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Abstract

Background and objective: Lung ultrasound is an inherently user-dependent modal-

ity that could benefit from quantitative image analysis. In this pilot study we evaluate

the use of computer-based pleural line (p-line) ultrasound features in comparison to

traditional lung texture (TLT) features to test the hypothesis that p-line thickening and

irregularity are highly suggestive of coronavirus disease 2019 (COVID-19) and can be

used to improve the disease diagnosis on lung ultrasound.

Methods:Twenty lung ultrasound images, including normal andCOVID-19 cases,were

used for quantitative analysis. P-lines were detected by a semiautomated segmen-

tation method. Seven quantitative features describing thickness, margin morphology,

and echo intensity were extracted. TLT lines were outlined, and texture features based

on run-length and gray-level co-occurrencematrix were extracted. The diagnostic per-

formance of the 2 feature sets was measured and compared using receiver operat-

ing characteristics curve analysis. Observer agreements were evaluated by measuring

interclass correlation coefficients (ICC) for each feature.

Results: Six of 7 p-line features showed a significant difference between normal and

COVID-19 cases. Thickness of p-lines was larger in COVID-19 cases (6.27 ± 1.45 mm)

compared to normal (1.00 ± 0.19 mm), P < 0.001. Among features describing p-

line margin morphology, projected intensity deviation showed the largest difference

between COVID-19 cases (4.08 ± 0.32) and normal (0.43 ± 0.06), P < 0.001. From

the TLT line features, only 2 features, gray-level non-uniformity and run-length non-

uniformity, showed a significant difference between normal cases (0.32 ± 0.06, 0.59

± 0.06) and COVID-19 (0.22 ± 0.02, 0.39 ± 0.05), P = 0.04, respectively. All features

together for p-line showed perfect sensitivity and specificity of 100; whereas, TLT

features had a sensitivity of 90 and specificity of 70. Observer agreement for p-lines

(ICC= 0.65–0.85) was higher than for TLT features (ICC= 0.42–0.72).
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Conclusion: P-line features characterize COVID-19 changes with high accuracy and

outperform TLT features. Quantitative p-line features are promising diagnostic tools

in the interpretation of lung ultrasound images in the context of COVID-19.

KEYWORDS

coronavirus, COVID-19, lung ultrasound, pleural line, point-of-care ultrasound (POCUS), quanti-
tative features

1 INTRODUCTION

1.1 Background and importance

Coronavirus disease 2019 (COVID-19) was declared a pandemic

caused by severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) after spreading to>180 countries byMarch 2020,1 with>100

million cases confirmed and 2 million deaths.2 Medical imaging plays a

major role in COVID-19 diagnosis and management.3 The most com-

mon modality for imaging COVID-19 patients is chest x-ray, which

detects presence of a local or bilateral patchy shadowing infiltrate,

but it is known for low sensitivity, with findings absent in >40% of

the cases.4 Computed tomography (CT) scan has higher sensitivity and

shows ground-glass opacities5 and, therefore, has been used in differ-

ent therapeutic and triage strategies since the outbreak started.6 The

useof chestCT remains limitedbecauseof radiationexposure concerns

and lack of availability in overextended healthcare facilities.7 In the

critically ill, the transport of unstable patients and exposure of infected

patients also may outweigh the clinical benefit. There continues to be

need for alternative imagingmethods that enable quick, low-cost, easy-

to-use evaluation of COVID-19 patients.

Lung ultrasound is a promising tool for lungmonitoring in the inten-

sive care unit (ICU),8,9 particularly for assessing lung aeration.10–12 A

decade of clinical and physical studies demonstrates that lung ultra-

sound is able to detect interstitial lung disease, subpleural consoli-

dations, and acute respiratory distress syndrome with different eti-

ologies. With new COVID-19, evolving evidence from clinical prac-

tice and several studies shows the usefulness of lung ultrasound for

the management of pneumonia, from diagnosis to monitoring and

follow-up.13–17 Characteristic ultrasound findings have been reported

that can help physicians detect and stage the disease, tracking its

progression.13 The common patterns observed include irregular, thick-

enedpleural lines,multipleB-lines (vertical artifacts) ranging from focal

to diffuse, which reflect the stage of inflammatory lung disease. These

vertical artifacts of different shapes and lengths occur when the lung

loses normal aeration but is not completely consolidated. These find-

ings are usually bilateral with posterior basal predominance in the

lungs.

Although there is a general consensus on lung ultrasound’s useful-

ness for COVID-19 pneumonia,18 it is an inherently user-dependent

modality and, without proper training, could result in errors.19 Lim-

ited experience with COVID-19 further adds to the challenge of using

lung ultrasound effectively. To overcome these limitations, a number

of studies have evaluated quantitative methods for assessing lung

ultrasound.20–22 These studies assess the use of automated detection

of the B-line to provide critical visual information to clinicians in real

time for diagnosis.

1.2 Goals of this investigation

In this study, we propose a comprehensive approach for detecting

sonographic features, defining characteristics of pleural line (p-line)

and traditional lung texture (TLT) from B-lines quantitatively. Thicken-

ing of the p-line with irregular margin is highly suggestive of COVID-

19.14–16,23 Furthermore, the presence of B-lines influences the p-line

characteristics, as these patterns originate from the p-line itself. A-

lines represent a more reflective p-line, correlating with the brighter

p-line observed normally. The aim of this study is to demonstrate the

proof of concept of using quantitative analysis of p-lines for diagnosis

and monitoring of COVID-19 by ultrasound imaging. We evaluate the

changes in p-line features compared to theTLT features extracted from

A- andB-lines for differentiating COVID-19 cases fromnormal individ-

uals. The diagnostic performance and the observer variability of these

features used individually or as a group were assessed for COVID-19

diagnosis.

2 METHODS

2.1 Study design and data acquisition

This multiple-center, retrospective pilot study was conducted on

20 B-mode ultrasound images that were used to evaluate the pro-

posed quantitative analysis. Ten images were acquired from COVID-

19 patients and another independent 10 images were acquired from

normal cases. Images were acquired by Dr. Yale Tung Chen, from

the emergency department of Hospital Universitario La Paz, Madrid,

Spain.Qualitative imaging findings and the results of diagnostic reverse

transcription polymerase chain reaction tests were included with the

images. The images were received for analysis anonymized and with-

out patient-related information. The patient consent for performing

image analysis on anonymized images was exempted by the institu-

tional review board. The images usually are acquired in a clip format
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that includes a large number of frames obtained during scanning of the

area. Before quantitative analysis, each observer identifies and selects

an image from the clip to choose the highest-quality image for making

quantitative measurements.

2.2 Interventions

2.2.1 Quantitative p-line analysis and feature
extraction

The quantitative analysis involving image segmentation and feature

extraction was performed using software written in IDL (Interactive

Data Language; version 8.5, L3Harris Geospatial, Boulder, Colorado,

USA).

2.2.2 Semiautomated detection of p-line

The p-lines were segmented by a “wand” semiautomatic segmenta-

tion tool developed by the authors. This semiautomated segmentation

approach is the simplest form of “region growing.”24 Following selec-

tionof pixel seedbyauserwith a singlemouse click, the algorithmauto-

matically grows the region to include object pixels of similar grayscale

within a tolerance range,±10 gray levels by default. Onlyminimal input

from the user is needed: to click and then validate the segmentation,

making corrections in few cases where the segmented margin was not

acceptable. Figure 1 shows examples of p-line segmentation in images

of COVID-19 and normal cases.

2.2.3 P-line feature extraction

Following the detection of p-line, the software extracts quantitative

features describing the depth (thickness), margin morphology, bright-

ness, and heterogeneity. The features and their formulas are described

in Appendix A, Table 1. In summary, the thickness parameters mea-

sure the change in horizontal depth of the p-line. The margin morphol-

ogy features, including tortuosity, projected intensity deviation (PID),

and non-linearity, measure irregularities of the p-line margin shape.

The last group of grayscale features is derived from the first-order his-

togram to calculate themean brightness and heterogeneity.

2.2.4 Traditional lung texture (TLT) feature
extraction

In this study we introduce a predictive model, built on quantitative

TLT features, that serves as an alternative to visual clinical assess-

mentwhere an observer looks for A-lines in normal lungs andB-lines in

COVID-19 cases. Regions of interest (ROIs) defining lung areas show-

ing A-lines in normal cases and B-lines in COVID-19 cases were out-

linedmanually by an expert user. Quantitative features were extracted

The Bottom Line

This study evaluates a novel quantitative approach for defin-

ing characteristics of the lung pleural lines, which performed

better in the detection of COVID-19 when compared with

traditional qualitative analysis of lung ultrasound findings.

from the lung images ROIs as grayscale first-order statistics, and deter-

mined by run-length and gray-level co-occurrence matrices (GLCM).25

The 7 image features measured are described in Appendix 1. In brief,

the TLT features computation indirectly represents the real texture of

the tissue by the non-deterministic properties that govern the distri-

butions and relationships between the grey levels of the ultrasound

image. The quantitative features measured demonstrate the changes

in lung tissue texture, and should capture and quantify the prominence

of A- and B-lines used by human to discriminate lung ultrasound pat-

terns found in COVID-19 patients from the appearance of normal lung.

2.3 Measurements

Standard descriptive statistics were computed for the features

extracted from the images: arithmetic mean and standard error. The 2-

tailed Student’s t test of unequal variance was used to determine the

statistical significanceof thedifferencebetween2groups.P<0.05was

considered significant.

2.4 Outcomes

2.4.1 Evaluation of the diagnostic performance of
ultrasound features

The diagnostic performance for individual ultrasound features includ-

ing area under the curve (AUC), as well as sensitivity and specificity

at the Youden Index were calculated using MedCalc software (version

19.0.5, MedCalc Software Ltd., Ostend, Belgium). To assess the over-

all diagnostic performance of features as groups, features were nor-

malized relative to their maximum and minimum values and assigned

equal weights to calculate likelihood of COVID-19. The averages of p-

line and TLT features after normalization were used independently to

test the accuracyof eachgroup for differentiatingnormal fromCOVID-

19 cases by receiver operating characteristics analysis.

2.4.2 Assessment of observer agreement in
feature analysis

To evaluate the reproducibility of the analysis, observer agreement

for the same individual (intraobserver) and between 2 individuals
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F IGURE 1 Examples of lung ultrasound images demonstrating the
semiautomated detectionmethod of pleural lines. The upper panel (A)
shows a confirmed COVID-19 case with pleural thickening and
irregularity. Right panel A shows pleural line detected with the
semiautomated segmentation. The lower panel (B) shows an example
of a normal case where pleural line is outlined by semiautomated
segmentation

(interobserver) were measured. Two physicians with >10 years of

experience in ultrasound imaging analyzed the same image set. The

observers were blinded to the diagnosis and to any other patient-

related information. Both observers performed the quantitative

analysis, which includes selection of the seed for p-line semiautomatic

segmentation and outlining the ROI for the TLT analysis. No visual

interpretationwasmade by the observers. To account for the variation

related to selection of images, the analysis was repeated where one

observer selected the images for analysis from a video clip. Intra- and

interobserver observer agreement in feature analysis was measured

by interclass correlation coefficient.26,27

3 RESULTS

3.1 Characteristics of study subjects and images

Qualitative image findings were provided by an emergency physi-

cian experienced with lung ultrasound for both normal and COVID-19

images. Normal images were described as having a thin, well-defined

p-line with presence of A-lines, whereas findings related to COVID-

19 patients included thick and irregular p-lines with the presence of

B-lines. COVID-19 images were from patients 8 to 12 days follow-

ing COVID-19 diagnosis. COVID-19 patients showedmild tomoderate

symptoms. All had bilateral pneumonia with good oxygen saturation.

Patient ages ranged from 30 to 60 years.

3.2 Main results

3.2.1 Quantitative p-line features

From the 7 p-line features extracted from lung ultrasound images, 6

showed statistically significant differences (P < 0.05) between normal

and COVID-19 cases. Figure 2 shows a comparison of the mean and

standard errors for each feature of COVID-19 cases to those of nor-

mal cases. The thickness of p-lines was larger on average in COVID-

19 cases (6.27 ± 1.45 mm) compared to normal (1.00 ± 0.19 mm),

P < 0.001. P-line thickness variation was also larger on average

in COVID-19 cases, 2.86 ± 0.64 mm compared to 0.26 ± 0.07 mm,

P< 0.001.

Among features describing margin morphology, PID showed the

largest difference between the 2 groups in COVID-19 cases, 4.08 ±

0.32 compared to 0.43± 0.06 in normal cases, P< 0.001. Non-linearity

was also larger for the COVID-19 cases, 0.98 ± 0.10 compared to

0.01 ± 0.01, P < 0.001. Margin tortuosity was about 2 times larger in

COVID-19 cases, 1.73± 0.09 compared to 0.97± 0.01, P< 0.001.

The mean p-line brightness in normal p-lines was higher in normal

cases (145.98 ± 12.15) compared to COVID-19 cases (132.61 ± 7.51)

but was not significant (P = 0.14). On the other hand, p-line hetero-

geneity increased significantly in COVID-19 cases (34.67± 2.07) com-

pared to normal cases (29.41± 2.87), P= 0.04.

3.2.2 The diagnostic performance of individual
p-line features

The sensitivity, specificity, and AUC for each p-line feature are

summarized in Table 1. Notably, p-line margin morphology features

showed the highest performances, with specificities ranging from

90 to 100 and sensitivities of 100. Similarly, thickness features

showed high sensitivity values ranging from 80 to 90 and a speci-

ficity value of 100. On the contrary, p-line brightness and heterogene-

ity had lower performance than other features, with sensitivity of 60

(Table 1).
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F IGURE 2 A comparison of computer-based pleural line (p-line) features of COVID-19 and normal cases. Bars represent mean± SE of each
feature. Red bars represent COVID-19 cases. Light blue bars represent normal cases. * indicates statistically significant difference (P< 0.05).
Notably, 6 of 7 p-line features showed statistically significant difference between the 2 groups. COVID-19, coronavirus disease 2019; PID,
projected intensity deviation; TV, thickness variation

TABLE 1 The diagnostic performance for quantitative pleural line
(p-line) feature and TLT features showing AUC, sensitivity, and
specificity for each feature

P-line features AUC Sensitivity Specificity

Thickness (mm) 0.91 80 100

Thickness variation (mm) 0.98 90 100

Margin tortuosity 1 100 100

Projected intensity deviation 1 100 100

Non-linearity 0.97 100 90

Brightness 0.66 60 90

Heterogeneity 0.71 100 50

TLT features

Echo intensity 0.52 60 10

Tissue heterogeneity 0.64 80 50

GLNU 0.74 80 70

RLNU 0.75 90 70

GLCM 0.71 80 60

Homogeneity 0.69 40 100

Entropy 0.68 60 80

AUC, area under the curve; GLCM, gray-level co-occurrence matrix mean;

GLNU, gray-level non-uniformity; RLNU, run-length non-uniformity; TLT,

traditional lung texture

3.2.3 Traditional lung texture (TLT) features

Only 2 of the 7 features of TLT texture measurements showed a

significant difference between COVID-19 and normal cases (Figure 3).

Run-length matrix features including gray-level non-uniformity (0.32

± 0.06) and run-length non-uniformity (0.59 ± 0.06) were both sig-

nificantly higher in normal cases compared to those diagnosed with

COVID-19 (0.22± 0.02, 0.39± 0.05, P= 0.04), respectively.

TLT heterogeneity was also higher in normal cases (30.78 ± 3.91)

compared to TLT heterogeneity observed in COVID-19 cases (24 ±

0.07), P = 0.08. Conversely, mean echo intensity level was higher

in COVID-19 TLT (90.96 ± 13.06) compared to normal cases (85.40

±8.78); however, this difference did not reach significance level, with

P= 0.73.

Gray-level co-occurrence matrix (GLCM) features were all higher

for COVID-19 cases than for normal cases; however, none reached

significance. GLCM mean in COVID-19 patients was 2.98 ± 0.29

compared to 2.37 ± 0.23, P = 0.09. The other 2 GLCM features,

entropy and homogeneity, were both higher in COVID-19, 2.98± 0.29

and 2.78 ± 0.13, compared to normal cases, 2.37 ± 0.23 and 2.45 ±

0.18, P= 0.08 and P= 0.12, respectively.

3.2.4 The diagnostic performance of TLT features

Table 1 summarizes the sensitivity, specificity, and AUC for each TLT

texture feature. Run-length texture features showed the highest per-

formancewith sensitivity ranging between 80 and 90 and specificity of

70. TLT heterogeneity had a sensitivity of 80 and specificity of 60. Of

the GLCM features, GLCM mean had the highest sensitivity (sensitiv-

ity= 80) and GLCM homogeneity was the most specific feature (speci-

ficity = 100). Echo intensity had the lowest performance among other

featureswith a sensitivity of 60 and specificity of 10. Figure 4 shows an

example of 2 cases that were diagnosed correctly by TLT analysis. The

quantitative analysis showed that the case diagnosed with COVID-19

hashigher echogenicity and lowerheterogeneity compared toanoppo-

site pattern observed in the normal case.
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F IGURE 3 A comparison of computer-based TLT features for COVID-19 normal cases. Bars represent mean± SE of each feature studied. Red
bars represent COVID-19 cases. Light blue bars represent normal cases. * indicates statistically difference (P< 0.05). COVID-19, coronavirus
disease 2019; GLCM, gray-level co-occurrencematrix mean; GLNU, gray-level non-uniformity; RLNU, run-length non-uniformity; TLT, traditional
lung texture

F IGURE 4 Two examples of cases that were diagnosed correctly
by quantitative TLT analysis. The 2 cases showed different texture
patterns. The COVID-19 case (A) showed higher echogenicity and
lower heterogeneity, RLNU, and GLNU. Although the normal case (B)
showed lower echogenicity and higher heterogeneity, RLNU, and
GLNU. COVID-19, coronavirus disease 2019; GLNU, gray-level
non-uniformity; RLNU, run length non-uniformity; TLT, traditional lung
texture

3.2.5 Comparison of the overall diagnostic
performance of p-line versus TLT features

Equally weighted p-lines features when used together were better

at differentiating normal cases from COVID-19, achieving a perfect

performance with AUC = 1.0 compared to AUC = 0.79 with equally

F IGURE 5 A comparison of the ROC curves for equally weighted
p-line features and TLT features showing outperformance of p-line
features in differentiating COVID-19 from normal. AUC, area under
the curve; COVID-19, coronavirus disease 2019; p-lines, pleural lines;
ROC, receiver operating characteristics; sn, sensitivity; sp, specificity;
TLT, traditional lung texture

weighted TLT features (Figure 5). P-line features had perfect sensitiv-

ity of 100 and specificity of 100 in separating the 2 groups, whereas

TLT features had a sensitivity of 90 and specificity of 70. The p-line

model showed a superior separation of the 2 groups compared to the

TLT model, whose features were closely distributed and even over-

lapping (Figure 6). Figure 7 shows the cases that were incorrectly
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F IGURE 6 A box andwhisker graph comparing the separation
power of the 2 feature groups. P-line features show a clear separation
between normal and COVID-9 cases whereas cases are closely
distributed with TLT features. X-axis represents equally weighted
normalized features. COVID-19, coronavirus disease 2019; p-line,
pleural line; TLT, traditional lung texture

identified using TLT features, whereas p-line features identified the

cases correctly. Figure 7A is an example of a COVID-19 casewhere the

model built on quantitative p-line features correctly diagnosed, but the

model from TLT features was incorrect, diagnosing the case as normal.

Similarly, in Figure 7B, a normal casewas labeled incorrectly asCOVID-

19, but p-line features extracted by the computer correctly diagnosed

the case. The cases that were misdiagnosed showed a TLT pattern that

wasoverlappingbetween the twogroups:COVID-19andnormal cases.

3.3 Observer agreement in feature analysis

3.3.1 Intraobserver agreement

The individual observer analyzed the same set of images 2 weeks

following the first analysis. Interclass correlation coeffecients (ICCs)

between the 2 analyses on average for p-line features showed excel-

lent agreement of ICC of 0.85± 0.09 (Table 2). ICC for individual p-line

features ranged from ICC of 0.72 (good agreement) for heterogeneity,

to ICC of 0.95, excellent agreement, for non-linearity.

On the other hand, TLT features showed good agreement on aver-

age with ICC of 0.71 ± 0.15. ICC ranged from 0.52, fair agreement

with run-length non-uniformity, to excellent agreement (ICC = 0.92)

for echointensity (Table 2).

3.3.2 Interobserver agreement

High agreement levels were recorded between 2 observers who ana-

lyzed the same set of images (Table 2). The average ICC for p-line fea-

tures was 0.83 ± 0.12, excellent agreement. The feature that showed

the highest agreement was p-line thickness with ICC of 0.98, whereas

p-line brightness showed the lowest agreement (ICC= 0.63).

For TLT, overall agreement was good with ICC = 0.67 ± 0.10. High-

est agreement in a feature was in GL non-uniformity (ICC = 0.87);

whereas, the lowest was seen in TLT heterogeneity with ICC = 0.56

(Table 2).

3.3.3 Observer agreement and the effect of image
selection

Intra- and interobserver agreement were calculated for analyses using

another set of images (Table 2). For both intra- and interobserver, ICCs

for p-line features on average were good (ICC of 0.65–0.71). On the

other hand, the agreement for TLT features was lower, with ICC of

0.45–0.59, fair agreement.

4 LIMITATIONS

The study is not without limitations. One limitation is the small sample

size. The motivation for the current pilot analysis is to test the use

of computerized p-line features for a potential role in diagnosis and

monitoring of COVID-19 by ultrasound. Future studies with larger

sample sizes are needed to validate the proposed approach in a

routine clinical setting, with a queue of COVID-19 patients present-

ing at an emergency department or ICU. Future studies with larger

sample size are also needed to reduce any potential selection bias.

Another limitation is that the current analysis is used to differentiate

1 category of inflammatory diseases related to COVID-19. In future,

the methodology could be applied to a variety of lung inflammatory

diseases. Ultrasound imaging is known to be user dependent where

imaging presets, nature of the imaging device, and the training of

the observer can influence diagnosis. Although quantitative analysis

minimizes these effects, a broader study involving images acquired

from multiple clinical devices with varying imaging presets used by

different observers will generalize the use of quantitative p-line and

TLT for machine-agnostic diagnosis.

5 DISCUSSION

Ultrasound is an ideal imaging tool for COVID-19 diagnosis because

of its high sensitivity, safety, portability, and affordability.28 However,

a significant disadvantage is that it is highly user dependent, and not

all clinicians have training in performing lung ultrasound and reading

the images. Operator experience may also affect specificity, becausee

an expert will correlate different lung ultrasound patterns with dif-

ferent disease processes.29 To overcome these problems, a number

of studies have evaluated quantitative assessment methods20–22 to

help physicians in image interpretation. However, the focus of these

studies is limited to developing semi-quantitative scoring systems
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F IGURE 7 A, an example of a COVID-19 confirmed case showing pleural thickening and irregularity with presence of focal B-lines.
Quantitative pleural line features detected the case accurately as COVID-19, whereas TLT features incorrectly identified the case as normal. B, an
example of a normal lung image showing a thin andwell-defined pleural line and A-lines. Quantitative pleural line features detected the case
accurately as normal whereas TLT features incorrectly identified the case as COVID-19. COVID-19, coronavirus disease 2019; TLT, traditional lung
texture

based on B-line identification. There remains a need for an advanced

and comprehensive approach that includes quantitative analysis of

both the p-line and TLT indicative of COVID-19.

COVID-19 is a pleural-based disease, and when patients are

infected by it, their pleura are thickened and inflamed. Pleural thick-

ening is usually accompanied by tissue scarring,30,31 often caused

by acute inflammation of the pleura. In the normal lung, the p-line

appears as a thin curvilinear opaque lining 1–2 mm in thickness, com-

pletely continuous and well defined. It becomes gradually disrupted as

the pathological condition worsens. This study focused on evaluating

these pathological changes by ultrasound, which is ideally suited for

imaging small structures. The idea central to the study is that signif-

icant pathological changes associated with COVID-19 can be deter-

mined by quantitative analysis of pattern changes in the p-line char-

acteristics of lung ultrasound. A comparison between COVID-19 and

non-COVID-19 cases showed that it is possible to detect and charac-

terize p-line changes related to COVID-19 with high accuracy using

computer-derived image features. The semiautomated segmentation

tool detected the p-linemarginswith fine details capturing the changes

in margin morphology. Margin shape features including margin tortu-

osity, projected intensity deviation, andnon-linearitywere significantly

higher in COVID-19 cases, correlating closely with the irregularity and

changes inp-line shape related to the inflammatoryprocess reported in

previous studies. Additionally, the mean thickness of p-lines was mea-

sured as >6 times greater than p-line thickness in normal cases, which

is also consistent with qualitative clinical assessments of COVID-19

cases on lung ultrasound.Notably, the p-lines showed lessmeanbright-

ness and higher heterogeneity in COVID-19 compared to normal.
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TABLE 2 Summary of the observer agreements in p-line ultrasound features and TLT features using the same and different images of the
subject

P-line features Same image Different images

Intraobserver ICC Interobserver ICC IntraobserverICC InterobserverICC

Thickness 0.85 0.98 0.65 0.92

Thickness variation 0.76 0.94 0.68 0.85

Tortuosity 0.91 0.82 0.67 0.35

Projected intensity

deviation

0.79 0.80 0.70 0.84

Linearity 0.95 0.63 0.82 0.89

Brightness 0.94 0.73 0.73 0.90

Heterogeneity 0.72 0.88 0.33 0.31

Average ICC (±SE) 0.85± 0.09 0.83± 0.12 0.71± 0.15 0.72± 0.27

TLT features

Echo intensity 0.93 0.69 0.59 0.94

Tissue heterogeneity 0.82 0.56 0.33 0.66

GLNU 0.52 0.87 0.31 0.44

RLNU 0.55 0.61 0.41 0.40

GLCMmean 0.70 0.71 0.49 0.76

Homogeneity 0.67 0.67 0.54 0.45

Entropy 0.76 0.60 0.33 0.52

Average ICC (±SE) 0.71± 0.15 0.67± 0.10 0.45±0.11 0.59±0.20

GLCM, gray level co-occurrencematrix mean; GLNU, gray-level non-uniformity; ICC, interclass correlation coefficients; p-line, pleural line; RLNU, run-length

non-uniformity; TLT, traditional lung texture

These observed changes are consistentwith the presence of inflamma-

tory cells and edema in COVID-19 cases, which cause the p-line to lose

its high intensity and uniform appearance seen in normal lungs.

The sensitivity and specificity for the individual p-line features as

well as the overall performance of all the features together were found

to be high, thereby confirming their ability to differentiate normal and

COVID-19 cases with excellent accuracy. In particular, p-line margin

morphology and its thicknessweremore specific forCOVID-19 in com-

parison to brightness and heterogeneity. The high specificity of quan-

titative margin morphology features over other features could make

these feature better suited for diagnostic models of COVID-19.

The TLT features, extracted from A-lines and B-lines, were also able

to detect COVID-19-related changes. However, these features, with

AUC approaching 0.79, did not have a significant discriminatory power

to diagnose the cases as that of p-line features. The study results show

that brighter andmorehomogenous areas are seen inCOVID-19 cases.

With progression of disease, the lungs are filled with inflammatory

cells as well as fluids that cause the ultrasound beam to be trapped

between the inflammatory cells, producing the vertical artifacts called

B-lines.12,13 These lines are brighter and more uniform compared to

A-lines seen in normal lungs. We were able to quantify these find-

ings but did not observe a significant difference between the 2 groups,

and it is unknown if the difference could become significant with more

cases. Individual TLT features exhibited less sensitivity and specificity

than p-line features. One reason could be that B-lines are imaging arti-

facts and their genesis remains unclear and multifactorial, correlat-

ing with various pathological conditions of the lung. In contrast, the p-

lines in lung ultrasound represent real physical structures that undergo

acute inflammatory changes specific to COVID-19.32 Earlier studies

also reported reduced blood flow in the p-line by Doppler images in

COVID-19patients compared to the increased flow seen in other types

of viral pneumonia,14 again because of the acute nature of the disease.

The high observer agreement indicates the consistency and relia-

bility of the quantitative analyses. In all observer variability analyses,

p-line features were more stable and consistent compared to the TLT

features, which had lower agreement between observations. A notable

decrease in ICC of >0.15 was observed when different images were

selected by the observer for the analysis, suggesting that >15% vari-

ation could result from the choice of images used for analysis. The

effect of image selection has also been observedwithB-lines scoring,33

where minute differences between images were found to significantly

influence the scoring process and ultimately the final diagnosis. These

findings underscore the importance of image selection in clinical set-

tings.

In conclusion, we introduced a computer-based system that cap-

tures p-line pattern changes associated with COVID-19 by quantita-

tive analysis of lung ultrasound. Quantitative p-line features showed

high accuracy in detecting COVID-19 cases compared to TLT features,

which can bemore uncertain. These results suggest that a comprehen-

sive quantitative system that characterizes p-lines would improve the
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diagnostic accuracy of COVID-19 on lung ultrasound. However, future

studies on a larger scale are needed before translating these tech-

niques to clinical practice. In the current study, the automatedmethods

were performed off-line but these methods can be easily integrated

into the operation of scanner for real-time bedside assessment. Future

larger studies will incorporate advanced machine learning methods to

optimize the p-line detection algorithm for robustness and automa-

tion. Given more cases, fully automated machine learning segmenta-

tion could be performed. This technology when implemented success-

fully in clinical practice will increase confidence in diagnosis, especially

in low-resource communities around the globe that lack experience in

lung ultrasound.
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APPENDIX

TABLE A1 Description and formulas for pleural-line (p-line) features

Features Formulas

Thickness and thickness variation (mm)
For region R= {xi ,yi},ranging overNx horizontal values, themean thickness is themean of the y
ranges taken through the region at each horizontal coordinate.

d̄ =
∑max(x)

x=min(x) max(yx )−min(yx )

Nx

,

𝜎d =

√∑max(x)
x=min(x) (max(yx )−min(yx )− d̄)

2

Nx

Margin tortuosity (unitless)
The perimeter of the lesion divided by the circumference of its best-fit ellipse, also called

elliptically normalized circumference.

Plesion

Cellipse

,

where P is the region’s perimeter and C is

the circumference of a best-fit ellipse to

the region.

Projected intensity deviation (PID, gray level)
Projected deviationmeasures the horizontal (transverse) irregularity in a region’s gray level by

computing the standard deviation of the depth-projectedmean intensity. Given image image

Ix,y of dimensionsNx, Ny , it is given by the formula to the right.

√√√√√√∑Nx
x=1 (

∑Ny
y=1

Ix,y

Ny
−

∑Nx
x=1

∑Ny
y=1

Ix,y

Ny

Nx
)

2

Nx

Non-linearity (unitless)
The probability that the points in a region R= {xi ,yi} will lie on their linear regression fit a+ bxi ,
where the regressionminimizes χ2. This probability is the same as the probability of a t test
with the 2 degrees of freedom (a,b) on the regression fit.

1 − (1 − e
−𝜒2

2 ) = e
−𝜒2

2 ,
where χ2 is the chi-square of a linear fit,
given by:

𝜒2 = argmina,b
N∑
i=1

(yi − a − bxi)2

Echo intensity mean (μ) and deviation (σ) of pleural line (gray level)
Brightness and heterogeneity are first-order histogram features: themean brightness level of

the segmented pleural lines and themeasured variability in mean brightness, respectively.

μ=
∑Nx

x

∑Ny
y Ix,y

NxNy

, σ=
∑Nx

x

∑Ny
y

√
(Ix,y−𝜇)

2

NxNy

,

where Ix,y is the intensity (grayscale) of the
pleural line at coordinate [x,y].

https://doi.org/10.1002/emp2.12418
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TABLE A2 Description and formulas for TLT-line features

Features Formulas

Echo intensity mean (μ) and deviation (σ) (gray level)
First order-histogram features that describe the brightness of the tissue (mean) and the variability

in brightness (standard deviation).

μ=
∑Nx

x

∑Ny
y Ix,y

NxNy

, σ=
∑Nx

x

∑Ny
y

√
(Ix,y−𝜇)

2

NxNy

where Ix,y is the intensity (grayscale) of the
echo line at coordinate [x,y].

Gray-level non-uniformity (unitless)
This is a run-length-matrix (RLM) feature that measures disorderliness of homogeneous runs of

gray along defined directions. The RLM p gives the length of homogeneous runs for each gray

level, computed over 8 directions (vertical up and down, horizontal left and right, diagonals), so

that element (i,j) is the number of homogeneous runs of j pixels with intensity i.

1

H

∑
i
(
∑
j
pi,j)2

whereH is the total count of

homogeneous runs in p, the run-length
matrix defined at left.

Run-length non-uniformity (unitless)
This is a run-lengthmatrix (RLM) feature that measures the disorderliness of the lengths of

homogeneous runs, computed similarly to gray-level non-uniformity above, with the inner and

outer sums switched.

1

H

∑
j
(
∑
i
pi,j)2

whereH is the total count of

homogeneous runs, and p is the RLM
defined above.

Gray-level co-occurrence matrix mean (unitless)
Themean of the GLCM (p), the co-occurrencematrix which records the counts of pixel intensity

combinations occurring between neighboring pixels, computed over 8 directions (up and down,

left and right, diagonals). Element (i,j) is the count of times a pixel of intensity i had a pixel of
intensity j next to it in any direction at some scale. This is a measure of orderliness, and records

whether small patterns repeat themselves.

N−1∑
i,j=0

ipi,j ,

where p is the GLCMas defined at left.

Gray level co-occurrence matrix homogeneity of echo line (unitless)
Also called the inverse differencemoment, homogeneity increases if the region has less contrast.

N−1∑
i,j=0

pi,j

1+(i−j)
2 ,

where p is the GLCMas defined above.

Entropy (unitless)
Larger entropymeans the texture is more disordered.

N−1∑
i,j=0

pi,j(−ln pi,j),

where p is the GLCMas defined above.
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