an application to biology where the perspective can be quite different: rather 

than trying to design a system with desired properties, we are often in the position of trying 

to study systems created by nature that evolved subject to unknown selective pressures. 

Simple mathematical arguments may be helpful in allowing us to see otherwise mysterious 
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relationships between system properties and perhaps in inferring something about the 

statistics of the environment under which an organism evolved.

Some implications of the above equations are that near a spiral node, a system will 

synchronize with a driving signal regardless of its frequency. In this linear system, the phase, 

analogous to the angle of entrainment, is independent of the strength I of the driving signal. 

The selective amplification of frequencies allows the spiral node to act as a signal processing 

element, suppressing input signals with frequencies far from the natural frequency ω (figure 

1(C)). The quality of this rejection of off-resonance frequencies improves as μ → 0. Note 

that although the response of the system is a symmetric function of frequency, many biology 

experiments are reported in terms of the oscillator period, and the signal amplification peak 

is an asymmetric function of period.

When μ is small, a spiral node system can be very effective at removing noise from the input 

signal (figure 1(D)). The width of the resonant peak becomes narrower, with a full width at 

half maximum 2 3μ. To be effective, the frequency of the input should fall into the resonant 

peak. But in a biological system, the time scale ω of the response will in general depend on 

conditions, such as growth rate, temperature, nutritional status, gene expression fluctuations, 

etc. Thus, for a given biochemical circuit there will be some finite uncertainty Δω associated 

with the response of the system. This argument leads to the following heuristic:

Δω
ω ∼ μ

ω

Which indicates that when the natural frequency of a biochemical circuit is unreliable, the 

optimal choice of μ will be pushed away from 0 toward finite values. Conversely, this 

argument predicts that when rhythms are observed to rapidly die out in constant conditions 

(large μ/ω) the frequency of the biological oscillator may be expected to show increased 

variability and depend of external conditions such as temperature or growth rate (figure 

1(E)). One illustrative example is the case of conditional rhythms at low temperatures in 

the cyanobacteria S. elongatus. This microbe shows robust ~24 h rhythms near 30 °C. As 

temperature drops below 20 °C, temperature compensating mechanisms break down and the 

oscillator period approaches 30 h. Consistent with the analysis here, these rhythms also lose 

stability as the system moves further off resonance with the environment. Remarkably, this 

loss of stability is part of a programmed regulatory process, since self-sustaining rhythms 

can be restored at low temperatures by altering the codon usage of the kai genes [10].

Because of the linearity of the spiral node system, inputs at multiple frequencies drive the 

system independently. Thus it is straightforward to analyze situations where undesirable 

noise has a non-uniform frequency spectrum (i.e. is not white noise). For simplicity, imagine 

that noise is concentrated near a single frequency Ωnoise. In this case, what is the best-

performing spiral node system? In general, it is no longer optimal to match ω to the signal 

frequency Ω. This is because, although shifting ω reduces the amplification of the signal, 

this is offset by a stronger suppression of the noise. To obtain an analytical expression for 

the effect of noise on the optimal oscillator frequency, one can write the shifted frequency 

as ω = Ω + ε, where ε should be chosen to maximize the ratio of signal amplification to 
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noise amplification. Proceeding by using the formula for amplification above, we can find a 

maximum for the ratio of amplifications by differentiating with respect to ε and setting the 

resulting expression to zero. At leading order, the shift is:

ω ≈ Ω + μ2
Ω − Ωnoise

Thus, high frequency noise results in an optimal spiral node that oscillates slower than the 

signal, and low frequency noise leads to optimal oscillations that are faster than the signal. 

This may have relevance for classical patterns observed in the study of circadian rhythms 

where the free-running periods of diurnal mammals, birds, and plants tend to be longer than 

24 h, and nocturnal mammals and arthropods tends to have periods shorter than 24 h [1].

In general, the best performing spiral node systems are those where the time constant 

ω in the underlying biochemical mechanism can be made to be robustly independent of 

external conditions. This allows μ to become small, reducing the stability of the steady 

state, and reaping the benefit of a strongly peaked signal amplification curve. But there 

is an inherent contradiction in this argument! Letting μ → 0 implies that the amplitude 

of the system increases without bound, but the original argument was that the spiral node 

normal form would be a good description of the system sufficiently close to steady state. 

Furthermore, chemical concentrations cannot become negative, so additional terms must 

become important as the system moves increasingly far away from the steady state.

In general, higher order terms will limit the response of the system to resonant driving as 

μ → 0, preventing an infinite amplitude. Monti et al have studied the ability of such a 

system to extract a signal from noise. They conclude that, when higher order terms become 

important, enhanced performance is achieved by pushing μ to positive values through a 

Hopf bifurcation, creating a self-sustaining oscillation [5]. One possible explanation for the 

appearance of limit cycle oscillators (e.g. circadian rhythms) could be that they are actually 

easier to evolve than a highly underdamped spiral node in a biochemical circuit because the 

latter would require tuning all higher-order terms to nearly vanish.

Once a limit cycle oscillation emerges, the result is a biological oscillator whose response 

to weak driving is quite different from the linear model. In this situation, the amplitude of 

oscillations is nearly independent of the drive, instead being set by the size of the limit 

cycle itself. In this way, a limit cycle oscillator can serve to remove fluctuations in the 

strength of the input. The driving force acts now as an synchronizing cue, with entrainment 

or phase-locking occurring when the driving frequency is sufficiently close to the natural 

frequency. The entrained phase of the oscillator will in general depend on the drive strength, 

again unlike a linear oscillator [8]. These properties which allow amplitude normalization 

and tunable entrained phase may provide additional benefits to living organisms, favoring 

their evolution [7].

2.4. Concluding remarks

To summarize, a simple dynamical systems analysis suggests that there may be 

unappreciated patterns in biological rhythms that may be tested in future experiments. 

Murugan et al. Page 7

Phys Biol. Author manuscript; available in PMC 2021 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Uncertainty and unreliability in biochemical mechanisms tend to favor dampened rhythms. 

These perform modestly in separating signal from input noise but are robust in the sense that 

their performance is not compromised by either variability in parameters or internal noise 

[6]. When biochemical mechanisms are precise, performance can be enhanced by relieving 

the damping on the system, ultimately exposing nonlinearities in the system and creating 

self-sustained oscillations. Simple arguments suggest that the optimal choices of parameters 

will depend on the spectrum of noise in the environment, in general pushing the system 

slightly off resonance to better suppress noise.

Many unanswered questions remain. Does the ‘just-so’ story above describe the actual 

evolutionary trajectory of biological rhythms? What is the optimal design of a limit cycle 

oscillator in the presence of a given noise spectrum? Perhaps most importantly, are damped 

rhythms widespread in nature that may have received less attention because their properties 

can tolerate more variability?
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3. Energetics of rhythmic feeding

3.1. Status

Daily circadian rhythms of feeding/fasting and wakefulness/sleep are coordinated by 

the light-responsive pacemaker cells in the suprachiasmatic nuclei (SCN). SCN neurons 

communicate through secreted factors and projections onto nearby regions to synchronize 

clocks in peripheral organs with the light–dark cycle. A major output of the SCN are 

hypothalamic hunger and energy sensing neurons, suggesting that these regions participate 

in the entrainment of peripheral tissue clocks. Tissue-specific clocks can also be entrained 

by a variety of hormonal, temperature, and nutrient signals, such as timing of feeding. Genes 

controlled directly by the molecular clock as well as through clock interactions with tissue-

specific transcription factors regulate metabolic rhythms of respiration, ATP production, and 

metabolic pathways. In turn, the rhythmic function of clock and collaborating transcription 

factors lead to oscillation of gene expression, translation, and protein processing, which 

induce alternation between anabolic and catabolic processes across tissues. Importantly, 

energy status and metabolites also feedback to the circadian clock to fine tune metabolic 

programming in cells. These bidirectional interactions between the circadian clock and 

metabolism are critical to coordinate energy balance throughout the day, and disruption of 

this crosstalk underlies metabolic disease.

Genetic evidence indicates that disruption of the molecular circadian clock is strongly linked 

to the development of metabolic diseases. Clock mutant mice fed high fat diet (HFD) display 

altered feeding rhythms accompanied by hyperphagia and metabolic syndrome. Similarly, 

Bmal1 mutant mice have impaired glucose homeostasis. These observations highlight the 

significance of an intact molecular clock in regulating metabolic rhythms and whole-body 

energy homeostasis. Disruption of the clock through housing mice under constant light 
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conditions also leads to glucose intolerance and elevated adiposity. Chronic low-grade 

inflammation of adipose tissue driven by NF-κB is a hallmark of metabolic syndrome during 

obesity. Interestingly, mice exposed to light at night also have an exaggerated inflammatory 

response to the pro-inflammatory stimulus lipopolysaccharide. Recent data indicates the p65 

subunit of NF-κB represses transcription of CLOCK/BMAL1 target genes through binding 

to the promoters of genes encoding clock repressors in the liver [11]. HFD feeding leads to 

reduced clock gene expression in a tissue-specific manner, particularly in visceral adipose 

tissue. However, it is unknown whether interactions between NF-κB and the circadian clock 

in visceral adipose tissue drive chronic inflammation and insulin resistance.

Timing of feeding and disruption of the sleep/wake cycle are key determinants of metabolic 

health. In nocturnal animals such as mice, much of the excess caloric intake during 

ad libitum HFD feeding occurs during the light period. Restricting feeding to the light 

(inactive) period results in weight gain and the development of metabolic syndrome [12]. 

However, restricting feeding to the dark (active) period protects mice from hepatic steatosis, 

glucose intolerance, and weight gain, compared to isocaloric feeding during the light. This 

indicates time restricted feeding (TRF) is beneficial, independent of caloric consumption. In 

humans, mistimed feeding as occurs during shift work, jet lag, and sleep disorders may lead 

to circadian desynchrony through resetting peripheral tissue clocks. Mistimed feeding could 

disrupt multi-organ metabolic rhythmic programming in anticipation of normal feeding 

times and lead to weight gain and metabolic disease. However, the molecular mechanisms 

underlying the metabolic benefits of TRF remain unclear.

3.2. Current and future challenges

Understanding the link between the circadian clock, metabolism, and feeding time are 

critical to developing therapies that utilize TRF to promote metabolic health and reduce 

obesity. Going forward, it will be critical to determine which cell types and metabolic 

pathways contribute to the improved metabolic health during TRF. The beneficial effects 

in response to eating during the optimal time likely involve coordination between multiple 

tissues including the pancreas, liver, adipose, intestine, and muscle. In some peripheral 

tissues, such as the liver, rhythmic gene expression is programmed in response to feeding 

time, whereas other tissues are primarily entrained by light. This demonstrates the 

complexity of the system-wide response to time-restricted feeding.

Much of the focus in time-restricted feeding has been on the liver, while less is known about 

rhythmic changes in response to feeding time in other peripheral organs important in energy 

homeostasis. However, it was recently demonstrated that Bmal1 and Reverbα/β in the liver 

are not required for the reduced weight loss, decreased adiposity, and restored glucose 

homeostasis driven by restricting feeding to the dark period as compared to ad lib feeding 

[13]. This indicates other tissues may be responsible for the beneficial effects of TRF. 

Global metabolite profiling comparing chow-fed and HFD-fed mice revealed heterogeneity 

in metabolites across tissues with a loss of lipid oscillation in BAT after HFD feeding [14]. 

This data along with the prominent change in adiposity during TRF suggests adipose tissue 

metabolism may play a role in mediating metabolic health during rhythmic feeding. Indeed, 

restricting HFD to the dark period induces Ucp1 expression in BAT and reduces white 
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adipocyte hypertrophy. BAT thermogenesis is regulated in a circadian manner and is highest 

during the active period [15]. Restricting feeding to the light period leads to reduced body 

temperature during the dark period, suggesting reduced thermogenesis [16]. This suggests 

adipose tissue thermogenesis and lipid metabolism may underlie metabolic benefits driven 

by eating at the optimal circadian time of day.

Another major challenge in translating metabolism research from the rodent to humans 

is that research is typically performed during the light period, during nocturnal rodents’ 

sleep phase. Future work on the interplay between energy balance and diet should focus on 

metabolic mechanisms in a time-of-day dependent manner.

3.3. Advances in science and technology to meet challenges

Two recent studies in humans indicated TRF improves glucose homeostasis and blood 

pressure in pre-diabetic men independent of weight loss [17, 18]. However, the mechanisms 

underlying how synchronizing feeding time with circadian rhythms benefit metabolic health 

remain poorly understood. The recent development of automated feeding equipment that 

controls for amount, duration, and timing of food availability greatly advances the ability to 

study the interplay between circadian rhythms and timing of feeding in mice [19]. Cistromic 

profiling in different tissues revealed that clock components bind to distinct tissue-specific 

enhancer sites, highlighting the importance of studying circadian clocks in a tissue- and 

cell-specific manner. CLOCK/BMAL1 co-localize with the pancreatic transcription factor 

PDX1 in beta cells, distinct from the liver-defined binding sites that program metabolic 

networks [20]. The use of inducible genetic CRE models that target individual cell 

populations combined with floxed alleles provides temporal and spatial ablation of genes, 

which is advantageous over constitutive whole-body gene knockouts. Future work using 

tissue-specific inducible genetic deletion is critical to elucidate the heterogeneity of cellular 

responses during TRF.

3.4. Concluding remarks

Oscillations in oxidative and reductive metabolism are synchronized by circadian clocks in 

anticipation of light/dark and feeding/fasting cycles. During feeding, metabolic pathways are 

coordinated across multiple tissues in order to achieve organismal homeostasis. Elucidating 

circadian clock function in a tissue-specific manner is essential to understanding how 

circadian desynchrony of feeding time participates in metabolic disorders.

Acknowledgments

We thank Dr Jonathan Cedernaes and all members of the Bass lab for helpful discussions. 

This research was supported by the National Institute of Diabetes and Digestive and 

Kidney Diseases (NIDDK) grants R01DK090625, R01DK113011, R01DK100814 and 

R01DK050203, The National Institute on Aging grant P01AG011412, the Chicago 

Biomedical Consortium S-007 and the University of Chicago Diabetes Research and 

Training Center grant P60DK020595 (JB).

Data availability statement

Nonewdata were created or analysed in this study.

Murugan et al. Page 10

Phys Biol. Author manuscript; available in PMC 2021 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conflict of interest

The authors declare that they have no competing financial interests.

4. Extracellular signals and dynamic intracellular change

4.1. Status

Cells have been selected for change. Even microbes use current signals to prepare for the 

future [21], and in our own cells circadian rhythms have hard-coded such preparation into a 

daily occurrence. In natural environments, be that a human tissue or as part of a microbiome, 

extracellular signals are likely to be multifarious, simultaneous, and continually varying. Yet 

it is only recently that microfluidic technology has allowed us to overcome the technical 

challenge of mimicking such signals.

Signaling networks should perform best in natural environments, and using dynamic inputs 

is proving a powerful means to understand their internal logic [22] (figure 2). There are 

mutants in the signaling pathway responding to hyperosmotic stress in budding yeast that 

only become distinguishable from wild-type when exposed to time-varying inputs [23], and 

some stress responses in bacteria respond not only to stress but also to its rate of increase 

[24]. Higher organisms may even regulate extracellular environments to become dynamic 

and use oscillatory levels of cytokines to selectively entrain signaling pathways [25].

Intracellular responses are dynamic too, and only a step change in an extracellular 

concentration can generate complex intracellular behavior. The levels of second messengers, 

such as calcium and cAMP, can spike or oscillate; metabolic cycles might change phase; and 

some transcription factors pulse in and out of the nucleus.

We are only beginning to understand why cells might use such dynamic signaling over 

steady-state responses. Dynamic responses are potentially quicker than waiting for steady-

state behavior and also may carry more information because not only the amplitude but also 

the timing of the response can be used [26, 27]. Signaling pathways at steady-state appear 

to encode only enough information to distinguish between two types of environment, but the 

information substantially increases if the downstream biochemistry can sense the response’s 

dynamics. Encoding different extracellular signals in the dynamics of signaling molecules 

can also coordinate downstream responses. A transcription factor that pulses in and out of 

the nucleus with a frequency but not amplitude that changes in different environments will 

always have the same concentration when in the nucleus, causing all regulated genes to 

respond together [28].

4.2. Current and future challenges

Characterising dynamic behavior requires finding suitable reporters. Their quality constrains 

the time resolution, the numbers of cells monitored, and the numbers of variables measured. 

Reporters must respond on appropriate time scales to capture dynamics, be sensitive to short 

acquisition times, and sufficiently responsive to excitation to limit photo-toxicity. Although 

monitoring transcription using RNA-binding proteins and signal transduction through 

nuclear translocation are both fast, each can potentially perturb intracellular dynamics.
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A second challenge is choosing the input. Typically, we do not know the natural signals 

under which cells have evolved, if the input should change with time, or if it should appear 

alone or co-vary with others. A dynamic input greatly increases the number of variables—up 

to one for each time point. Exploring such a vast space is daunting, and without efficient 

methods we must make do with low sampling.

Studying individual cells itself raises problems because cellular context can determine 

behavior. As well as the inherent stochasticity of biochemistry, cellular history—how cells 

were prepared and previous exposure to signals—and cell state, such as phases of the cell 

cycle, metabolic cycle, or circadian cycle, can alter responses and confound interpretation. 

To make matters worse, we often do not have reporters for such endogenous rhythms. This 

variation means that we need quantitative methods to compare collections of time series. 

For example, there is no standard procedure to determine statistically significant differences 

between two sets of time series, such as for a wild-type and mutant.

Although microfluidic technology has become indispensable, the device’s design could bias 

intracellular dynamics. Often a device favors particular cellular shapes, and being confined 

can stress cells and alter gene expression. As the experiment runs, the cells under study 

can become unrepresentative of natural populations. For example, multiple devices trap cells 

but allow offspring to escape, and imaging for say eight generations means that the trapped 

cells constitute only 2−8 of a growing population. Further, polydimethylsiloxane (PDMS), 

the polymer often used in devices, can influence cellular behavior and absorbs hydrophobic 

molecules, potentially distorting inputs.

4.3. Advances in science and technology to meet challenges

Better reporters of intracellular activity would be transformative. Cross-talk between 

fluorophores limits most studies to two reporters, giving only a blinkered view of the 

response. Although we can control some signaling, such as kinases made sensitive to 1-NM-

PP1 and through targeted degradation and optogenetics [29], we cannot measure in vivo 
the drivers of cellular decision-making—active kinases and phosphatases. Non-perturbative 

methods to follow RNAs and cellular cycles as well as reporters to quantify cellular context

—levels of cofactors like NAD+, of second messengers, and of energy (the ATP to ADP 

ratio, proton motive force, and membrane potential)—are all essential.

To mimic natural environments, we need reproducible control of the dynamics of inputs, the 

ability to apply multiple inputs, both simultaneously and sequentially, and optimization to 

efficiently explore the space of inputs. Chemical methods to reduce the hydrophobicity of 

PDMS, like silanization, will both prevent microfluidic devices perturbing inputs and enable 

new dyes as intracellular reporters.

Progress is needed on two bottlenecks: extracting information from time-lapse experiments 

and efficient means to search and share time-lapse data. Many laboratories develop in-house 

software for phenotyping cells that is too customized for data from elsewhere, and results 

must often be manually corrected. Advances in convolutional neural networks should fix 

both problems. With sufficient training data, these algorithms work better and faster than 

traditional approaches, and techniques for transfer learning are facilitating sharing [30]. 
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Agreeing on a standard format for storing images, annotations and associated meta-data will 

allow both exchanges and the meta-analyses needed for ‘whole-cell’ modeling.

Perhaps the most impact will be from combining time-series experiments with single-

cell’omics. If a group of cells that has displayed a particular dynamic phenotype could 

be selectively extracted from a microfluidic device, then single-cell transcriptomics and 

proteomics will give numbers of reporters impossible to achieve with fluorescence, albeit at 

one time point. We will then be able to determine how the dynamics of inputs, movements of 

transcription factors, individual cell physiologies, and phases of endogenous rhythms in the 

recent past affect current programmes of gene expression.
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5. The role of timing in biological perception and actuation

5.1. Status

Physicists often study biological networks as closed systems that evolve according to their 

own autonomous nonlinear dynamics. For example, a cell observed under the microscope 

will reliably move through stages of growth, DNA replication, and mitosis, taking an 

observer through each step of the cell cycle. Such a system lends itself well to modeling, 

and various emergent properties can be predicted: the stable states the cell finds itself in for 

extended periods of time, the speed at which it moves from state to state, and the period of 

the cycle.

But our picture of the cell cycle as a closed system is incomplete, as cell growth and division 

are highly responsive to environmental cues: local cell density, nutrient availability, the 

presence of permissive growth factors, and even subtle variations in temperature that elicit a 

biological stress response can dramatically alter or halt cell cycle progression.

It may thus be more fruitful to view the cell not as a closed, autonomous system but as a 

set of signal processing devices. We may borrow concepts from information theory, circuit 

design, and control theory to ask what dynamic filters, relays, and data compressors may 

underlie the cell’s response to environmental cues [31]. How are useful and pertinent signals 

deciphered from a sea of external chemical and mechanical cues? Is there a ‘code book’ for 

intracellular signal transmission?

5.2. Current and future challenges

A few key biological processes are emerging as ideal context for studying cellular signal 

processing (figure 3). One is embryo development, where almost every transition is closely 

linked to a biological clock or timer. After all, cells have a limited time to migrate, divide or 

differentiate before the embryo proceeds to its next developmental stage.

For example, the Drosophila embryo’s first fourteen nuclear cycles occur under extremely 

stereotyped time intervals and after approximately 3 h culminate in the profound cell 

movements associated with gastrulation. The formation of the segmented body plan and 
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three germ layers must be completed on this timeline, requiring fast (minutes–hours) 

signaling events and transcriptional responses. Supporting this view, we found that Erk-

dependent differentiation into gut endoderm and neural ectoderm was limited to a critical 

time window between nuclear cycle 10 (when nuclei move to the embryo’s surface and 

can receive Erk-dependent signaling) and gastrulation [32]. The total duration of Erk 

signaling delivered in this narrow, 90 min time window proved to be essential for cell fate 

specification.

A second key context for dynamic signaling can be found in the maintenance, homeostasis, 

and repair of adult tissues. Numerous signaling pathways that were crucial to embryo 

development are again repurposed in the adult organism, where the objective is not the 

timely progression through embryogenesis but rather continuous tissue- and organism-level 

homeostasis.

Yet despite a high degree of molecular conservation, the requirements for homeostatic 

signaling are quite different than those in development. Homeostatic signaling must be 

sensitive, detecting a single defective cell among millions of normal ones; in contrast, 

inductive developmental cues can be produced at high concentrations. Homeostatic 

pathways must also respond to inputs with a huge range of unpredictable spatial 

distributions and timescales (e.g., wounds can be tiny or huge, acute or chronic), whereas 

developmental cues usually occur in predictable time windows. A sophisticated degree of 

information processing is essential to meet these varied constraints.

Interestingly, mounting evidence suggests that cell signaling in adult tissues also possesses 

its own complex spatiotemporal behavior [33]. This may include pulses of pathway activity, 

traveling waves across a tissue field, or switch-like and irreversible cell–fate transitions 

(e.g., apoptosis). In some cases, it is not obvious which stimuli are responsible for the 

observed the signaling dynamics, such as in the case of the tumor suppressor p53, which 

exhibits dynamic activity even in the absence of any externally-applied stress [34]. It 

remains an open question in the field to determine which variations in signaling are due 

to actual changes in an upstream input as opposed to autonomous, stochastic activation of 

the pathway.

5.3. Advances in science and technology to meet challenges

A first key to cracking the signaling code lies in systematically varying external signaling 

cues and monitoring the cell’s resulting intracellular states. This approach has been taken 

with regards to neural processing: Hodgkin’s and Huxley’s seminal studies on single 

neurons adopted an ‘input–output’ approach, plugging in transmembrane voltage as an input 

and measuring the resulting current flow to usher in the era of quantitative neurobiology.

However, neurobiology is far from the only context in which time-varying signaling takes 

place. One difficulty in porting the neuroscientist’s toolbox to cell biology has involved 

designing methods to accurately define and vary an external cue. Membrane potentials 

can be easily applied and removed with high temporal accuracy, but receptor–ligand and 

protein–protein interactions have proven to be more challenging to control. The recent 

development of microfluidics, optogenetics, and live-cell fluorescent biosensors provide a 
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rich and growing toolbox for overcoming this difficulty. Indeed, these new tools have been 

applied with some success to study Rho GTPase signaling in single cells [35], to control and 

visualize the outcomes of NF-kB signaling [36], and to map signal transmission through the 

Ras/Erk signaling pathway [29].

What functional role might signaling dynamics play—is there significance to whether a 

pathway exhibits a sharp off-to-on transition versus periodic pulses or waves of activity? 

In some cases, the role of dynamics can be easily intuited. For example, an ultrasensitive 

off-to-on protein switch enables the cell to trigger a long-term, all-or-none change to a 

transient stimulus, whereas a signaling pulse arises naturally from sensory systems that 

adapt and desensitize to a constant stimulus. However, other dynamics observed in signaling 

pathways are not so easy to explain. For many intracellular signals (e.g., p53, Crz1, Erk, 

Ascl1, and Msn2), different pulsatile dynamics emerge from different inputs, suggesting 

that they may represent a coding strategy to share a single protein circuit between multiple 

cellular response programs [28, 37, 38]. By directly controlling pathway dynamics and 

measuring responses, it may be possible to deconstruct these coding strategies (figure 4).

A case study for understanding signal multiplexing is the metazoan Ras/Erk pathway. 

This pathway has been found to respond to a wide range of inputs, including a range 

of growth factors, cell–cell contact, and even mechanical force. These inputs activate a 

phosphorylation cascade that culminates in the activation of Erk and its translocation into 

the nucleus, where it potentiates a cellular response through gene expression. Using an 

optogenetic approach that relies on light-controlled protein heterodimerization, Toettcher 

et al were able to precisely control activation of the signaling pathway, demonstrating 

that it acted as a low-pass filter that responded more readily to longer input durations 

[29]. In subsequent work, Wilson et al studied the resulting expression of Erk-stimulated 

immediate-early genes (IEGs) [39]. Although the requirement for Ras/Erk signaling to drive 

IEG expression was demonstrated decades earlier, using optogenetics to deliver time-varying 

signals led to the discovery that genes act as band-pass filters for Erk signaling, suggesting 

that two separate filter layers operate between Ras activation and the eventual accumulation 

of target gene products.

Accumulating evidence demonstrates that Erk signaling dynamics have real consequences in 

disease and development. It had long been known that aberrant growth factor signaling led 

to uncontrolled growth and cancerous phenotypes. However, it has been broadly assumed 

that uncontrolled growth is the result of constitutive, high signaling activity independent of 

any time-varying stimulus. Surprisingly, it was recently observed that dynamics play a role 

in mutation-induced signaling as well. Using live cell reporters and optogenetics, Bugaj et 
al quantified signal transmission in tumor cells harboring a BRaf P-loop mutation (G469A) 

[40]. The authors demonstrated that mutant BRaf extended Erk signaling long after stimuli 

had bene removed, leading to chronic misinterpretation of dynamic stimuli and expanding 

the set of stimuli capable of driving cell proliferation. Recently, we also found that Ras/Erk 

dynamics also play a crucial role in Drosophila embryo development. Using optogenetic 

control over Ras, we found that simply increasing the duration of pathway activity could 

specify a single cell population to adopt fates from two different germ layers (gut endoderm 

vs neural ectoderm) [40].
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Although progress has been made to define the code book of Ras/Erk dynamics and their 

resulting cell–fate outcomes, much remains unknown. What is the molecular origin of 

the seemingly spontaneous, excitable Erk pulses that arise in so many cellular contexts? 

Which molecular circuits interpret and filter dynamics into different gene expression 

programs? Both the encoding machinery that initiates dynamics and the downstream 

decoding machinery remain undefined.

5.4. Concluding remarks

A grand unifying theory of dynamic encoding should be able to explain how dynamics 

can be interpreted on a molecular level, and the situations in which they offer benefits 

that alternative strategies cannot provide. There are other promising candidate encoding–

decoding strategies: combinatorial logic, where responses are defined by two or more inputs; 

or the action of morphogens, where a substance’s concentration is interpreted into a defined 

cellular response. One attractive hypothesis is that encoding information in the timescale of 

protein activity (rather than protein concentration) enables more accurate decision-making, 

because biochemical timescales (e.g., dissociation, degradation, or diffusion rates) are less 

heterogeneous between cells and over time than are protein levels. Circuits that measure a 

process’ timescale may thus perform more precise, reproducible computation.

A second possibility is that by coupling excitable, noisy dynamics between many individual 

cells, a tissue may be able to sense weak inputs that no single cell could accurately detect on 

its own. This phenomenon, related to the physics concept of stochastic resonance, has been 

predicted to enable robust input sensing in populations of neurons and oscillations of cortical 

actin polymerization [41, 42]. Erk dynamics, too, may entrain to sub-threshold EGF doses 

[43].

The source of dynamics is also a mystery: how do complex signaling dynamics emerge 

from constant environmental input? It is unlikely that the same sets of proteins give rise to 

dynamic responses across diverse signaling pathways and contexts, yet a small number of 

network architectures may recur across these contexts. If so, are these networks moulded, 

trimmed, and optimized over evolutionary time to shift their dynamic responses based on 

the relevant stimulus strengths and biological timescales in each case? Using the quantitative 

tools and systems-level approaches described here, the construction of a ‘periodic table’ of 

the signaling modules utilized by living systems may be possible.
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6. Eliciting potent antibodies against highly mutable pathogens by 

vaccination

6.1. Status

Effective vaccines protect humans from a particular disease-causing pathogen by eliciting 

potent immune responses that are specific for the pathogen, and which can be rapidly 

recalled upon infection. Abs are an important component of such immune responses. B cells 

produce Abs by a Darwinian evolutionary process called affinity maturation (AM) [44]. 

Most B cells have a surface receptor (BCR) that is distinct from those of other B cells. B 

cells whose receptors can bind sufficiently strongly to the surface proteins of a pathogen 

or vaccine component (called antigens) can seed structures called germinal centers (GCs) 

in lymph nodes. In GCs, the receptors of B cells mutate rapidly, followed by a series of 

steps which stochastically select for those that bind more strongly to the antigen. Some 

positively-selected B cells morph into Ab-secreting plasma cells and exit the GC, while the 

majority are recycled for further rounds of mutation and selection. Thus, as time ensues, 

Abs with increasing strength of binding, or specificity, for the antigen evolve that can then 

neutralize the pathogen.

Highly mutable pathogens (e.g., influenza, HIV) rapidly evolve their surface proteins, so 

Abs specific for regions of these antigens that are mutable cannot protect against diverse 

viral strains. The antigens contain some regions that are relatively conserved for functional 

reasons, but they are usually surrounded by highly variable regions, thus complicating 

Ab binding to the conserved regions. Recently, Abs (present in low numbers) have been 

isolated from some individuals infected with HIV and influenza that can neutralize diverse 

viral strains [45]. These broadly neutralizing antibodies (bnAbs) bind to the conserved 

antigenic regions. This shows that the human immune system can evolve such ‘generalists’, 

albeit inefficiently. Many experimental efforts have been launched to devise strategies to 

elicit bnAbs in diverse people upon vaccination [45]. Fundamental studies of how to teach 

the immune system to evolve bnAbs have also been reported [46-51]. Much more work 

is required to obtain a deep understanding of this complex problem at the intersection 

of statistical physics, immunology, and evolutionary biology. Progress can help guide the 

design of life-saving vaccines.

6.2. Current and future challenges

The process of AM will generate only strain-specific Abs upon vaccination with a single 

antigen. The selection forces that need to be imposed on AM to evolve bnAbs must therefore 

be comprised of multiple variant antigens that share the conserved regions, but differ in 

the variable regions. In the early stages of AM, it is unlikely that B cell receptors have 

evolved strong interactions with the conserved regions, and so binding to variant antigens 

sufficiently strongly to be positively selected is likely mediated by binding to both variable 

and conserved regions. As the antigens have different variable regions, they represent 

conflicting selection forces [46, 47]; features that are favorable for ‘local stability’ (binding 

well to one antigen) are unfavorable for ‘global stability’ (binding well to diverse antigens). 

This facet of the system is analogous to frustration in physical systems [52], but because AM 
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is driven out of equilibrium, the frustration due to conflicting selection forces can result in B 

cell death in the GC (figure 5) [46, 47].

The presence of conflicting selection forces or frustration during AM poses a number of 

significant current and future challenges that need to be addressed, and requires fundamental 

advances in our understanding of AM. In particular, how should frustration be quantified 

in terms of simple metrics of fitness, and are there optimal temporal patterns of frustration 

that promote bnAb evolution? If so, what are the mechanistic underpinnings that define such 

optimal patterns in terms of the extent to which the system is driven out of equilibrium as 

time ensues? In addition, how do the temporally varying selection forces affect the diversity 

of evolving B cells, and are there optimal levels of diversity that promote trajectories 

that evolve bnAbs? How important is clonal interference? More broadly, are there general 

principles pertinent to evolutionary biology and statistical mechanics of learning that can be 

gleaned? How can these principles be translated into efficient vaccination protocols? Insights 

obtained from studies pursuing these questions must be tested using animal models, and 

iteration between such studies and theory/computation will provide the principles that we 

seek.

6.3. Advances in science and technology to meet challenges

Theory and computation have played a key role in helping to address some of the challenges 

outlined above. Studies of how evolving systems can be progressively pushed out of 

equilibrium to evolve bnAbs has begun to shed light on how different temporal frustration 

patterns influence the outcomes of AM [46-48]. Mechanistic insights from such studies can 

be tested in settings where evolution occurs rapidly in a real biological system, rather than in 

contrived laboratory systems [53].

Computational studies have shown that if the variant antigens that are administered differ 

significantly in their sequences, and are present simultaneously in the GC, death is very 

likely [46]. Sequentially administering the same variant antigens, which corresponds to 

a temporally varying pattern of imposed selection forces, has been shown to be more 

effective (figures 6(A) and (B)) [46]. It has also been proposed that an optimal level of 

frustration exists when the variant antigens are present simultaneously in the GC (figure 

6(C)) [47]. Too high a level of frustration leads to B cell death, and too low a level results 

in positive selection of many B cells. Thus, the GC reaction rapidly ends before B cells 

can acquire the necessary numbers of mutations to evolve bnAbs. A recent theoretical study 

reports on an interesting effect of a temporal pattern of oscillating selection forces with 

increasing frequencies [48]. But, our understanding is still highly incomplete, and important 

strides forward in the development of a theory of how Abs learn patterns in an evolving 

environment during AM are required.

Further progress will require many additional advances. For instance, how different should 

the variable regions of the variant antigens be in order to achieve a desired level of 

frustration, and how can the temporal pattern of frustration be manipulated to generate 

the optimal variation of B cell clonal diversity to evolve bnAbs? Translating the principles 

derived above into designs of specific variant antigens will require atomistically detailed 

simulations and close coupling to efforts of biologists engaged in immunogen design. Can 
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such studies be reliably done? The first targets for translating principles to practice could be 

HIV and influenza.

6.4. Concluding remarks

Despite many remaining challenges, the real possibility of generating universal vaccines 

against highly mutable pathogens by eliciting bnAbs has focused a great deal of interest and 

research toward accomplishing this goal. Solving this fundamental problem at the crossroads 

of statistical physics, immunology, evolutionary biology, and learning theory, will require 

synergy between the efforts of statistical physicists, biophysicists, and immunologists. 

We anticipate that these efforts will lead to substantial advances in our understanding of 

evolution in time-varying environments. Such advances will have far-ranging implications 

for preventing diseases caused by infectious pathogens, a challenge that has plagued 

humanity since antiquity.

7. Dynamics in fluctuating and evolving environments

7.1. Status

The capacity to adapt to changing conditions is a hallmark of living systems. Examples 

of biological adaptation range from the allosteric regulation of enzymes in seconds to 

the fixation of genes in populations in the course of years. Despite differences of scales, 

mechanisms of adaptation are all fundamentally coupled: adaptations on short time scales 

are subject evolution on longer time scales. Mechanisms of adaptation are therefore 

potentially adaptations themselves, which raises the possibility of understanding them within 

an evolutionary framework.

One such framework, originally developed by Kelly to analyze optimal strategies in horse 

races [54], applies to populations of non-interacting individuals switching between pre-

defined states [55]. In this framework, the individuals reproduce based on their state σ 
and on the state xt of the environment at time t, which can fluctuate independently of the 

population (figure 7(A)). Different strategies of adaptation amount to different probabilities 

π(σ∣σ′) of switching from an internal state σ′ to an internal state σ. An optimal strategy is 

defined as maximizing the long-term growth rate Λ of the population

Λ = lim
t ∞

1
t ln∑

σ
Nt (σ) (1)

where the number Nt(σ) of individuals in state σ at generation t follows

Nt (σ) = ∑
σ′

π (σ ∣ σ′) f (σ′, xt) Nt − 1 (σ′) (2)

How optimal adaptations depend on environmental fluctuations can then be summarized in a 

phase diagram (figure 7(B)).

By incorporating sensing of the environment, individual noise, costs or a distinction between 

genotype and phenotype, this formalism rationalizes the existence of a number of puzzling 
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biological features, including phenotypic noise, non-genetic heredity and Lamarckian 

mechanisms [56]. The recurrent finding is that the statistics of environmental fluctuations 

is a key parameter defining optimal adaptations. For instance, we developed a model of 

immunity where the diversity of observed immune systems is obtained by varying the 

frequency and duration of the occurrence of pathogens [57].

Despite important limitations, such as not accounting for population extinction, the approach 

formalizes the informational language that pervades informal biological descriptions and 

thus identifies a level of coarse-graining that reveals commonalities between systems 

irrespectively of specific implementations. In view of developing a theoretical understanding 

of living systems, extending this approach beyond its current range of application would be, 

in our opinion, very valuable.

7.2. Current and future challenges

Applications of Kelly’s formalism are currently limited by the requirements that 

environmental fluctuations should be independent of the population and operate on 

timescales much shorter than the scale over which the mechanisms of adaptation evolve. 

These assumptions are not applicable to many instances of biological interest.

First, empirical analyses of environmental fluctuations such as temperature or nutrient 

availability show both a very broad spectrum of fluctuations and long-term non-stationary 

trends.

Second, biological environments are shaped by the populations that experience them. 

On short timescales a growing population depletes nutrients from its environment while 

on longer timescales it may fundamentally alter its nature, a phenomenon known as 

niche construction. More generally, the environment of an individual comprises the other 

individuals from the same and different species, which are themselves evolving.

In particular, all living organisms coevolve with viruses that infect them. Viruses typically 

have a shorter generation time than their host and are thus able to evolve on shorter 

timescale than them. Hosts survive through one universal strategy, diversification, which 

may be either geno/phenotypic (e.g., diversity of cell receptors) or environmental (e.g., 

refuge in a biofilm). On long-time scales, these mechanisms to generate diversity are subject 

to evolution as are the mechanisms through which viruses adapt. Should we expect a 

convergence or a separation of time scales between host and viral adaptive strategies? What 

is the interplay with intrinsic time scales such as generation time and extrinsic time scales 

such as seasonal changes? Can we justify our previous model [58] where the dynamics of 

pathogens is independent of that of the host population?

Considering a stationary viral environment to which the host population is subject (figure 

8(A)) is indeed not a priori justified. First, with a constant selective pressure to diversify, 

a limited number of pre-defined set of states is not realistic. A new viral mutant (figure 

8(B)) or a new host type σ may appear, an event that cannot be described by equation (1) 

where all possible states σ are assumed to be populated at all times (Nt(σ) ≫ 1). Second, 

the dynamics of the host population feedbacks on the viral population, thus introducing a 
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non-linear frequency dependence (figure 8(C)). In this case, optimizing the growth rate of 

the host population is no more justified than optimizing that of the viral population. With no 

optimization principle, the concept of an optimal strategy that is at the foundation of Kelly’s 

formalism comes to naught.

7.3. Advances in science and technology to meet challenges

We expect advances to come from a convergence of mathematical developments and 

empirical findings driven by the collection of large scale ecological data. In this respect, the 

coevolution between bacteria and their viruses (phages) seems to us a particularly promising 

ecosystem to focus on.

Mathematically, multiple models of interacting populations have been developed, from 

Lokta–Volterra equations to evolutionary game theory. These models, however, are not 

obviously connected to the informational models developed for independent environments. 

Instead, a natural extension of Kelly’s formalism is to optimize the parameters of the 

viral environment to minimize the growth rate of the host population [59]. This approach 

assumes, however, a separation of time scales that is to be explained. A more relevant 

mathematical formalism may be adaptive dynamics [60]. In absence of feedback, invasion 

fitness, which assesses the capacity of a new mutant to invade a resident population, exactly 

corresponds to the long-term growth rate of the population of mutants. In the presence of 

feedback, however, invasion fitness describes only the dynamics on short time scales.

Ecological observations should help direct the development of relevant models. Data 

on co-existing microorganisms in the oceans shows both extensive diversification and 

specialization, as well as a lot of diversity within each sub-population [61]. These patterns of 

evolution, large diversity despite strong selection pressures, are not explained by traditional 

population genetics. The observed diversity may be transient and formalisms that deal with 

species extinction need to be employed. Yet, even assuming stable populations, accounting 

for a feedback of the population onto its environment remains a challenge.

More specifically, data is available on the relative abundances of phages and bacteria in 

the oceans, which displays a scaling law, albeit with a dependence on depth [62]. Ample 

genomic data is also available, which reveals a high diversity of gene content with evidence 

that this diversity is both driven by the interaction with phages and providing a means to 

adapt to environmental changes [63]. Phages may thus not only be predators but provide 

a mechanism of regulation that confer on bacterial populations a long-term advantage. 

As phages are very species-specific, an optimization principle defined at the level of two 

populations might thus be relevant, which could be cast in Kelly’s formalism.

7.4. Concluding remarks

Populations evolve constantly influenced by their environments, and in turn influence 

changes in their environments. For this reason, the basic concepts of population genetics

—mutation, selection, genetic drift, recombination and even ‘population’—are not sufficient 

to understand the course of evolution. Keeping in mind the importance of timescales for all 

participating interactions, insights from field data and experiments should help us extend 

current theoretical formalisms.
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8. How the immune system learns from changing experiences

8.1. Status

Evolution is an urge for novelty, because environmental pressures are ever changing. To 

persist in fluctuating conditions, evolving organisms must adapt to new challenges, without 

degrading performance of prior tasks. This remarkable ability to generalize manifests at 

many scales, from biochemical (antibiotic resistance) to ecological (cross immunity). At 

each scale, it exemplifies an interplay of internal processing and unique experiences—a 

basic feature of learning. In this perspective, we consider evolutionary learning in the 

adaptive immune system as a concrete example, where evolution is rapid and learning tasks 

are complex and changing. But the central questions are general: how does the ability 

to generalize evolve, given that benefits may only lie in the future? What environmental 

variations might select for generalization, if specificity more easily evolves in static 

conditions?

Facing the constant need to fend off novel invaders, jawed vertebrates have developed 

adaptive immune systems. This mode of protection relies on an extremely diverse and 

variable repertoire of antigen receptors expressed by B and T lymphocytes in an individual. 

While T cells do not evolve, B cells produce increasingly higher affinity Abs (secreted B cell 

receptors) to neutralize pathogens—via a rapid evolutionary process known as AM—and 

create immune memories.

Theoretical studies have examined adaptive strategies of biological populations to persist 

in time-varying environments (e.g. [58, 64, 65]). While slow environmental variations 

appear to favor specialist strategies based on tracking or diversifying (bet hedging), 

rapid fluctuations may support a non-varying generalist strategy or smear out differences 

among phenotypes. However, natural environments may change neither too fast nor too 

slow compared to population response; moreover, these changes are not entirely random. 

For instance, rapidly adapting pathogens like HIV generate escape mutations on similar 

timescales to evoked reorganization of the immune repertoire, resulting in an enduring 

coevolutionary arms race in the host. Amazingly, following the rise and fall of strain-specific 

responses that chase after successional waves of HIV escape mutants, lineages of bnAbs, 

capable of neutralizing a vast variety of HIV strains, emerge in a small fraction of 

individuals [66].

However, these generalist Abs against HIV emerging years into infection never rise to a 

protective level in any human, struggling to persist even after viruses diversify. In contrast, 

other highly mutable pathogens, including hepatitis C virus, may go extinct following a 

faster development of bnAbs. Decades after the discovery of AM by Herman Eisen and 

Gregory Siskind in 1964, we still lack a complete understanding of what determines the 

pace, course and outcome of antibody evolution in dynamic environments, which limits our 

ability to mitigate viral evolution and to accelerate immune control.
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8.2. Current and future challenges

Recent computational studies have tackled in various contexts how temporally structured 

environments impact selection of generalists (e.g. [46, 67]). These works stress the 

importance of not only what and how strong selective forces should be present, but also 

the time over which they should apply. But the space of possible dynamical protocols (e.g. 

vaccination strategies) is large and high dimensional: for a small number of examples to 

enable generalization to novel inputs, what commonality and distinction should be encoded? 

When will the order of presentation matter? How should one adjust the timescales of 

variation to the correlations between examples? We need a quantitative framework to 

provide guiding principles for finding optimal protocols.

While discrete designer environments offer opportunities to enumerate possible scenarios 

and to obtain a fine view of molecular evolution, natural pathways may display more regular 

and universal features in continuous and lower-dimensional phenotype space [68]. Yet, 

current phenotypic models of host–pathogen interaction often treat one or the other as an 

effective environment, invoking a separation of timescales. This leaves aside two sources 

of feedback (key to any learning) that may significantly affect evolutionary dynamics 

and fate: first, mutual feedback between populations evolving on similar timescales 

leads to fundamentally out-of-equilibrium dynamics and evasion from steady state. These 

naturally intermediate-timescale variations can no longer be described via effective static 

environments valid only in the fast or slow limit. Second, ecological processes, such as niche 

construction, can strongly impact evolutionary modes and phylogenetic patterns. Capturing 

this interplay requires simultaneous consideration of ecological interactions and evolutionary 

dynamics in the same framework.

There is also a need for integrative methods in order to shrink the gap between experiment 

and theory. Immune functions often involve competing needs, such as specificity and 

generalization, speed and efficacy. Information processing on multiple scales in time and 

space might complement each other toward a common goal: active patterning of receptors 

and ligands at cell–cell contacts enables efficient cellular readout of threats; clusters of cells 

search and compete for antigens distributed in tissues; subdivided B and T cell populations 

collectively extract antigenic features and encode memories in an organism. This complexity 

calls for new statistical mechanical descriptions, combined with information measures, to 

predict emergent phenotypes for comparison with accumulating observations and to suggest 

new experiments.

8.3. Advances in science and technology to meet challenges

To build a quantitative framework to describe dynamic selection of generalists, we need a 

better understanding of how specialists and generalists are organized in sequence space. On 

the molecular level, this knowledge relies on high-throughput methods capable of mapping 

the sequence–function relationship in the mutational neighborhood of target genotypes, i.e., 

the local fitness landscape. This would allow us to read adaptive dynamics from landscape 

topography, an idea extended to study long-term adaptation in changing environments [69].
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Directed evolution in the lab may test the predicted environmental correlations and 

timescales that robustly evolve generalists, based on recently developed generative [69] 

or phenomenological [48] models of evolution in time-varying multi-peaked fitness 

landscapes (figure 9). In this framework, relative placement of fitness peaks encodes tunable 

correlations in features across environments. A key insight is that time variations should 

be slow enough so that appreciable changes can be accumulated to discover generalists, 

but fast enough to minimize specialization of generalists that have emerged. The existence 

and range of intermediate timescales depend on the degree and structure of environmental 

correlations, which potentially offer a way to characterize whether, and where, one would 

expect non-equilibrium fitness seascapes [70].

Time-resolved measurements of genetic composition along with ecological dynamics 

are needed to infer phylogenies and account for demographic influence. Corresponding 

phenotypic studies (e.g. antibody binding and neutralization assays) would allow one 

to construct low-dimensional theories of eco-evolutionary dynamics, thereby associating 

phenotypic patterns with population fate. More broadly, we must develop new 

representations of the sensing and recognition space that captures distinctive properties 

(e.g. cross-reactivity) and reveals essential learnable features, which are not yet available for 

immune recognition.

Understanding how information processing in the immune system is integrated across scales 

counts on interdisciplinary approaches that parallel this goal. Biophysical and physiological 

measurements are informative of how immune cells sense, distinguish and acquire antigens 

using energy-consuming active processes. A combination of live imaging and single-cell 

sequencing would enable simultaneous tracking of cell movement and clonal dynamics in 

multiple populations. Sampling from different locations in the tissue is needed to study 

how spatial heterogeneity and connectivity affect the collective response of a population 

ensemble.

8.4. Concluding remarks

Investigating how the immune system learns from changing circumstances presents 

outstanding opportunities at multiple fronts. Conceptually, it will advance our understanding 

of truly non-equilibrium regimes of eco-evolutionary dynamics. Such understanding can, 

in turn, offer novel strategies to alleviate constraints inherent in equilibrium or steady-state 

conditions. Further, these studies can shed light on information acquisition under dynamic 

feedbacks, in favor of pathways and outcomes otherwise hard to obtain. General concepts 

learned will likely generalize to other evolutionary contexts and sensory systems. After all, 

learning from experiences is much in the timing.
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9. Time-dependent drug sequences for slowing antibiotic resistance

9.1. Status

Antibiotic resistance is a growing threat to public health. Bacteria exploit a diverse store of 

genetic and phenotypic defences to counter antibiotics, and the rapid pace of microbial 

adaptation makes the long-sought goal of ‘resistance-proof’ drugs appear increasingly 

unlikely. As a result, there is significant interest in developing evolution-based strategies 

for slowing, or reversing, resistance by judiciously applying currently available drugs. One 

possible approach is to use multiple-component therapies, which force bacteria to adapt to 

antibiotics targeting different cellular processes. The simultaneous use of multiple drugs is 

particularly promising because the effects of the drugs are often coupled so that each drug 

either strengthens or counteracts the other. These drug interactions have the potential to 

enhance therapies by partially decoupling the short-term inhibitory effects of drugs from 

their propensity to select for resistance [71]. A second strategy is to use multiple drugs in 

sequence, forcing bacteria to adapt to time-varying environments. These antibiotic cycling 
approaches have so far achieved mixed results, particularly when applied at the hospital 

level [74]. However, recent studies have reinvigorated interest in temporal strategies based 

on collateral sensitivity (CS), an evolutionary ‘side-effect’ of acquired resistance [72, 73, 

75-78]. CS occurs when a population evolves resistance to one drug (the ‘selecting drug’) 

while simultaneously exhibiting increased sensitivity to a different drug [79]. CS appears 

to be ubiquitous—at least in vitro—underscoring the notion that pathways for adaptation to 

different drugs, even those from different classes, are inextricably linked. In the context of 

drug cycling, these collateral effects couple adaptation at different time points, potentially 

forcing cells into a time-dependent version of multi-task optimization. Cells exposed to 

dynamic environments are known to adopt phenotypic or genetic strategies to exploit 

statistical features of the changing environment. The question, for antibiotic cycling, is in 

some sense just the opposite: is it possible, by systematically manipulating the environment 

over time, to steer evolution toward a desired state? More specifically, can we use particular 

sequences of drugs to slow resistance by harnessing the correlations that link resistance 

levels to different antibiotics?

9.2. Current and future challenges

There are many practical obstacles to overcome before new multi-drug strategies can be 

deployed in the clinic. The barriers range from technological (optimized approaches may 

require, for example, new tools for rapid diagnostics) to translational (e.g. validation of in 
vitro approaches in patient samples and animal models) and even economical. In addition 

to these practical hurdles, there are a number of conceptual challenges to designing drug 

sequences that potentially limit resistance evolution. These challenges represent open basic 

science questions that potentially link fundamental concepts from evolutionary biology to an 

eminently practical issue in medicine and public health.

First, the molecular mechanisms of CS are often unknown, meaning that collateral 

sensitivities are difficult to predict and must be identified empirically [75]. In addition, 

experiments suggest that collateral effects often appear stochastic—that is, adaptation in 

replicate populations frequently leads to different phenotypic profiles of collateral resistance, 
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even when starting from a common ancestral strain [73, 76, 77]. Furthermore, collateral 

effects are not limited to sensitivity; indeed, collateral resistance (often termed ‘cross-

resistance’) is common and could limit the utility of simple cycling strategies. Phenotypic 

profiling in multiple species also indicates that collateral effects are often asymmetric—for 

example, adaptation to drug 1 may lead to increased sensitivity to drug 2, while adaptation 

to drug 2 leads to increased resistance to drug 1—and they may depend sensitively on 

the genetic background—and hence, the adaptation history—of a given population [76, 

77]. The picture that emerges is enticing, as collateral effects offer a new dimension for 

systematically tuning multi-component therapies. Yet despite the apparent ubiquity of CS, 

designing drug sequences that exploit these correlations to slow evolution is an ongoing 

challenge.

9.3. Advances in science and technology to meet challenges

The increased interest in CS was sparked, in part, by innovative work aimed at identifying 

‘CS cycles’—periodic sequences of antibiotics in which the drug applied at one timestep 

is expected to induce sensitivity to the drug applied at the next step [72] (figure 10(A)). 

Network analysis of empirical CS profiles identified hundreds of potential cycles, many 

involving three or more drugs. In addition, switching between two drugs can also lead to 

transient changes in resistance levels, a type of phenotypic memory recently termed ‘cellular 

hysteresis’ [80]. Taken together, these results suggest that time-varying drug sequences may 

be sufficiently flexible to slow resistance while allowing for fine-tuning of additional clinical 

or practical objectives.

However, identifying optimized drug sequences is complicated by the variability in CS 

profiles, which can differ across species and even replicate-to-replicate, in part because of 

the stochastic nature of adaptation on the underlying fitness landscapes [73, 76]. Despite 

these challenges, recent findings in both the laboratory and clinic point to some measure of 

stability in the evolutionary dynamics [77, 78], offering hope that there are actionable trends 

buried beneath the complexity. One option for exploiting these trends is the use of likelihood 

scores, which place evolutionary therapies in a probabilistic framework [76].

In a similar spirit, recent work from our group drew on theoretical tools from stochastic 

control to design optical drug sequences for slowing resistance [73]. To do so, we 

derived data-driven optimal drug policies that assign a single drug to every possible CS 

profile (figure 10(B)). Drug sequences based on these profiles reduced growth and slowed 

adaptation in lab evolution experiments, outperforming treatments using single drugs or 

small (N = 2, 3) cycles. The approach revealed a new conceptual strategy for slowing 

resistance by interspersing frequent steps of instantly effective drugs—which provide short-

term inhibition of pathogen growth—with rare steps of relatively ineffective drugs, which 

shepherd the population to a more vulnerable future state.

9.4. Concluding remarks

Given the slow pace of drug development and the seemingly infinite adaptive capacity of 

bacteria, antibiotic resistance is likely to pose an increasing threat to public health in the 

decades ahead. There are no ‘magic bullet’ solutions on the horizon, and the battle against 
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resistance calls for innovative strategies spanning multiple disciplines and a range of length 

scales, from the molecular scale to the level of hospitals and communities. Translating 

new approaches to the clinic will require much additional work, including an improved 

understanding of the evolutionary forces that shape adaptation in human hosts. Nevertheless, 

recent progress offers hope that multi-drug sequences may one day form the basis of 

therapies designed to exploit time-dependent evolutionary trade-offs of drug adaptation.

10. Memory and adaptation in time varying environments

10.1. Status

Quantitative studies of cellular physiology have led to new understanding of growth and size 

control mechanisms, including general principles that operate in proliferating populations 

[81-83]. In contrast, little is known about how such mechanisms evolved, for example (i) 

whether there exist specific environmental pressures that select for the observed growth 

modes, (ii) whether growth control mechanisms optimize some cost/benefit tradeoff and if 

so over what timescales, and (iii) how do genetic networks evolve to achieve robust growth 

and how are they maintained over evolutionary timescales.

Long-term laboratory evolution experiments have provided illuminating, and often 

surprising, insights on how evolution works in practice [84], but were not designed to 

answer the types of questions outlined above. In particular, gene regulatory networks enable 

survival in time-varying environments, thus studying the relevant principles requires both the 

experimental capacity to measure growth under controlled, external fluctuations, as well as 

new theory that will provide a framework for designing powerful experiments.

Recent technological advances [85] have shown new and promising insights into how cells 

have evolved their responses to changes in their environments. In fluctuating environments 

(figure 11), bacteria utilize physiological memory as a way to minimize metabolic [86] 

and antibiotic stress [87]. These experiments coupled with theoretical work, can determine 

the environmental conditions in which such memory is beneficial for cells, and how such 

memory can evolve.

This approach has led to predictive theories that establish optimal response strategies 

for survival under fluctuating stress, depending on how variable or unpredictable is the 

environment [88]. By analogy to condensed matter systems, the space of optimal responses 

can be represented in a phase diagram (figure 11(b)) where different strategies are separated 

by continuous and first order evolutionary phase transitions, and which correspond to 

different ways of evolving the optimal response in a gene circuit.

10.2. Current and future challenges

Such approaches can also be used to study the emergence and spread of antibiotic resistance 

across a population of bacteria, a pressing public health concern and a major challenge in the 

field of evolutionary biology.

Cellular response to fluctuating antibiotic stress, where a period of growth is followed by 

a period of exposure to tetracycline, a bacteriostatic antibiotic, shows how the metabolic 
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state of a cell affects its ability to evolve resistance (figure 12) [87]. During tetracycline 

pulses, cells exhibit strongly reduced cell division and elongation rates. Once tetracycline 

is removed, cells slowly recover, which is reflected in the increased rate of elongation. The 

cells’ elongation rate thus provides an instantaneous readout of cellular stress. Remarkably, 

for low elongation rates the treatment is ineffective, indicating that the cellular stress 

response that halts cell growth confers physiological protection against the antibiotic. While 

treatment is effective for high elongation rates, bacterial cells undergoing treatment are 

rarely found in such rapidly proliferating states. A more realistic scenario lies between the 

two extremes, at intermediate elongation rates.

Surprisingly, however, cells recover fastest at intermediate physiological stress, rendering 

a large range of treatments not only ineffective, but also allowing cells ample time to 

acquire resistance. Physiological memory, over which cells time-average the antibiotic 

dose, strongly impacts the elongation rate dynamics and thereby influences rate at which 

resistance emerges. A more detailed understanding of these processes and how they 

contribute to the evolution of resistance could lead to more successful strategies for 

mitigating or reversing the spread of antibiotic resistance.

10.3. Advances in science and technology to meet challenges

Memory is a basic principle that governs the behavior of single cells in changing 

environments across a wide range of timescales. To move along chemical gradients, E. 
coli use memory of their previous sensory inputs in a feedback that regulates their flagellar 

motor. Bistable switches can induce distinct stable expression states that can persist for 

many generations. In fluctuating environments, cells utilize physiological memory to reduce 

metabolic and antibiotic stress. The examples in figures 11 and 12 show that cost-benefit 

tradeoffs, which classically are assessed at the level of single cell metabolism, need to be 

accounted for throughout individual cells’ histories [83], across a heterogenous population 

[87], and between distinct populations that experience different time-varying environments 

[88, 90].

Current experimental methods enable all of the above measurements and analyses, and 

in fact greatly surpass existing theoretical understanding of these biological processes. 

Due to the complexity of biological systems, it remains challenging to recognize the 

general principles that determine which strategies will evolve and how changes in the 

environment drive the evolution of cellular physiology and impact population heterogeneity. 

Therefore, new theories—that span from individual behaviors to heterogeneous populations 

to larger-scale ecological structures—are needed to provide strong predictions, while new 

experimental designs are required to isolate and test those ideas in model systems.

10.4. Concluding remarks

In this article we highlighted the advantage of studying synthetic biological systems in 

the lab as a testing ground for the development of evolutionary theory. The ability to 

precisely control and fluctuate the environment, in combination with synthetic biology, 

can enable rigorous, quantitative testing of theoretical predictions. Bacteria exhibit a wide 

range of behaviors, including memory, responsiveness, sensing, and stochasticity, each of 

Murugan et al. Page 28

Phys Biol. Author manuscript; available in PMC 2021 December 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which have distinct benefits in time varying environments. By perturbing these mechanisms 

experimentally, it may be possible to study some of the general principles of evolution at lab 

accessible timescales, and to test new theoretical approaches that are sufficiently powerful to 

enable evolutionary predictions over longer timescales.

11. The origins of allostery

11.1. Status

Allostery—the functional coupling of distantly positioned amino acid residues in proteins—

plays a key role in nearly all cellular processes. In different manifestations, it represents 

information flow within and between proteins, control of protein activities through 

regulatory modifications, and cooperativity in oligomeric assemblies [91]. For these reasons, 

a significant body of work has been focused on elucidating the phenomenological, 

mechanistic, and generative principles of protein allostery. The goal is to develop models 

for the physics of long-range intramolecular couplings within proteins consistent with their 

evolutionary origin.

However, the problem has been a difficult one. Understanding allostery in any general 

sense starts with defining the pattern of energetic interactions between all amino acids 

in a protein in all relevant configurational states. This pattern specifies both the structure 

(the mean position of all atoms) and its dynamics (fluctuations, both independent and 

collective) over the evolutionarily selected reaction coordinate. But, proteins are held 

together by an extraordinarily subtle balance of forces that produce marginally stable 

structures [92], and deducing the net value of residue interactions remains a challenge 

for experimental and computational approaches. An added complication is that long-range 

couplings fundamentally arise from the nonlinear (epistatic) interactions of amino acid 

residues [91, 93]. The full theoretical combinatorial complexity of such interactions is 

inaccessible to any scale of experimental analysis.

In recent years, a different approach to understand allostery has been to leverage the growing 

databases of protein sequences to make statistical models for the pattern of amino acid 

interactions. The simple idea is that evolution has been mutating and selecting proteins for 

a long time and given enough samples of extant sequences that have survived this process, 

we might be able to infer the relevant interactions between amino acids by measuring the 

correlated evolution of those positions [94-96]. This ‘statistical genomics’ approach has 

revealed two qualitatively different kinds of amino acid interactions within proteins: (1) a 

large number of coevolving pairs of amino acids (~L/2, where L is the length of the protein 

sequence) and (2) a few (1–3, in work to date) collectively evolving groups of amino acids, 

called ‘sectors’. The coevolving pairs often correspond to direct contacts in protein tertiary 

structures (figure 13(a)), while sectors correspond to more distributed networks of amino 

acids that connect primary functional sites of proteins to a few distantly positioned surface 

sites (figures 13(b) and (c)). Sectors correspond to known allosteric mechanisms [97], have 

predicted previously unknown allostery in proteins [96], and have been used to engineer 

allosteric regulation in proteins [98].
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It is important to say that like any purely phenomenological analysis, the pattern of 

coevolution provides no intrinsic information about either the physical mechanism of 

allostery or its origins in the course of evolution. Nevertheless, the statistical genomics 

approaches provide models for the global pattern of amino acid interactions that motivate 

new experiments to probe mechanisms of allostery. This work is ongoing and may help to 

better understand the physics of long-range couplings in proteins.

11.2. Current and future challenges

But, how does allostery arise in evolution? The finding that coevolving networks of amino 

acids (sectors) correspond to regulatory mechanisms would itself seem to imply a causal 
principle of origin. That is, if sectors mediate allosteric regulation, it is perhaps natural to 

think that they arose in evolution due to selection for the regulatory function. However, 

further considerations cast serious doubts about this possibility. First, there is the finding that 

sectors also occur in proteins in which there is no evidence for allosteric communication 

or regulation. For example, in the metabolic enzyme dihydrofolate reductase (DHFR), the 

sector connects the active site to a specific subset of surface positions distributed widely 

throughout the tertiary structure (figure 13(c)). Experimental studies confirm that these sites 

are indeed capable of supporting allostery in the sense that engineered regulatory inputs 

at those sites can selectively control enzyme activity [98]. However, DHFR has no known 

natural allosteric regulators and no role in signal transmission.

It is possible to sweep this problem under the proverbial rug by simply asserting that these 

sites reflect yet undiscovered regulatory mechanisms or reflect residual constraints from a 

past history of allosteric regulation. However, further complications arise from considering 

the evolutionary process that would be necessary to build allosteric networks within proteins 

if their origin lies in selection for regulation. Allostery implies epistasis along evolutionary 

trajectories, such that the effect of mutation at one site in an allosteric network is conditional 

on mutations at other positions. For long-range allostery, the capacity of a distant surface 

site to control the primary functional site will depend on a long series of conditional 

mutations, with no guarantee that intermediates along the path can support regulation. In 

such a scenario, it is entirely unclear how allostery could originate as a causal result of direct 

selection for regulation.

It is also possible to sweep this problem under the rug by invoking global forms of epistasis 

in which every perturbation in a protein influences every other position, but it is clear that 

this represents only a special case. What then is a plausible model for the origin of allostery 

in proteins? Two lines of work have now supplied potential answers.

The first comes from recognizing that natural proteins are constrained by not just the physics 

of folding and function but also the need to adapt as conditions of selection fluctuate 

in the environment. In principle, adaptability places unique constraints on the pattern of 

amino acid interactions. One such constraint is functional connectivity, meaning that all 

intermediates along an adaptive path must maintain function above a selection threshold 

[99]. Recent studies in the PDZ domain, a protein interaction module, show that this 

constraint depends on the availability of a special class of mutations called ‘conditionally 

neutral (CN)’ [100]. Such mutations are neutral for the current condition of selection (and 
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therefore can accumulate as standing genetic variation in populations) but display significant 

gain-of-function in new conditions of selection. CN enhances adaptation by essentially 

uncoupling the generation of phenotypic diversity from the need for that diversity. Thus, 

when selection pressures randomly vary, pre-existing CN mutations in the population can 

initiate a path of adaptation.

With regard to allostery, the key finding is that all CN mutations in proteins are allosteric 

and intimately associated with sectors (figure 14(a)) [100]. Thus, in addition to functional 

regulation, another role for allostery (and protein sectors) is the capacity to adapt. Turned 

around, this logically implies that the origin of allostery in proteins could be simply in 

the need to adapt to fluctuating conditions of selection. In this model, allosteric networks 

get built in evolution not by direct selection for regulation, but because they generate 

CN mutants that facilitate adaptation in time-varying environments. The use of allosteric 

networks for signaling or regulation is then a derivative of this more fundamental process. A 

key prediction of this model is that the existence, architecture, and conservation of allosteric 

networks depends fundamentally on the nature and temporal structure of environmental 

fluctuations in conditions of selection.

A distinct but non-exclusive model for the origin of allostery has also been recently 

proposed. Using simplified lattice models of proteins, the proposal is that allostery can also 

evolve in proteins as a natural solution to the problem of achieving specificity in molecular 

recognition (figures 14(b) and (c)) [101]. The intuitive explanation is that specificity 

requires fine control over energetic states to distinguish right and wrong substrates at 

protein functional sites, and that such fine control is statistically more likely from allosteric 

networks rather than from orthosteric positions alone.

In general, both adaptability to time-varying environments and binding specificity could 

collaborate to produce and sustain allosteric networks within proteins. The salient point 

is that in both cases, allostery emerges in evolution purely as a constraint acting on the 

primary functional site of proteins. Once built, this architecture can then be co-opted to 

enable signaling, regulation, and other classical manifestations of allostery. This represents a 

model for the evolution of allostery that is consistent with a Darwinian process of stepwise 

variation and selection.

11.3. Advances in science and technology to meet challenges

How can we test these new models for the origin of allostery in proteins? The key is to carry 

out forward evolution of protein molecules with full control over the essential parameters

—mutation rate, population size, and the statistics of applied selective pressures. If this 

can be achieved, the idea is to conduct many independent trajectories of evolution while 

selecting proteins for binding affinity or specificity in constant or time-varying conditions of 

fitness. With appropriate controls, deep sequencing of these trajectories and deep mutational 

scanning of evolved proteins can provide estimates of both the standing variation and the 

pattern of allostery. In principle, such experiments could provide a rigorous test of the 

necessity and sufficiency of selection for specificity and/or adaptability to sustain allosteric 

networks in proteins without direct selection for regulation.
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Are such forward evolution studies feasible? In recent years, powerful experimental methods 

for rapid, continuous, automated forward evolution of proteins have been reported [102, 

103]. With further developments to enable continuous evolution for binding specificity 

and adaptability, it should be possible to carry out the required studies. A complementary 

approach is to extend the network models for protein stability and function [101] to 

computationally probe the role of binding specificity and/or evolution under fluctuating 

environments in shaping patterns of allostery. The combination of experiments in real 

proteins and computational ‘toy’ models may represent a powerful strategy to converge on 

minimal models for the origin of allostery.

11.4. Concluding remarks

Models for biological systems must go beyond just explaining mechanism to provide 

a description of their origin through the process of evolution. In general, this means 

understanding how functional constraints at the current moment collaborate with adaptation 

in time-varying environments to specify the design of biological systems. For the classical 

problem of allostery, the hope is that the new ideas and emerging technologies described 

here can help produce generative models for long-range intramolecular couplings within 

proteins.
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12. Mechanisms of rapid evolution

12.1. Status

Evolution is increasingly being recognized as a central component of two of the most 

urgent societal problems [104]. While the physics of global climate change is relatively 

well-understood, the response of the biosphere is harder to predict, especially the extent 

to which microbial evolution can influence the feedback between soil and marine systems 

to the carbon and other biogeochemical cycles [105-107]. Even the sign of this feedback 

effect is hard to assess. The emerging world-wide health crisis due to the unexpectedly rapid 

evolution and proliferation of antibiotic resistant strains of pathogenic bacteria is our second 

example, one that underscores how imperfectly we understand the mechanisms of evolution 

[108]. In fact, it is even the case that climate change can accentuate the problem of antibiotic 

resistance [104].

Evolution is often thought of as the product of two independent classes of process: (1) 

the generation of mutations; (2) the dynamics within a fixed environment that selects and 

ultimately conveys genetic variation to fixation or dominance in a population. This narrative 

assumes a separation of timescales between (1) and (2) but neglects the fact that many 

ecosystems, especially those with microbes, show rapid genetic adaptivity through strong 

selective stress arising either from environmental conditions or antagonistic predation [109, 
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110]. The resulting phenotypic diversity [109] contains individuals with new traits that 

in some cases have been documented to further induce new links or forms of interaction 

with others [111]. For a constant driving force, either a chemical potential difference 

across the ecosystem, or a constant flux of energy, the resulting long time dynamics is 

an ecosystem in a non-equilibrium steady state [111], characterized by constant change and 

the generation of new niches [112], as opposed to one that is in a static equilibrium steady 

state, characterized by a fixed community structure. In other systems, such as methanogenic 

bioreactors [113] and the global ocean microbiome [114], it is known that there is a non-

equilibrium steady state, characterized by a constant production rate, but constant taxonomic 

turnover, suggesting the emergence of a collective metabolism for the community.

Whether or not there is a phase transition between these two classes of stationary states as 

a function of driving force is an interesting but unresolved fundamental question. When the 

interactions between ecology and evolution are strong enough, such that the evolutionary 

timescale is comparable to the ecological timescale, qualitatively new phenomena arise: 

rapid and successive emergence of evolved traits interfere with the ecosystem, resulting in 

significant changes in population dynamics and spatiotemporal patterns.

The purpose of this roadmap article is to draw attention to two recent highly simplified 

examples of these phenomena, which are sometimes called rapid evolution. The first focuses 

primarily on population dynamics: anomalies in population cycles can reflect the influence 

of strong selection and the interplay with mutations (standing variation or de novo). The 

second focuses primarily on the way in which ecological structure can potentially be 

influenced by what is arguably the most powerful source of genetic novelty: horizontal 

gene transfer (HGT). Our understanding of the role of HGT in shaping ecosystems, and vice 

versa, is in its infancy, but we now have the tools to begin to not only understand these 

phenomena but to ask the pertinent question of how one manages such dynamic ecosystems. 

It is well-documented that HGT as well as population flow is central to the antibiotic 

resistance crisis [108] and one would expect that it plays a role in the biological response to 

climate change. To achieve a full understanding of rapid evolution in all its manifestations 

will require a concerted experimental and theoretical effort.

12.2. Anomalous population dynamics in rapid evolution

The first example focuses on anomalous population dynamics due to rapid evolution. The 

anomalous dynamics is characterized by abnormal phase relationships and periodicity in 

population cycles. Certain predator–prey ecosystems systems, such as rotifer–algae [115] 

and phage–bacteria ecosystems [116] , exhibit a π phase difference between the time series 

of predator and prey populations, together with a longer period for their population cycle, 

as opposed to the typical predator–prey phase difference of π/2. This abnormal phase 

difference is associated with the emergence of a mutant prey which has a defense against 

the predator but at some metabolic cost (so-called evolutionary cycle). What is more bizarre 

is that in some systems, following a mutation, the phase difference disappears as the prey 

population becomes almost constant in time while the predator population still oscillates but 

with a longer period than before the mutation arose (the so-called cryptic cycle). Whether or 
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not the evolutionary cycle or cryptic cycle occurs depends on the metabolic cost of defense 

[117].

Due to the necessarily small numbers of mutants at least during the initial stages of these 

processes, one must properly take into account the discreteness of populations and their 

spatial extent [118]. The mathematical tools to do this properly use stochastic individual-

level models to describe the interactions between members of the ecosystem, and statistical 

mechanics techniques to deduce the resulting dynamics at the population level [119, 120]. 

By including the trade-off between selection on reproduction and the metabolic cost of 

defense against predation, a minimal stochastic individual-level model [117] reproduces the 

rapid evolution that was found in chemostat experiments of rotifer–algae [115] and phage–

bacteria ecosystems [116]. Under strong predation selection, a defended prey can arise from 

mutation, causing the population dynamics to transition from the normal cycle with a π/2 

phase shift to the evolutionary cycle with a π phase shift between the predator and the total 

prey. The additional π/2 phase delay comes from the fact that the wild-type prey, which is 

mostly consumed by the predator, can only grow back after the defended sub-population 

starts to decrease due to the depletion of food. When the metabolic cost of the defended 

prey is low enough, the regrowth of the wild-type prey is delayed more. If the delay is so 

great that the wild-type prey can only resume growth after the defended prey population has 

decreased sufficiently, the phase delay of the wild-type prey behind the defensive prey can 

become π so that the total prey population looks almost constant with time, leading to a 

cryptic cycle. The individual-level model shows that the anomalous dynamics can arise from 

demographic noise in rapid evolution, without special assumptions or fine tuning (figure 15). 

Deterministic models are problematic, as they cannot even capture regular population cycles 

in a qualitative way without introducing phenomena extra to the Lotka–Volterra description, 

such as functional response [119]. So far, we have focused primarily on well-mixed systems. 

However, in practice, one may be interested in invasion fronts, regime shifts or range 

expansion. In these cases, the need for correct treatment of demographic stochasticity is even 

greater, because of the presence of fronts where the populations are necessarily small. The 

study of the potentially interesting spatio-temporal patterns [120] forming in rapid evolution 

is a rich topic for future work.

12.3. Collective rapid evolution

Our second example is from marine microbial ecology, and involves a case where spatio-

temporal dynamics emerges from the eco-evolutionary feedback at various scales. In such 

cases, different evolutionary mechanisms intertwine and lead to scale-dependent feedback, 

manifested by coevolution from genetic variations, spatio-temporal population dynamics and 

spatially-varying selection pressure from the environment.

We will focus on a phage–microbe ecosystem, which is usually modeled simply through 

Lotka–Volterra dynamics. However, in the microbial world, ecological relationships are 

more complicated than this due to rapid evolution at the genomic scale. In fact, it seems 

that phage are multifunctional: now only do they exert predation pressure that reduces 

the bacteria population, but they also transfer genes that can help increase the bacteria 

population. The way in which this happens in detail is a possible instance of multi-level 
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selection: at the level of the individual bacteria, phage attack is a strong selection pressure. 

But at the level of the community, there is an emergent fitness benefit which allows the 

population to grow and even expand its range.

A remarkable example showing the significance of HGT-involved multiscale feedback as 

a driving force for evolutionary complexity and stability is the most-abundant phototropic 

organism, Prochlorococcus spp. [61]. This marine cyanobacterium experiences predation 

from cyanophages that, surprisingly, were found to carry photosynthesis genes. Phylogenetic 

study showed that these genes had been horizontally transferred first from cyanobacteria 

to cyanophages and back and forth multiple times [121]. Interactions with cyanophage are 

assumed to be important for the evolutionary pattern and diversity of Prochlorococcus. 

Specifically, Prochlorococcus exhibits niche stratification of two dominant ecotypes: the 

high light-adapted ecotype near the sea surface evolved 150 million years ago from the 

ancestral low light-adapted ecotype at the lower sea level. Due to the depth-dependent 

absorption spectrum of light, the different ecotypes utilize distinct light intensities and 

spectra.

What were the environmental and genetic drivers of the evolution of the high light-adapted 

ecotype? Prochlorococcus has a highly streamlined genome, and lives at low density in 

a nutrient-deficient environment. Thus, the required spatial adaptations were the result of 

novel genes that presumably were distributed through viral-mediated HGT. Consistent with 

this interpretation, Prochlorococcus does not possess standard defense mechanisms against 

phage attack, such as CRISPR or prophages (for restriction-modification, the situation is 

not clear) [61]. It seems that their principle means of defense against phage is modification 

of cell surface molecules that prevent phage attachment. These molecules are expressed 

from genes that have been rapidly modified through mutations and HGT with other 

bacteria phyla. These genes reside in genomic islands and constitute the majority of the 

genetic diversity [61]. In recent work, we have performed a calculation from a minimal 

stochastic model to show how HGT leads to collective coevolution of the bacteria and 

their phages, leading to the emergence of stratified ecotypes in the euphotic zone [122]. 

Through HGT from bacteria, phages acquire both beneficial and inferior genes that are 

responsible respectively for efficient and inefficient photosynthesis in a certain environment. 

Since phages have a relatively higher mutation rate, they create a rapidly evolving reservoir 

of genes for the host bacteria. On the other hand, bacteria with highly streamlined genomes 

create a slowly evolving, stable repository of beneficial genes for phages by filtering out 

inferior genes under selection. By carrying and transferring beneficial photosynthesis genes, 

there is evidence that phage improve their fitness, e.g. by optimizing their burst size, by 

supplementing the host cell’s metabolism [123] (figure 16). In reality most mutations are 

neutral or deleterious; but HGT is blind to this. Thus in HGT with host bacteria, on a 

fast time scale, phages evolve deleterious mutations, but can be rescued by bacteria whose 

genome preserves genes on a longer time scale. Eventually bacteria and phage form a 

collective state, enabling the rapid adaptation and range expansion to the environment 

nearer the ocean’s surface. This emergent mutualism occurs despite the intrinsic antagonism 

between bacteria and phages. In short, HGT-driven collective coevolution provides a natural 

unified explanation for the features of Prochlorococcus system, including highly streamlined 

small genome but huge pan-genome, lack of defense mechanisms against viral attack, niche 
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stratification of ecotypes and phage predator carrying photosynthesis genes. It is expected 

that this type of mechanism can appear in other spatially-stratified systems, where genes that 

benefit the evolution of both host and parasite could be present.

12.4. Current and future challenges

A generic framework to study rapid eco-evolutionary dynamics with multi-scale feedback 

requires not only population dynamics and genetic evolutionary mechanisms but also the 

understanding of the origin of genetic variations. One related long-standing puzzle is: did 

the selected phenotypes already preexist or were encoded in the phenotypic variation in 

the ecosystem prior to the selection, or do they arise through stress-induced mutagenesis

—de novo mutations induced by strong selection pressure at a higher rate (and perhaps 

at different loci) [124]? How does stress-induced mutagenesis feed back into niche 

construction? A crucial role is played by the genotype–phenotype map, but how is it 

influenced by selection in spatially and temporally varying environments?

12.5. Concluding remarks

We have primarily focused on the rapid evolution of microbial ecosystems, which occurs 

through the interplay between gene flow, spatial variation, and feedbacks between the 

organisms in the ecosystem and the physical characteristics of the environment. These 

phenomena are critical to understanding such critical issues as the emergence of antibiotic 

resistance [108] and the ongoing dynamics of global climate change [105-107]. Another 

extreme example of ecological-evolutionary feedback is the growing realization that the 

cancer tumor microenvironment provides a strong source of heterogeneity that underlies the 

rapid evolution of chemotherapy resistance [125] and the emergence of collective sensing 

and decision-making [126]. Theoretical modeling of these important classes of problem 

requires explicit handling of spatial structure and demographic fluctuations. To understand 

how scale-dependent ecological-evolutionary feedback drives the spatio-temporal evolution 

of ecosystem structure is a truly grand challenge that requires a trans-disciplinary approach 

to be successful.
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Figure 1. 
Signal processing by spiral node dynamics. (A) Cartoon of day–night cycles in irradiance 

(top) and temperature (bottom). (B) Phase plane dynamics of a symmetric spiral node. 

ω characterizes the angular frequency, μ characterizes the rate of decay. (C) Signal 

amplification by linear oscillator as a function of the relative mismatch between the natural 

frequency ω and the signal frequency Ω. (D) Simulated example of a regular rhythm heavily 

contaminated by noise at many different frequencies proposed by a spiral node network. (E) 

Environmental and internal factors predicted to favor increasing or decreasing the damping 

biological oscillators.
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Figure 2. 
Some cellular responses are only revealed by dynamic inputs. In steady-state experiments, 

the blue but not the red molecule appears to respond to the input. A dynamic input, however, 

shows that the red molecule responds as strongly as the blue molecule, but to the input’s 

time-derivative not its absolute value.
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Figure 3. 
Developmental and homeostatic signaling. Throughout development (A), signaling pathways 

(activity shown in purple) can potentiate cell fate decisions, and do so in a very deterministic 

and stereotyped manner. However, during homeostasis (B) and throughout the organism’s 

life, events such as wounding, immune responses, and programmed apoptosis in response to 

stressors can activate the same pathway in a nondeterministic fashion.
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Figure 4. 
Decoding signals into appropriate genetic outcomes. Environmental signals sensed by 

receptors (in blue, red, and yellow) can feed into the same pathway and cause distinct gene 

expression outcomes (blue, red, yellow genes). One hypothesis for how this occurs is that 

the conserved pathway (green) can be repurposed in its dynamics to deliver constant linear 

activation, oscillations of activation and inactivation, or a single transient pulse of activation, 

all of which are read out in distinct ways.
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Figure 5. 
Evolution of bnAbs. Vaccination with a single antigen produces only strain-specific Abs, 

whereas more complex, conflicting selection forces are required to evolve bNAbs (see main 

text). These conflicting selection forces frustrate the normal process of AM, and can lead to 

B cell death in GCs. Hence, bnAb evolution walks a fine line, requiring selection forces that 

are optimally imposed during vaccination.
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Figure 6. 
Principles gleaned from studies of AM. (A) Cocktail immunization with four antigens (solid 

lines; dotted lines = control), leads to high variability in binding of the produced Abs for 

those antigens. (B) Sequential immunization of the same antigens results in high Ab binding 

to all antigens. (C) Optimal frustration conditions exist for cocktail administration, including 

the number of antigens and mutational distance between them. Figures were adapted from 

references [3] (plots A, B) and [4] (plot C).
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Figure 7. 
(A) Illustration of Kelly’s formalism in a simple case where the environment fluctuates 

between two states, representing for instance the absence (x = 1, in gray) or presence (x = 

2, in blue) of a pathogen. This environment is experienced by a population of reproducing 

individuals that can themselves be in two states, e.g., resistant (σ = 1, in gray) or not (σ = 2, 

in blue). At each generation t, the environment has probability p(x∣x′) to change from state 

x′ to state x. Each individual of the population has also a probability π(σ∣σ′) to change its 

state from σ′ to σ. An individual that has switched to state σ then contribute an average of 

f(σ, x) individuals in state σ to the next generation. The dynamics is described by equations 

(1) and (2). (B) The strategy π(σ∣σ′) optimizing the long-term growth rate Λ depends on the 

nature of the environmental fluctuations, here the frequency of the pathogen p(x = 2) and a 

characteristic time of environmental change tc that we define by e−1/tc = 1 − p(1∣2) − p(2∣1). 

Taking f(σ = 1, x = 1) = 1, f(σ = 1, x = 2) = 0.3, f(σ = 2, x = 1) = 0.4, f(σ = 2, x = 2) = 1 to 
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capture the relative costs of immunity and infection, the results show that switching between 

the two states σ = 1 and σ = 2 is favored only in some intermediate regime of environmental 

fluctuations (adapted from [58]).
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Figure 8. 
Scenarios of co-evolution between host and viral populations. (A) Kelly’s formalism (figure 

7) is able to describe the long-time scale evolution of a population (e.g. immune receptors, 

black line) in response to the known albeit stochastic dynamics of a driving population 

(e.g. virus, red line). (B) More realistically, other environmental sources (e.g. other viral 

or bacterial populations, nutrient sources, the emergence of new mutants, orange line) can 

influence the dynamics of the driving population. (C) Additionally, the evolution of the 

immune system influences the evolution of the viral population, exerting feedback on its 

dynamics. This feedback, which is at the heart of the co-evolution problem, makes the 

dynamics particularly challenging to describe on long timescales.
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Figure 9. 
Evolve and maintain generalists via time-varying environments. (a) Generalist Abs 

recognize the conserved epitope of variant antigens (Ags) while specialist Abs bind well 

to a particular variable epitope. (b) An illustration of our approach to constructing fitness 

landscapes that encode how specialists and generalists are organized in Ab sequence space. 

Each Ag defines a distinct landscape with a distinct set of fitness islands around specialist 

peaks (blue and orange regions); the generalist peak remains in almost the same location 

across Ags (overlapping shades). (c) Cycling of sufficiently dissimilar Ags at intermediate 

timescales can evolve (s → g) and maintain (g → g) generalist Abs unobtainable under very 

fast or very slow cycling (effectively static environments). Adapted from references [48, 69].
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Figure 10. 
Time-varying drug sequences for slowing the evolution of resistance. (A) Drugs A and 

B induce reciprocal CS: adaptation to A increases sensitivity to B, and adaptation to B 

increases sensitivity to A. Right panel: schematic showing resistance to each drug (A, 

black; B, red) over time during the cyclic application of drugs A and B (see [71, 72]). 

(B) Left panel: an optimal drug policy uses stochastic control algorithms to assign each 

CS profile (i.e. a set of values that define the resistance of the population to each of N 
testing drugs) to a single applied drug. Policies designed to minimize long-term resistance 

generate aperiodic drug sequences (top right). These optimized sequences correspond to 

frequent periods of low resistance interspersed with rare periods of high resistance (red 

dots). The drugs corresponding to periods of high resistance (in this case, drug B) provide 

little instantaneous inhibition but steer the population to a more vulnerable future state (see 

[73]).
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Figure 11. 
(a) The chemoflux microfluidic device, in which growth of a population of cells contained 

in 10 μm wide chambers is continuously monitored. By flowing different media through a 

main flow channel, the environment inside the chambers can be quickly exchanged from 

one nutrient type to another, or from a condition of stress to growth. Data represents a 

typical response to fluctuating sugars glucose (G) and lactose (L). In the first fluctuation, 

cells go through a lag phase, followed by recovery to exponential growth. During the lag 

phase cells produce and accumulate metabolic proteins. Upon repeated fluctuations the lag 

phase disappears. This effect has been explained through inheritance of very long-lived lac 
proteins, which provide the physiological memory of the cell. (Adapted from [86]). (b) The 

phase diagram of optimal response strategies in fluctuating environments. Strategies are 

separated by solid (dashed) curves corresponding to first order (continuous) evolutionary 

phase transitions, with their intersections shown at the triple point and a critical point. A 

finite memory response is optimal exclusively under random fluctuations. (Adapted from 

[88]).
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Figure 12. 
The agn43 promoter driving the T7 RNA polymerase stochastically generates tetracycline-

resistant cells, switching epigenetically between transcriptional ON and OFF states, with 

rate 0.1%–1% per cell division (panel a), which is visualized by a GFP reporter (panel b) 

[87, 89]. Single cell measurements of elongation rate dynamics (panel c) show dependence 

of killing efficiency on physiological stress response. (Adapted from [87].)
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Figure 13. 
(a) Examples of pairwise coevolving amino acids (blue) in the S1A family of serine 

proteases, comprising direct contacts in the tertiary structure. Data are shown on the 

structure of rat trypsin (PDB 3TGI). (b) Three sectors (red, green, and blue) in the S1A 

family, demonstrating physically connected coevolving networks within the structure. (c) A 

sector (blue spheres) in DHFR (PDB 1RX2), connecting the active site (marked by bound 

substrate, yellow stick bonds) to several distant surface sites (marked in red).
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Figure 14. 
(a) The spatial distribution of adaptive mutations in the PDZ domain in response to a 

class-switching T–2F mutation in the ligand (shown as stick bonds); green spheres mark 

positions harboring CN mutations. Two views of the domain (PDB 1BE9) are shown, 

demonstrating that CN mutations exclusively occur along allosteric networks extending 

through the protein structure. (b) A two-dimensional spin lattice model for a protein, with 

the ‘ligand’ represented by an external field acting at a single boundary node (the ‘binding 

site’). (c) Evolving the parameters of the spin model under conditions where the lattice must 

discriminate a right ligand from a wrong ligand produces a final model in which the right 

ligand specifically triggers an allosteric conformational change through the model protein 

(red nodes, with the size of the node indicating the strength of the conformational change). 

Data in (b) and (c) are from reference [101].
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Figure 15. 
Rapid evolution individual-level simulations capture the eco-evolutionary dynamics 

characterized by anomalous phase relationship in the experiments, e.g. (a) a transition from 

the conventional π/2 phase difference to the out-of-phase oscillations between predator (red) 

and total prey (green) densities and (b) a case with a constant total prey density [117].
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Figure 16. 
Illustration of collective coevolution between bacteria and viruses via HGT: (1) phages 

acquire beneficial (+) and inferior (−) genes from bacteria. (2) Phages have high mutation 

rate and create a rapidly evolving reservoir of genes for the host bacteria. (3) Bacteria create 

a slowly evolving, stable repository of beneficial genes for phages by filtering out inferior 

genes. The collective state results in emergent mutualism despite of individual antagonism.
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