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Abstract

Increasing evidence suggests that brain signal variability is an important measure of brain

function reflecting information processing capacity and functional integrity. In this study, we

examined how maturation from childhood to adulthood affects the magnitude and spatial

extent of state-to-state transitions in brain signal variability, and how this relates to cognitive

performance. We looked at variability changes between resting-state and task (a symbol-

matching task with three levels of difficulty), and within trial (fixation, post-stimulus, and

post-response). We calculated variability with multiscale entropy (MSE), and additionally

examined spectral power density (SPD) from electroencephalography (EEG) in children

aged 8–14, and in adults aged 18–33. Our results suggest that maturation is characterized

by increased local information processing (higher MSE at fine temporal scales) and

decreased long-range interactions with other neural populations (lower MSE at coarse tem-

poral scales). Children show MSE changes that are similar in magnitude, but greater in spa-

tial extent when transitioning between internally- and externally-driven brain states.

Additionally, we found that in children, greater changes in task difficulty were associated

with greater magnitude of modulation in MSE. Our results suggest that the interplay

between maturational and state-to-state changes in brain signal variability manifest across

different spatial and temporal scales, and influence information processing capacity in the

brain.

Introduction

Recent research suggests that variability in brain signal is an important parameter reflecting

information processing capacity and functional integrity [1–3]. Empirical work has shown

that brain signal variability tracks changes in cognitive capacity through development from

childhood to aged adulthood, and also tracks alterations in cognitive capacity and functional
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integrity in brain disease (as examples, see [4–7]). In a complex nonlinear system such as the

brain, variability facilitates the transition from one network configuration to another, in the

presence or absence of external stimulation [8]. A system with too little variability has dimin-

ished capacity to explore network configurations, and thus may be restricted to a limited num-

ber of states. A system with greater variability, and the capacity for dynamic fluctuations in

variability, may efficiently explore multiple network configurations and move amongst many

states whenever necessary [9, 10].

The conditions under which variability tracks state-to-state transitions within-subject, and

how this might relate to maturation and cognitive performance has been relatively understud-

ied. The few studies that examine state-to-state transitions within-subject suggest that brain

signal variability changes dynamically from task to resting-state or to fixation (i.e., viewing a

fixation cross during fixation blocks for fMRI) [9, 11], among task conditions with increasing

difficulty [9], among task conditions with increasing information associated with a stimulus

[12, 13], and in healthy but not in damaged brain tissue [10]. For example, Garret, McIntosh,

and Grady [14] examined brain signal variability with fMRI while participants determined

whether two faces, presented simultaneously, were the same or different. They manipulated

task difficulty by visually degrading some stimuli, and found that brain signal variability was

reduced during the more difficult condition. They suggested that the more difficult condition

required greater engagement of cognitive resources, leaving fewer resources to prepare for

other possible events.

Dynamic fluctuations in variability occur not only with differing task conditions, but also

within a trial, at the onset of a stimulus, and post-response. An fMRI study suggests that vari-

ability decreases from before to after stimulus onset, and that the magnitude of this decrease

correlates with the absolute magnitude of mean signal changes associated with stimulus-

related processing [15]. This finding is consistent with computational modeling work which

suggests that stabilizing one particular network configuration (i.e., actually settling into one

response) reduces brain signal variability and allows for better transmission of response-rele-

vant information [16]. Because stimuli typically are presented in succession, once processing is

complete, brain signal variability is expected to return to pre-stimulus levels. To our knowl-

edge, no one has examined this variability shift in humans, but cellular work in macaque mon-

keys and rats suggest that the return of variability to pre-stimulus levels differs with task

conditions, where variability remains lower for a longer period of time when the cell is

involved in task processing [17, 18]. Thus, pre-stimulus brain signal variability represents the

available repertoire of possible states (i.e., a context in which greater information processing

capacity is necessary). Post-stimulus processing stabilizes a given state, thus reducing variabil-

ity (i.e., a context in which interpretable transmission of information is necessary) and must

remain reduced in regions that support task processing while processing is ongoing.

It remains unknown how within-subject state-to-state transitions relate to maturation from

childhood to young adulthood, and to cognitive performance. Two recent studies looked at

this relationship in the context of old age. Using EEG, Sleimen-Malkoun and colleagues [11]

examined how old age affects dynamic variability fluctuations between resting-state and an

auditory oddball task. They measured variability using multiscale entropy (MSE), a measure

that is sensitive to linear and nonlinear variability, and emphasizes the way signals behave over

a range of temporal scales from fine (e.g., over milliseconds) to coarse (over minutes) [19].

They showed that for all adult age groups, variability decreases from resting-state to external

task at fine temporal scales and increases from resting-state to external task at coarse temporal

scales [11]. They further showed that older adults exhibited more subtle state-to-state modula-

tions in signal variability, both in terms of magnitude of change and spatial extent of change,

as compared to younger adults [11]. Using fMRI, Garrett and colleagues [9] demonstrated that
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older adults exhibit more subtle state-to-state increases in variability from fixation to task at

the coarse temporal scales measurable with fMRI, and that these sluggish increases were asso-

ciated with poorer performance (i.e., slower response times). To our knowledge, there is only

one study that examined state-to-state variability modulations during maturation from child-

hood to adulthood. Misic and colleagues [12] used magnetoencephalography (MEG) to show

that brain signal variability was generally greater when viewing upright versus inverted faces.

However, they did not directly examine potential differences in the magnitude and spatial

extent of state-to-state modulations.

In the current study, we expand on previous work by examining how maturation from

childhood to adulthood affects state-to-state modulations in brain signal variability. We mea-

sured EEG in children aged 8 to 14 and adults aged 18 to 33 during resting-state, and during a

symbol-matching task [20]. This task was simple enough to be suitable for both children and

adults, and allowed us to manipulate task difficulty. We first examined changes in brain signal

variability between resting-state and task conditions with differing levels of difficulty (high,

medium, and low). We then compared changes in brain signal variability between resting-

state and within-trial during fixation, after stimulus onset, and after response. Previous studies

have shown that in comparison to adults, children exhibited a more diffuse and less distinct

default mode network [21, 22], and larger and more deterministic responses to external input

[6, 23–26]. We therefore hypothesized that state-to-state modulations in variability would be

larger and more widespread in children than in adults.

Methods

Ethics statement

Adult participants provided written informed consent, child participants provided assent, and

the children’s parents provided written informed consent. The University of Calgary Conjoint

Faculties Research Ethics Board approved all procedures, assigning the number REB13-1075.

Participants

All participants were recruited between March 2014 and May 2015 in Calgary, Alberta, Can-

ada. Twenty-two adults (11 female, mean age = 21.73 years, age range = 18 to 33 years) and 19

children (8 female, mean age = 10.16 years, age range = 8 to 14 years) participated in the study.

One child withdrew from the study due to fatigue, and his/her data were not included in the

dataset. Therefore, all analyses were conducted with 22 adults and 18 children. Participants

had no known neurological or psychological disorders, had not previously suffered a head

injury, and were not on any psychotropic medication. All participants were right-handed, with

normal or corrected-to-normal vision, and able to perceive colour.

Symbol-matching task

Stimuli consisted of coloured geometric shapes, generated in Presentation version 16.1 (Neu-

robehavioral Systems Inc., Albany, CA, U.S.A.). Stimuli were randomly generated from 15

unique geometric shapes and 24 isoluminant colours (12 pairs of 180˚ colour compliments,

equally spaced around a RGB colour wheel; http://www.workwithcolor.com/hsl-color-picker-

01.htm). Each colour was displayed on the testing monitor (HP LP2475w, Hewlett-Packard,

Palo Alto, California, USA), and the RGB values were adjusted until luminance values were 15

+/- 5 candelas/m2, as measured by a Minolta LS-100 photometer. For each block, two geomet-

ric shapes were chosen in two complimentary colours, resulting in four possible stimuli. The

test stimulus was a large version of one of the four stimuli, and was presented in the centre of
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the screen for 500ms (Fig 1). All test stimuli were created to have equal area (visual angle = 5

to 9˚). The reference stimuli were small versions of all four stimuli that were created to have

equal length of the longest axis (visual angle = 2˚). Reference stimuli remained in place for the

duration of the block. One test stimulus was presented in each trial, and the participant indi-

cated the position of the reference stimulus that matched the test stimulus by pressing a key (D

or F with the left hand, J or K with the right hand) on the keyboard. A jittered inter-trial inter-

val between 1500 and 2000ms followed the response.

Procedure

We collected eyes open resting-state data prior to task performance. Participants were

instructed to relax and look at a fixation cross in the centre of the screen for five minutes. Par-

ticipants then performed 12 practice trials of the symbol-matching task with stimuli not

included in the testing phase. During testing, 18 blocks of 40 trials were presented. We created

three difficulty conditions by varying predictability across blocks. The lowest difficulty condi-

tion involved one shape being presented considerably more often than the other three (70%

and 10% frequency, respectively). The medium difficulty condition involved two shapes being

presented more often than the other two (40% and 10% frequency, respectively). The highest

difficulty condition contained all shapes appearing with equal proportion (25% frequency).

Proportions were randomly assigned to shapes at the beginning of each block. Difficulty con-

ditions appeared in a randomized order.

Behavioural data

We measured accuracy and response time to assess individual and group performance. We

used mixed design Analysis of Variance (ANOVA) to analyse the between-subjects effect of

age and the within-subject effect of level of difficulty. Greenhouse-Geisser adjusted values

were reported where applicable. Significant interactions were followed up with simple main

effects analyses. Significant main effects and simple main effects were followed up with pair-

wise comparisons. We used Bonferroni correction to maintain a family-wise error rate of 0.05.

Fig 1. Stimuli example. Example of test stimulus (centre) and reference stimuli (bottom).

https://doi.org/10.1371/journal.pone.0181894.g001
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EEG acquisition and preprocessing

Participants were seated in an electrically shielded, soundproof chamber during the experi-

ment. We recorded continuous EEG data from 64 channels with an EasyCap 10/20 positioning

system, referenced to Cz, using the BrainVision actiCHamp high-impedance system (Brain

Products GmbH, Gilching, Germany). Impedances were maintained at under 17kOhms for

the duration of recording. We acquired data at a bandpass of 0.05-100Hz, digitized at a 500Hz

sampling rate. After acquisition, we bandpass filtered the continuous data at 0.05-55Hz and

re-referenced to the common average reference. We performed independent component anal-

ysis (ICA) on the continuous data as implemented in EEGLAB [27]. Components containing

artifacts associated with eye movements were removed from the dataset. Four children had

excessively noisy channels that required interpolation (maximum of 2 channels per child).

Noisy channels were removed from the dataset and interpolated prior to re-referencing so as

to not include excessive noise in the common average. ICA analysis was performed excluding

the interpolated channels for these children and the interpolated channels were then re-inter-

polated with the cleaned data. The remainder of preprocessing was consistent for individuals

who required interpolation and those who did not.

For data collected during the symbol-matching task, trials that included stimulus onsets fol-

lowed by correct responses were binned according to difficulty condition (high, medium,

low). Data were segmented differently for task difficulty and within-trial epoch analyses. For

the task difficulty analyses, we segmented the data into 1700ms epochs that included 200ms

before stimulus onset and 1500ms after stimulus onset. For within-trial epoch analyses, we seg-

mented each trial into four, 600ms epochs: pre-stimulus, post-stimulus, post-response, and

400ms post-response (Fig 2). Each epoch was baseline corrected using the first 200ms portion

Fig 2. Illustration of epochs over time within a trial. The black vertical line represents stimulus onset, the red vertical line represents

response, the blue box represents a 400ms time window, and the grey box represents a 200ms baseline. a) Pre-stimulus epoch, b) post-

stimulus epoch, c) post-response epoch, d) 400ms post-response epoch.

https://doi.org/10.1371/journal.pone.0181894.g002
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of the epoch. Data segments used for baseline correction were not included in spectral power

density or brain signal variability analyses. Resting-state data were segmented to match the

epoch length from the task for within-trial and task difficulty analyses.

Brain signal variability analysis

Brain signal variability was quantified using MSE, a measure that is sensitive to linear and

nonlinear variability [19, 28]. We calculated MSE in two steps, with the algorithm available

at www.physionet.org/physiotools/mse/. First, the algorithm progressively down samples

EEG data for each trial at each electrode by averaging data points within non-overlapping

windows of time. Specifically, for a given temporal scale t, the algorithm averages data points

within non-overlapping windows of length t, and repeats this procedure for increasing values

of t (e.g., temporal scale t = 1 is the original raw time series, temporal scale t = 2 averages

over 2 time points, etc.). Next, the algorithm calculates sample entropy for each temporal

scale, measuring predictability in the signal by evaluating the appearance of repetitive pat-

terns. We used a pattern length of m = 2, which means we were looking for repeating pat-

terns that are 2 consecutive points in length. We used a similarity criterion of r = 0.5 which

means two points are considered similar if the difference in amplitude is less than or equal to

50% of the standard deviation for the time course. For each subject, electrode and condition

specific MSE estimates were obtained as a mean of the single trial entropy measure for each

temporal scale. We required a minimum of 50 time points to reliably estimate sample

entropy for a given temporal scale, consistent with previous work [5, 6, 10]. For 600ms

epochs (the last 400ms of which was used for analyses), there were 200 data points with a

500Hz sampling rate, allowing us to reliably estimate sample entropy for up to 8ms temporal

scales. For 1700ms epochs (the last 1500ms of which was used for analyses), there were 750

data points with a 500Hz sampling rate, allowing us to reliably estimate sample entropy for

up to 30ms temporal scales.

Spectral power density

In addition to MSE, we calculated spectral power density (SPD). A comparison of MSE and

SPD results allowed us to examine the relationship between MSE measures and the frequency

content of the EEG signal, and to evaluate if maturation-related changes consist of more linear

(assessed by both MSE and SPD) or nonlinear (assessed only by MSE) dependencies in the

data [7, 29]. A linear model predicts a proportional relationship between causes and effects,

whereas this relationship in a nonlinear system is not as straightforward. The combination of

analyses therefore provides additional information about brain dynamics that cannot be cap-

tured with either type of analysis alone [30].

SPD was calculated using fast Fourier transform of single trial data using in-house code.

The signal was normalized to account for any global power change between individuals and

relative contributions of different frequency bands to the total spectral power were calculated

based on the normalized data. Given a sampling rate of 500Hz and 750 time points in a

1500ms epoch for the difficulty analysis and 200 time points in 400ms within-trial epochs, the

frequency resolution was 0.67 and 2.5Hz, respectively.

Partial least squares snalysis

MSE and SPD measures were statistically assessed with partial least squares (PLS) analysis [6,

31, 32], a multivariate approach that allowed us to identify large-scale group- and condition-

dependent changes in the spatiotemporal distributions of MSE and SPD measures. In brief,

PLS extracts latent variables (LVs) that identify patterns of similarities or differences in a brain
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signal measure between conditions and groups. In the most common usage of PLS, contrasts

across groups or conditions are not specified in advance. Rather, the algorithm extracts LVs

explaining the covariance between groups/conditions and brain signal measure in order of the

amount of covariance explained with the most explained listed first. We, instead, used a nonro-
tated version of task-PLS to allow us to test a priori hypotheses with pre-specified contrasts,

which are provided for each analysis below. Both versions of task-PLS begin by creating a data

matrix with subjects and conditions as rows, and MSE values at all temporal scales/SPD at all

frequencies for every electrode as columns. PLS uses singular value decomposition to extract

LVs, which contain three vectors. The first vector consists of a singular value, which indicates

the strength of the effect expressed by the LV. The remaining two vectors relate experimental

design and the brain signal measure. The experimental design vector contains design saliences,

which indicate the degree to which each condition within each group is related to the MSE/

SPD pattern identified in the LV. These design saliences can be interpreted as the contrast that

codes the effect depicted in the LV. The brain signal vector contains MSE/SPD saliences.

These are numerical electrode weights that identify the collection of electrodes and temporal

scales or frequencies that, as a whole, are most related to the effects expressed in the LV. For

each LV, there is one salience per electrode temporal scale or frequency that applies for all

groups and all conditions. To obtain summary measures of each participant’s expression of an

LV, we calculated brain scores by multiplying the vector of electrode weights by the observed

value of the brain signal measure and summing over all brain signal measures for each partici-

pant. These brain scores were calculated for each condition and then mean centred using the

grand mean across all conditions.

Statistical assessment in PLS is done across two levels. First, the overall significance of each

LV is assessed with permutation testing [33]. For each subject, sampling without replacement

is used to reassign the order of conditions. PLS is calculated for each sample and the number

of times a singular value exceeds the observed singular value relative to the total number of

permuted samples is used to assess significance. An LV was considered significant if the

observed singular value exceeded the permuted singular value in more than 95% of the permu-

tations (p< 0.05). Second, bootstrap resampling is used to estimate confidence intervals

around electrode weights in each LV. Bootstrap samples were created by re-sampling subjects

with replacement and PLS was recalculated for each new sample. Distributions of boot-

strapped values were used to create standard errors for electrode weights and confidence inter-

vals for averaged brain scores, allowing for an assessment of the relative contribution of

particular electrodes and temporal scales/frequencies, and the stability of the relationship with

age group [34, 35]. No corrections for multiple comparisons are necessary because the elec-

trode saliences are calculated in a single mathematical step on the whole brain. For this paper,

we arbitrarily designated a bootstrap ratio threshold of 3.10, corresponding approximately to a

99.9% confidence interval, or a p value < 0.001 to display our effects.

We followed-up significant group by task interactions identified through PLS by testing the

simple main effect of task in children and adults separately, using task-PLS without pre-speci-

fied contrasts. In addition, we conducted pairwise contrasts on the brain scores obtained from

separate group analyses to confirm differences among task conditions, and calculated the effect

size parameter Cohen’s d [36] to compare the magnitude of the task effect in children and in

adults. We used a pooled standard deviation estimate from the brain scores that was not cor-

rected for repeated measures to calculate Cohen’s d to ensure the effect sizes were not inflated,

and more comparable across analyses [37]. We used the Bonferroni adjustment to maintain a

family-wise error rate of 0.05, treating each age group as a family.
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Results

Behavioural results for the symbol-matching task

We used a 2 x 3 omnibus mixed design Analysis of Variance (ANOVA) to examine whether

accuracy differed across group (children and adults) and difficulty condition (high, medium,

and low) (Table 1) during the symbol-matching task. There was a significant main effect of

group indicating that adults (M = 94.51, SD = 4.22) were more accurate than children

(M = 88.66, SD = 7.54). The main effect of difficulty condition also was significant, and the

interaction between group and difficulty condition was not significant. Therefore, we con-

ducted pairwise comparisons among difficulty conditions with children and adults together

using an α value of 0.05/3 (0.017) to maintain family-wise error at 0.05 (Table 2). Children and

adults were significantly more accurate for the low difficulty condition compared to the high

difficulty condition, and the low difficulty condition compared to the medium difficulty condi-

tion. Accuracies for high and medium difficulty were not significantly different. These results

are illustrated in Fig 3.

We used a 2 x 3 omnibus mixed design ANOVA to examine whether mean response time

differed over group (children and adults) and difficulty condition (high, medium, and low)

(Table 1). The main effect of group was significant, such that adults had faster response times

(M = 541.9, SD = 63.49) than children (M = 789.9, SD = 188.8). The main effect of difficulty

condition was significant, as well as the interaction between age group and difficulty condition.

Therefore, we conducted pairwise comparisons of difficulty conditions for children and adults

separately, using an α value of 0.05/6 (0.008) to maintain family-wise error at 0.05 (Table 2).

For children, response times were significantly longer for high difficulty than low difficulty

conditions, and medium difficulty than low difficulty conditions. Children’s response times

for high and medium difficulty conditions were not significantly different with the adjusted α
value (0.008). For adults, response times were significantly longer for high difficulty than low

Table 1. Mixed design ANOVA results for behavioural data.

DV Effect df F p Partial η2

Accuracy Age (1, 38) 11.377 0.002 0.23

Difficulty (1.835, 69.722) 6.665 0.003 0.149

Age*Difficulty (1.835, 69.722) 0.294 0.727 0.008

RT Age (1, 38) 34.215 <0.001 0.474

Difficulty (1.963, 74.606) 77.628 <0.001 0.671

Age*Difficulty (1.963, 74.606) 7.143 0.002 0.158

https://doi.org/10.1371/journal.pone.0181894.t001

Table 2. Follow-up tests for behavioural data.

DV Age group Difficulty df F p Partial η2

Accuracy All High—Low (1, 38) 9.098 0.005 0.193

High—Medium (1, 38) 0.181 0.673 0.005

Medium—Low (1, 38) 8.693 0.005 0.186

RT Children High—Low (1, 17) 76.32 <0.001 0.818

High—Medium (1, 17) 5.95 0.026 0.259

Medium—Low (1, 17) 38.08 <0.001 0.691

Adults High—Low (1, 17) 50.651 <0.001 0.707

High—Medium (1, 17) 13.89 0.001 0.398

Medium—Low (1, 17) 34.03 <0.001 0.618

https://doi.org/10.1371/journal.pone.0181894.t002
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difficulty conditions, low difficulty than medium difficulty conditions, and medium difficulty

than low difficulty conditions. These results are summarized in Fig 4.

To better understand the nature of the interaction, we conducted linear contrasts compar-

ing difference in response time between high and low difficulty, high and medium difficulty,

and medium and low difficulty, between children and adults. We used an α value of 0.05/3

(0.017) to maintain family-wise error at 0.05. We found that the difference between high and

low difficulty conditions was significantly greater in children (mean difference = 87.79,

SD = 40.68), than in adults (mean difference = 48.56, SD = 32.01), F(1, 38) = 9.395, p = 0.004, η2

= 0.198, and the difference between medium and low difficulty conditions was significantly

greater in children (mean difference = 61.49, SD = 42.27) than in adults (mean difference =

25.98, SD = 20.89), F(1, 38) = 11.95, p = 0.001, η2 = 0.240. The difference between high and

medium difficulty was not significantly different between children and adults, F(1, 38) = 0.851,

p = 0.978. η2 <0.001.

Neuroimaging results comparing resting-state and the symbol-matching

task

MSE. We used nonrotated task-PLS of MSE values to test for a main effect of group (chil-

dren vs. adults, contrast weights: 1, 1, 1, 1, -1, -1, -1, -1), a main effect of task (resting-state vs.

Fig 3. Accuracy in children and adults. Error bars represent standard error. * indicates a significant

pairwise comparison at α = 0.017. Pairwise comparisons for accuracy were conducted at the main effect level

with children and adults together due to a lack of significant interaction between age group and difficulty

conditions.

https://doi.org/10.1371/journal.pone.0181894.g003
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high, medium, and low difficulty conditions, contrast weights: 3, -1, -1, -1, 3, -1, -1, -1), and an

interaction between these effects (contrast weights: 3, -1, -1, -1, -3, 1, 1, 1). The main effect of

group was significant, such that adults had greater MSE than children in resting-state and

across all difficulty conditions (p< 0.001, Fig 5a). This effect was reliably expressed across all

temporal scales tested, but strongest at scales less than 25ms for all electrode sites. The main

effect of task was significant, such that brain signal variability was greater during resting-state

than during the symbol-matching task (p = 0.006, Fig 6a). Additionally, confidence intervals

did not overlap for high and low difficulty in children, suggesting that MSE was lower for high

difficulty conditions than low difficulty conditions in children. This pattern was reliably

expressed for primarily coarse temporal scales (greater than 10ms) across electrode sites in all

regions. As the interaction between age group and task was significant (p = 0.006), we explored

the effect of task in children and adults separately.

A task-PLS analysis of MSE values in children revealed one significant LV that differenti-

ated resting-state from the symbol-matching task such that MSE values were greater for rest-

ing-state than the three difficulty conditions (p = 0.002, Fig 7a). Additionally, confidence

intervals for the high and low difficulty conditions did not overlap, suggesting that there were

reliable differences in MSE among difficulty conditions. This pattern was reliably expressed

for all temporal scales across frontal, central, temporal, and parietal electrode sites, and for

coarser temporal scales (scales greater than 15ms) for electrode sites throughout the scalp. A

task-PLS analysis of MSE values in adults revealed one significant LV that differentiated rest-

ing-state from the symbol-matching task, but did not differentiate difficulty conditions from

each other (p< 0.001, Fig 7b). This pattern was reliably expressed for most temporal scales

across primarily central electrode sites. Further examination using a more lenient threshold of

0.05 (bootstrap ratios > |2.00|) found more frontal, central, and parietal electrodes were reli-

able for fine temporal scales (less than 10ms), and several more frontal electrodes were reliable

for coarser temporal scales (greater than 15ms). These regions became similarly reliable in

both groups, resulting in the same overall impression that the effect was more widespread in

Fig 4. Response time in (a) children and (b) adults. Error bars represent standard error. * indicates a significant pairwise comparison at α
= 0.017. Pairwise comparisons of difficulty conditions were conducted for children and adults separately due to a significant interaction

between age group and difficulty level.

https://doi.org/10.1371/journal.pone.0181894.g004
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Fig 5. Nonrotated task-PLS of (a) MSE data and (b) SPD data for the two-group resting-state and symbol-

matching task analysis: LV1, main effect of age group (children and adults) with resting-state (rest) and

symbol-matching conditions (high, medium, and low difficulty). The bar graph (top) shows averaged brain

scores for the main effect of age with (a) MSE and (b) SPD, with 95% confidence intervals derived from bootstrap

estimation. The statistical plots (bottom) show the main effect of age bootstrap ratios for each electrode and

temporal scale. Positive bootstrap ratios (> 3.10) indicate regions that demonstrate the relationship between
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children than adults and suggesting the difference in spatiotemporal distribution was not due

to our chosen thresholding value (data not shown). Thus, our findings suggest that state-to-

state modulations in MSE are more widespread in children than in adults, and may also differ

in magnitude.

To directly examine the potential group difference in the magnitude of MSE changes, we

conducted pairwise contrasts on the brain scores from separate group analyses. We used an α
value of 0.0042 to maintain family-wise error at 0.05 (0.05/12 = 0.0042). To examine whether

there was a group difference in the magnitude of the change from resting-state to task, we con-

trasted resting-state to the average of the three difficulty conditions and calculated effect size.

We found that for children, dynamic changes in MSE differentiated resting-state (M = 1.254,

SD = 1.798) from the average of the three difficulty conditions (M = -0.4179, SD = 2.185), t(17)

= 6.634, p< 0.001, d = 0.835, and similarly for adults, dynamic changes in MSE differentiated

resting-state (M = 0.7858, SD = 1.401) from the average of the three difficulty conditions (M =

-0.2619, SD = 1.179), t(21) = 4.065, p< 0.001, d = 0.809. To examine whether there were differ-

ences in dynamic changes in MSE from state-to-state within the task, we contrasted each of

the difficulty conditions. We found that in children, dynamic changes in MSE differentiated

the low difficulty condition (M = -0.2146, SD = 2.133) from the high difficulty condition (M =
0.6009, SD = 2.200), t(18) = -3.198, p = 0.003, d = 0.1034. No other comparison amongst diffi-

culty conditions was significant for children or adults.

As reported above, our behavioural analyses suggest that the difference in response time

among difficulty conditions (i.e., between high and low difficulty, and between high and

medium difficulty) was significantly larger in children than adults. To test whether greater

dynamic changes in MSE between difficulty conditions in children was due to greater success

of the difficulty manipulation for children, we used a residualisation procedure [38, 39] to

remove the between-subjects variation related to response time (RT) and accuracy from the

MSE data, and repeated our PLS analyses. In both cases, this residualisation removed the diffi-

culty condition differentiation for children, but did not influence the spatial extent of the effect

(i.e., MSE effects remained more widespread in children as compared to adults; RT, LV1,

p< 0.001; accuracy, LV1, p< 0.001). To further confirm the lack of MSE differentiation

between difficulty conditions, we compared brain scores for resting-state and task conditions

from the residualised analyses using t-tests and found significant differences only between

resting-state and the average of the three difficulty conditions in each group. For brain scores

residualised with RT in children, resting-state (M = 1.254, SD = 1.860) was higher than the

average of all difficulty conditions (M = -0.4179, SD = 2.418), t(17) = 6.671, p< 0.001.

d = 0.775; in adults, resting-state (M = 0.7851, SD = 1.546) was higher than the average of all

difficulty conditions (M = -0.2617, SD = 1.077), t(21) = 3.989, p = 0.001, d = 0.786. For brain

scores residualised with accuracy in children, resting-state (M = 1.254, SD = 1.551) was higher

than the average of all difficulty conditions (M = -0.4179, SD = 1.919), t(17) = 6.661, p< 0.001,

d = 0.958; in adults, resting-state (M = 0.7846, SD = 1.187) was higher than the average of all

difficulty conditions (M = -0.2615 SD = 1.339), t(21) = 3.962, p = 0.001, d = 0.823.

SPD. We used nonrotated task-PLS on spectral power to test for a main effect of group

(children vs. adults, contrast weights: 1, 1, 1, 1, -1, -1, -1, -1), a main effect of task (resting-state

vs. high, medium, and low difficulty conditions, contrast weights: 3, -1, -1, -1, 3, -1, -1, -1), and

an interaction between these effects (contrast weights: 3, -1, -1, -1, -3, 1, 1, 1). The main effect

conditions as displayed in the bar graph (i.e., lesser (a) MSE and (b) SPD for children than adults). Negative

bootstrap ratios (< -3.10) indicate regions that demonstrate the opposite relationship between conditions as

displayed in the bar graph (i.e., greater (b) SPD for children than adults).

https://doi.org/10.1371/journal.pone.0181894.g005
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Fig 6. Nonrotated task-PLS of (a) MSE data and (b) SPD data for the two-group resting-state and symbol-

matching task analysis: LV2, main effect of task (rest, and high, medium, low difficulty) in children and

adults. The bar graph shows averaged brain scores (top) for the main effect of task with (a) MSE and (b) SPD, with

95% confidence intervals derived from bootstrap estimation. The statistical plots (bottom) show the main effect of

age bootstrap ratios for each electrode and temporal scale. Positive bootstrap ratios (> 3.10) indicate regions that

demonstrate the relationship between conditions as displayed in the bar graph (i.e., greater (a) MSE and (b) SPD

for resting-state; Rest, than for task conditions; High, Medium, Low). Negative bootstrap ratios (< -3.10) indicate
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of group was significant such that children had greater SPD at lower frequencies, and lesser

SPD at higher frequencies (p< 0.001, Fig 5b). Greater SPD for children in the delta band (0.5-

3Hz) and theta band (4—7Hz) was reliably expressed across all electrode sites except FT9 and

FT10. Lesser SPD for children in the alpha (8—12Hz), beta (13—40Hz), and low gamma (40—

50Hz) bands was reliably expressed across all electrode sites except Fp2. The main effect of

task was significant such that resting-state differed from all difficulty conditions in the symbol-

matching task (p< 0.001, Fig 6). More specifically, SPD in the delta (0.5—3Hz) and theta (3—

7Hz) bands was lower during resting-state than during the symbol-matching task across pri-

marily central, parietal, temporal, and occipital electrode sites. SPD in the alpha (8—12Hz)

band was greater during resting-state than during symbol-matching task for all electrode sites,

and SPD for beta (13—40Hz), and low gamma (40—50Hz) bands was greater during resting-

state than during the symbol-matching task primarily at central electrode sites. As the interac-

tion between group and task was significant (p = 0.015), we explored the effect of task in chil-

dren and adults separately.

A task-PLS analysis of SPD in children revealed one significant LV differentiating resting-

state from all difficulty conditions (p< 0.001, Fig 8a). SPD was reliably lower in delta (0.5—

3Hz) and theta (4—7Hz) bands during resting-state than during the symbol-matching task for

most electrode sites across all regions. SPD was reliably greater in the low alpha (8—12Hz)

band during resting-state than during the symbol-matching task in all electrode sites, and in

the beta (13—40Hz), and low gamma (40—50Hz) bands for most central, parietal, temporal,

and occipital electrode sites. A task-PLS analysis of SPD in adults revealed one significant LV

differentiating resting-state from all difficulty conditions (p< 0.001, Fig 8b). SPD was reliably

lower in delta (0.5—3Hz) and theta (4—7Hz) bands during resting-state than during the sym-

bol-matching task, and reliably greater during resting-state than during the symbol-matching

task in the alpha (9—12Hz), beta (13—40Hz) and low gamma (40—50Hz) bands across pri-

marily central electrode sites. We observed no differentiation among difficulty conditions in

either analysis.

To directly examine the potential group difference in the magnitude of SPD changes, we

conducted pairwise contrasts on the brain scores from separate group analyses. We used an α
value of 0.0042 to maintain family-wise error at 0.05 (0.05/12 = 0.0042). To examine whether

there was a group difference in the magnitude of the change from resting-state to task, we con-

trasted resting-state to the average of the three difficulty conditions and calculated effect size.

We found that for children, dynamic changes in SPD differentiated resting-state (M = 66.65,

SD = 81.76) from the average of the three difficulty conditions (M = -22.22, SD = 2.18537), t
(17) = 7.843, p< 0.001, d = 1.179, and for adults, dynamic changes in MSE differentiated rest-

ing-state (M = 52.66, SD = 119.3) from the average of the three difficulty conditions

(M = 17.55, SD = 86.33), t(21) = 4.923, p< 0.001, d = 0.674. We contrasted each of the diffi-

culty conditions to confirm a lack of differentiation among conditions of the symbol-matching

task, and we did not find any significant differences amongst difficulty conditions for children

or adults.

To ensure that the greater state-to-state modulations in SPD was not caused by the greater

success of the difficulty manipulation for children, we used the same residualisation procedure

as we used for MSE [38, 39] to remove the between-subjects variation related to response time

(RT) and accuracy from the SPD data, and repeated our PLS analyses. In both cases, the lack of

differentiation among difficulty conditions remained unchanged (RT, LV1, p< 0.001;

regions that demonstrate the opposite relationship between conditions as displayed in the bar graph (i.e., lower (b)

SPD for Rest, than for task conditions; High, Medium, Low).

https://doi.org/10.1371/journal.pone.0181894.g006
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Fig 7. Task-PLS of MSE data for the resting-state and symbol-matching effect in (a) children and (b) adults.

The bar graphs (top) show averaged brain scores for LV1 for (a) children and (b) adults with 95% confidence

intervals derived from bootstrap estimation. The statistical plots (bottom) show LV1 bootstrap ratios for each

electrode and temporal scale. Positive bootstrap ratios (> 3.10) indicate regions that demonstrate the relationship

between conditions as displayed in the bar graph (i.e., greater MSE values for resting-state; Rest, than for task

conditions; High, Medium, Low).

https://doi.org/10.1371/journal.pone.0181894.g007
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Fig 8. Task-PLS of SPD data for the resting-state and symbol-matching task effect in (a) children and (b)

adults. The bar graphs (top) show averaged brain scores for LV1 for (a) children and (b) adults with 95%

confidence intervals derived from bootstrap estimation. The statistical plots (bottom) show LV1 bootstrap ratios for

each electrode and temporal scale. Positive bootstrap ratios (> 3.10) indicate regions that demonstrate the

relationship between conditions as displayed in the bar graph (i.e., greater MSE values for resting-state; Rest than

for task conditions; High, Medium, and Low). Negative bootstrap ratios (< -3.10) indicate regions that demonstrate
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accuracy, LV1, p< 0.001) and there was no change in the spatial extent of the effect. We then

compared brain scores for resting-state and task conditions from the residualised analyses

using t-tests and found significant differences only between resting-state and the average of

the three difficulty conditions in each group. For brain scores residualised with RT in children,

resting-state (M = 66.65, SD = 81.83) was higher than the average of all difficulty conditions

(M = -22.22, SD = 68.19), t(17) = 7.845, p< 0.001, d = 1.180; in adults, resting-state

(M = 52.66, SD = 119.26) was higher than the average of all difficulty conditions (M = -17.55,

SD = 86.33), t(21) = 4.924, p = 0.001, d = 0.6745. For brain scores residualised with accuracy in

children, resting-state (M = 66.65, SD = 81.76) was higher than the average of all difficulty con-

ditions (M = -22.22, SD = 68.19), t(17) = 7.845, p< 0.001, d = 1.182; in adults, resting-state

(M = 56.66, SD = 119.23) was higher than the average of all difficulty conditions (M = -17.55

SD = 86.32), t(21) = 4.924, p = 0.001, d = 0.6746.

SPD and MSE are related such that creating coarse temporal scales for MSE low-pass filters

the data (29). Considering the main effect of group in the context of this relationship, we

expect that our finding of SPD being higher for children than adults for the delta (0.5—3Hz)

and theta (4—7Hz) bands would result in children having greater MSE for coarse temporal

scales. However, the number of temporal scales included in the MSE analysis was limited to

30ms due to our use of a 1500ms epoch length. To further explore the spatiotemporal differ-

ences between children and adults, we created 10s epochs from resting-state data, allowing us

to assess up to 200ms temporal scales. We used task-PLS to assess group differences and found

that MSE during resting-state was higher in adults for temporal scales up to 25ms for electrode

sites throughout the scalp. However, the relationship inverted for coarser temporal scales, so

that children had greater MSE for temporal scales over 50ms at all electrode sites across the

scalp (LV1, p< 0.001, Fig 9).

Neuroimaging results comparing resting-state and within-trial epochs

MSE. We performed our within-trial analyses first with difficulty conditions separate and

then averaged together. As both results were very similar (i.e., difficulty conditions were not

differentiated for any epoch, and significance was similar across analyses), for the sake of parsi-

mony we limit our report to the averaged results. We used nonrotated task-PLS of MSE scores

to test for a main effect of age group (children vs. adults, contrast weights: 1, 1, 1, 1, 1, -1, -1,

-1, -1, -1), a main effect of task/epochs within-trial (resting-state, fixation (pre-stimulus), and

400ms post-response vs. post-stimulus onset and immediately post-response, contrast weights:

2, -3, -3, 2, 2, 2, -3, -3, 2, 2), and an interaction between these effects (contrast weights: 2, -3, -3,

2, 2, -2, 3, 3, -2, -2). The main effect of age group was significant such that adults had greater

brain signal variability than children (p< 0.001, Fig 10a). This effect was reliably expressed

across all temporal scales tested (2 through 8ms) and across all electrode sites except FC1. The

main effect of task/epochs within-trial was significant such that in both children and adults,

brain signal variability was higher for resting-state, fixation and 400ms post-response, and

lower for post-stimulus onset and immediately post-response (p< 0.001, Fig 11a). This effect

was reliably expressed across all temporal scales across frontal, central, temporal, parietal, and

occipital electrode sites. The interaction between group and task was not significant (p =
0.162). Thus, despite the lack of overlap in confidence intervals for post-stimulus onset

between children and adults, the difference was not strong enough to produce a significant

the opposite relationship between conditions as displayed in the bar graph (i.e., lower SPD for Rest, than for task

conditions; High, Medium, Low).

https://doi.org/10.1371/journal.pone.0181894.g008
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Fig 9. Task-PLS of MSE data from 10 second resting-state epochs in children and adults. The bar

graph (top) shows averaged brain scores for effect of age group, with MSE. The statistical plots (bottom) show

the effect of age group bootstrap ratios for each electrode and temporal scale. Positive bootstrap ratios

(> 3.10) indicate regions that demonstrate the relationship between conditions as displayed in the bar graph

(i.e., lesser MSE for children than adults). Negative bootstrap ratios (< -3.10) indicate regions that
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interaction. Therefore, we concluded that both the spatial extent and magnitude of MSE

changes were similar for children and adults.

SPD. We used nonrotated task-PLS of SPD values to test for a main effect of age group

(children vs. adults, contrast weights: 1, 1, 1, 1, 1, -1, -1, -1, -1, -1), a main effect of task/epochs

within-trial (resting-state, fixation (pre-stimulus), and 400ms post-response vs. post-stimulus

onset and immediately post-response, contrast weights: 2, -3, -3, 2, 2, 2, -3, -3, 2, 2), and an

interaction between these effects (contrast weighs: 2, -3, -3, 2, 2, -2, 3, 3, -2, -2). The main effect

of age group was significant (p< 0.001, Fig 10b), such that children reliably expressed greater

SPD in the delta (0.5—3Hz) and theta (3—7Hz) bands across all electrode sites, and lesser SPD

in high alpha (11—12Hz), beta (13—40Hz) and low gamma (40—50Hz) bands for all electrode

sites except Fp2. The main effect of task/epochs within-trial was significant (p = 0.001, Fig 11b)

such that resting-state and fixation were differentiated from post-stimulus onset and immedi-

ately post-response in children (the contribution from 400ms post-response was not reliable

for children in this analysis). Resting-state, fixation and 400ms post-response were differenti-

ated from post-stimulus and immediately post-response in adults. SPD differences were reli-

ably lower in the delta (0.5—3Hz) and theta (3—7Hz) bands for resting-state, fixation, and

400ms post-response than post-stimulus onset and immediately post-response for all electrode

sites. SPD was reliably greater in high alpha (11—12Hz) and low beta (13—15Hz) bands for

resting-state, fixation than post-stimulus onset and immediately post-response in children, for

all electrode sites, and in high beta (16—40Hz) and low gamma (40—50Hz) bands for many

frontal, central, temporal, parietal and occipital electrode sites. The interaction between age

groups and the task/epochs within-trial effect was not significant (p = 0.204). Again, despite

the lack of overlap in some confidence intervals between children and adults, these differences

did not produce a significant interaction. Therefore, we concluded that both the spatial extent

and magnitude of MSE changes were similar for children and adults.

Discussion

In the context of maturation from childhood to adulthood, we investigated state-to-state mod-

ulations in brain signal variability during resting-state and task, and examined how these

changes relate to task performance. We found broad increases in brain signal variability during

resting-state as compared to task, and showed that these increases were greater in spatial

expression in children as compared to adults. We additionally found task difficulty-related

modulations in children, where increased difficulty was associated with decreased variability.

Thus, we demonstrated that MSE is an effective discriminator of internally- and externally-

driven cognitive states in both children and adults.

Children versus adults

With both our MSE analyses (comparing resting-state vs. the symbol-matching task, and rest-

ing-state vs. within-trial epochs), we replicated previous work suggesting that development

yields an increase in MSE throughout the brain at fine and medium temporal scales (up to

28ms in previous literature [5, 6, 12]). Our analyses examined temporal scales up to 30ms, and

at all temporal scales up to 24ms, we showed reliable increases in MSE throughout the brain,

across all conditions and epochs. At temporal scales between 24 and 30ms, the effect weakened

and became less widespread (i.e., the effect was constrained mainly to parietal electrodes). Our

demonstrate the opposite relationship between conditions as displayed in the bar graph (i.e., greater MSE for

children than adults).

https://doi.org/10.1371/journal.pone.0181894.g009
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Fig 10. Nonrotated task-PLS of (a) MSE data and (b) SPD data for the resting-state and within-trial epochs

analysis: LV1, main effect of age group (children and adults) with resting-state and within-trial epochs

during symbol-matching conditions. The bar graph (top) shows averaged brain scores for the main effect of age

group with (a) MSE and (b) SPD, with 95% confidence intervals derived from bootstrap estimation. The statistical

plots (bottom) show the main effect of age group bootstrap ratios for each electrode and temporal scale. Positive

bootstrap ratios (> 3.10) indicate regions that demonstrate the relationship between conditions as displayed in the

bar graph (i.e., lesser (a) MSE and (b) SPD for children than adults). Negative bootstrap ratios (< -3.10) indicate
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finding supports the idea that maturation is characterized by whole brain increases in local

information processing (higher MSE at fine temporal scales) and mid-range interactions

(higher MSE at middle temporal scales) with other neural populations [40, 41].

Our SPD results are complementary to our MSE results. As with MSE, we found a signifi-

cant main effect of age group. For SPD, children had greater power in delta and theta bands,

and adults had greater power in high alpha, beta and low gamma bands, with the effects being

strongest up to 30Hz. These results are in line with previous literature that documents weaker

contributions from lower frequencies (delta and theta) and greater contribution of higher fre-

quencies (alpha, beta, and gamma) with increasing age [24, 42]. These changes also suggest

that with increasing age, there is a relative increase in the contribution of local communication

(supported by high frequencies) and a relative decrease in the contribution of long-range com-

munication (supported by low frequencies) [43]. Upon first examination of our data, it might

seem as if our SPD and MSE results are somewhat at odds with each other. Our combined rest-

ing-state and task MSE results show a monotonic increase from childhood to adulthood at

temporal scales up to 30ms. The SPD results, on the other hand, showed that contributions

from low frequencies decreased with age, but contributions from high frequencies increased

with age. Constrained by the length of trials from our task data, we used an epoch length that

allowed us to examine fine and medium, but not coarse temporal scales with MSE. Fine MSE

temporal scales provide information about variability across all frequencies in the data,

whereas coarser temporal scales are dominated by lower frequencies. Thus, we suspected that

increased MSE at high and medium temporal scales reflected the age-related SPD increase at

higher frequencies. The age-related MSE increase became weaker at medium temporal scales

(24ms and above), as one would expect in the context of a greater contribution from the age-

related SPD decrease at low frequencies. Based on this reasoning, we expected that MSE at

coarse temporal scales would show an age-related decrease to reflect the age-related decrease

in SPD at lower frequencies. To address this hypothesis, we tested MSE on resting-state data in

children and adults. The resting-state (without task) analysis allowed us to examine temporal

scales up to 200ms (using 10s epochs). We confirmed that children had lower MSE for fine

and medium temporal scales (less than 24ms), but greater MSE for coarse temporal scales

(greater than 45ms). Thus, unlike previous developmental studies which found monotonic

MSE increases during maturation from childhood to adulthood (but examined only fine and

medium temporal scales), our results suggest that maturation from childhood to adulthood is

characterized by increased local information processing (higher MSE at fine temporal scales)

and decreased long-range interactions with other neural populations (lower MSE at coarse

temporal scales) [7, 40, 41]. This result is in line with MSE changes shown in the context of

healthy aging throughout adulthood (as examples, see [7, 29, 41]). Overall, the comparison of

our MSE and SPD results suggests that maturation is associated with changes in the linear

dependencies that are evident in both MSE and SPD, rather than nonlinear dependencies that

would be evident only in MSE [7, 26].

Resting-state versus the symbol-matching task

We found that in both children and adults, brain signal variability was greater during resting-

state than during task throughout the brain at all temporal scales that we examined, with the

effect being strongest at central and parietal electrode sites. This is consistent with previous

EEG work by Sleimen-Malkoun and colleagues [11], who also showed greater variability

regions that demonstrate the opposite relationship between conditions as displayed in the bar graph (i.e., greater

(b) SPD for children than adults).

https://doi.org/10.1371/journal.pone.0181894.g010
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Fig 11. Nonrotated task-PLS of (a) MSE data and (b) SPD data for the two-group resting-state and within-

trial epochs analysis: LV2, main effect of task (resting-state, fixation, post-stimulus, immediately post-

response and 400ms post-response) in children and adults. The bar graph (top) shows averaged brain scores

for the main effect of task with (a) MSE and (b) SPD, with 95% confidence intervals derived from bootstrap

estimation. The statistical plots (bottom) show the main effect of age group bootstrap ratios for each electrode and

temporal scale. Positive bootstrap ratios (> 3.10) indicate regions that demonstrate the relationship between

conditions as displayed in the bar graph (i.e., greater (a) MSE and (b) SPD for resting-state, fixation, and 400ms
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during resting-state at these temporal scales. In the context of our significant age group by task

interaction, we additionally examined state-to-state modulations separately in children and

adults. The resting-state to task MSE modulation was similar in effect size between children

and adults, however, the spatial extent of this effect was much larger in children (i.e., through-

out the brain in children versus localization primarily in central electrodes in adults). Previous

research suggests that large-scale networks are more diffuse and less distinct in children as

compared to adults [21, 22]. Therefore, it is possible that when children shift from internally-

driven to externally-driven brain states, there are more regions involved, and therefore vari-

ability changes are more widespread.

In addition to the MSE modulation between resting-state and task, our analyses revealed a

reliable difference in brain signal variability between high and low difficulty conditions for

children but not for adults. This result reflects the fact that the difficulty manipulation was

more effective in children than in adults. That is, children were generally slower and less accu-

rate than adults, and differences in response time between high and low and between medium

and low difficulty conditions were significantly greater in children than adults. Garret and col-

leagues [14] showed that brain signal variability decreases when task difficulty increases,

because difficult conditions engage more cognitive resources, leaving lower capacity to prepare

for other stimuli. Therefore, in our experiment, children needed to engage more resources to

process the more difficult task. However, adults found all task conditions to be relatively easy,

and did not show a difficulty-related modulation in brain signal variability. To confirm this

interpretation, we residualised reaction time and accuracy from our MSE data to statistically

remove the group differences in the effect of difficulty [38, 39]. In this context, the magnitude

and spatial extent of the MSE differentiation between resting-state and task remained

unchanged in both groups, but the differentiation among difficulty conditions for children dis-

appeared. We concluded that when cognitive demands of state-to-state transitions are similar

between groups, the MSE modulations are similar in magnitude but greater in spatial extent in

children as compared to adults.

Again, our SPD results are complementary to our MSE results. As with MSE, we found a

significant group effect, where SPD was different for resting-state versus task in children and

adults. Resting-state was associated with decreased power in the delta and theta bands, and

increased power in alpha, beta and low gamma bands. However, state-to-state modulations in

SPD were more widespread for children than adults (i.e., throughout the scalp for children,

and more posteriorly at fewer frequencies in adults), and also had greater magnitude. To our

knowledge, no one has directly examined maturational effects on state-to-state changes in

SPD, however, our SPD results are consistent with previous event-related potential (ERP)

work. Compared to adults, the average evoked response in children tends to show higher

amplitude and longer latency for early components, combined with less well-defined later

components [6, 23–26]. Presumably, a larger amplitude response to an externally-driven state

where ERPs are consistently produced compared to an internally-driven state where ERPs are

not consistently produced could underlie the greater magnitude change we observed in SPD.

Interestingly, although children showed a performance-related MSE differentiation

between high and low difficulty conditions, this differentiation was not evident in the SPD

data. The SPD data, on the other hand, were more sensitive in the context of state-to-state

changes where children showed a greater magnitude of change as compared to adults. This

post-response than for post-stimulus and immediately post-response). Negative bootstrap ratios (< -3.10) indicate

regions that demonstrate the opposite relationship between conditions as displayed in the bar graph (i.e., lower (b)

SPD for resting-state, fixation, and 400ms post-response than post-stimulus and immediately post-response).

https://doi.org/10.1371/journal.pone.0181894.g011
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magnitude difference was not evident in our MSE data. These results suggest that perfor-

mance-related modulations and state-to-state modulations have differing profiles of linear and

nonlinear dependencies [7, 29].

Resting-state versus within-trial epochs

We found that for children and adults, variability after stimulus onset and immediately post-

response was lower than during fixation, 400ms post-response, and resting-state. The finding

that variability levels are similar during fixation and resting-state suggests that in both cases, the

brain in a ready state, from which available brain states may be efficiently explored [8]. These

fine to middle temporal scale results, in combination with previous work showing that variabil-

ity increases from resting-state to external task at coarse temporal scales [9, 11], suggest that it is

specifically local information processing (higher MSE at fine temporal scales) and mid-range

interactions with other neural populations (higher MSE at middle temporal scales) that supports

the exploration of potential response options. Next, fine to middle-scale temporal scale variabil-

ity decreases with stimulus onset, when the brain must settle into a response state to process and

reliably transmit information [16]. Post-processing, brain signal variability returns to pre-stimu-

lus levels. Cellular work in animals suggests that this increase in variability occurs only after

task-related processing is complete [17, 18], when the brain is in a ready state for the next trial.

Interestingly, the lack of significant group by task interaction suggests that spatial extent of

these transitions was similar between adults and children. This effect was widely distributed

across all temporal scales tested (2 to 8ms) and in regions throughout the brain, and was so

extensive in adults that the effect could not be even more extensive in children. Such widespread

decreases in variability are consistently reported across animal and fMRI studies [17, 18, 44].

For example, Churchland and colleagues (44) found that firing rate variability declines with the

onset of visual stimuli in all cortical regions tested in the macaque monkey and cat, with and

without changes in mean firing rate. When measured with fMRI in human adults, He [15]

found that variability reduced significantly in 86.8% of voxels, and only partially overlapped

with regions that demonstrate mean signal change. It is important to note that the lack of group

difference in spatial extent appears to contradict our resting-state versus symbol-matching task

analysis results, in which we saw a more widespread effect in children than adults. However, it

should be noted that the temporal scales used in these two analyses were quite different. Based

on epoch length, we included temporal scales ranging from 2ms to 8ms in the resting-state ver-

sus within-trial epochs analysis, and from 2ms to 30ms in the resting-state versus symbol-

matching task analysis. We show group differences in the spatial extent of the effect in the rest-

ing-state versus symbol-matching task analysis primarily for temporal scales greater than 15ms.

These temporal scales were not included in the resting-state versus within-trial epochs analysis.

As with our previous analyses, the SPD results are complimentary to the MSE results. We

found that SPD was similar among resting-state, fixation, and 400ms post-response epochs, and

different from post-stimulus and immediately post-response in both children and adults. The

effect on SPD was also very widespread, and was higher for resting-state, fixation, and 400ms

post-response as compared to immediately post-response in the frequencies (i.e., high alpha,

beta and low gamma bands) that dominate the MSE temporal scales examined (2 to 8ms).

Thus, when considered with the MSE results, it appears as though both variability and SPD

changes during the trial are similar in magnitude and quite widespread in both age groups.

Limitations and conclusions

Certainly, there are limitations to our study. Our behavioural results indicate that children

found the task more difficult than adults. Therefore, the identified group differences may be
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influenced by difficulty effects in addition to state-to-state change effects. Similarly, adults per-

formed all of our difficulty conditions near ceiling. To try to tease out these difficulty effects

from our data, we residualised response time and accuracy from our task data. Although we

believe that our residualisation procedure adequately removed difficulty-related group differ-

ences, future studies should examine state-to-state variability changes in context where perfor-

mance is matched for children and adults.

Despite these limitations, our results help elucidate maturational changes in state-to-state

alterations between internally- and externally-driven states. Our study suggests that for chil-

dren and adults, brain signal variability changes between resting-state and task had similar

magnitude, but larger spatial distribution in children. Greater changes in task difficulty were

associated with greater magnitude of modulation in MSE. However, this modulation was

apparent only in children, as our difficulty manipulation had a greater effect in children. A

comparison of our MSE and SPD results indicates that overall, these measures paint similar

pictures of our data. However, maturational effects on resting-state to task transitions were

stronger in SPD than in MSE analyses, whereas performance-related changes during task were

stronger in MSE analyses. These results suggest that state-to-state modulations and perfor-

mance-related modulations have differing profiles of linear and nonlinear dependencies in the

data [29, 41]. Our results reinforce the idea that maturational brain changes manifest across

different spatial and temporal scales affecting the information processing capacity, or complex-

ity, of the brain.
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