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Cognitive flexibility, the ability to adapt to unexpected changes, is critical for

healthy environmental and social interactions, and thus to everyday functioning.

In neuropsychiatric diseases, cognitive flexibility is often impaired and treatment

options are lacking. Probabilistic reversal learning (PRL) is commonly used to

measure cognitive flexibility in rodents and humans. In PRL tasks, subjects must

sample choice options and, from probabilistic feedback, find the current best

choice which then changes without warning. However, in rodents,

pharmacological models of human cognitive impairment tend to disrupt

only the first (or few) of several contingency reversals, making quantitative

assessment of behavioral effects difficult. To address this limitation, we

developed a novel rat PRL where reversals occur at relatively long intervals

in time that demonstrates increased sensitivity to the non-competitive NMDA

receptor antagonist MK-801. Here, we quantitively compare behavior in time-

based PRL with a widely used task where reversals occur based on choice

behavior. In time-based PRL, MK-801 induced sustained reversal learning

deficits both in time and across reversal blocks but, at the same dose, only

transient weak effects in performance-based PRL. Moreover, time-based PRL

yielded better estimates of behavior and reinforcement learning model

parameters, which opens meaningful pharmacological windows to efficiently

test and develop novel drugs preclinically with the goal of improving cognitive

impairment in human patients.

KEYWORDS

reversal learning, cognitive flexibility, schizophrenia, drug discovery, dizocilpine (MK-
801), behavioral task

Introduction

Cognitive deficits are observed in many neuropsychiatric disorders such as

schizophrenia, attention deficit hyperactivity, obsessive-compulsive disorders, and

autism spectrum disorders. In the clinic, the severity of cognitive impairment

positively correlates with worse functional outcomes which suggests effective

treatments will improve the quality of life of a patient (Green et al., 2000). Currently,

pharmacotherapeutic options for neurocognition are limited which is a situation at least
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partially attributable to the difficulty of translating preclinical

observations to human patients.

Cognitive flexibility, flexible adaptation to environmental

change (Brown and Tait, 2015), is an important behavior that

enables healthy social and environmental interactions.

Probabilistic reversal learning (PRL) paradigms have been

used to study cognitive flexibility in humans (Cools et al.,

2002; Waltz and Gold, 2007), non-human primates (Costa

et al., 2015; Rygula et al., 2015; Bartolo and Averbeck, 2020),

and rodents (Ineichen et al., 2012; Dalton et al., 2014). Across

PRL tasks and species, stimuli and choice feedback may differ,

but fundamental task structures are similar. Subjects must

sample several options and choices are rewarded with unique

and unknown probabilities. To maximize reward (“win”),

subjects must find the best option and then stick to it even

after a non-rewarded choice. Once a learning criterion is

reached, reward contingencies change. After contingency

reversal, subjects must cognitively disengage from the

previously better option and find the new best choice. This

disengagement requires cognitive control processes which are

often impaired in patients with psychiatric disorders (Waltz

and Gold, 2007; Culbreth et al., 2016) or frontal lobe lesion

(Hornak et al., 2004), and requires several brain regions

including the orbitofrontal cortex, striatum, amygdala, and

thalamus (O’Doherty et al., 2003; Hampton et al., 2007;

Minzenberg et al., 2009; Klanker et al., 2013b).

To identify neuronal substrates supporting flexible choice in

preclinical species, PRL tasks are often paired with a

pharmacological challenge to model cognitive impairments

observed in patients. For example, the NMDA receptor

antagonist dizocilpine (MK-801) is known to induce cognitive

deficits, impair reversal learning in rodents (van der Meulen

et al., 2003; Dix et al., 2010; Svoboda et al., 2015; Savolainen

et al., 2021), and induce c-Fos expression in brain areas

implicated in the pathophysiology of schizophrenia (Dragunow

and Faull, 1990; Väisänen et al., 2004). Reversible inactivation or

lesion of brain areas has identified neural circuits that support

cognitive flexibility in PRL tasks (Stalnaker et al., 2007; Rudebeck

and Murray, 2008; Izquierdo et al., 2013; Dalton et al., 2016;

Nakayama et al., 2018). However, in most serial reversal

paradigms, these manipulations impair only the first (or few)

contingency reversals (van der Meulen et al., 2003; Boulougouris

et al., 2007; Klanker et al., 2013a; Dalton et al., 2016). Thus, many

PRL tasks yield limited data, and the effects can be difficult to

interpret from the perspective of neural circuit pharmacology and

physiology. These limitations lead to small effects and large group

sizes, and make the acquisition of meaningful physiological signals

challenging. Critically, single reversal impairment leaves a small

therapeutic window for pharmacological rescue of cognitive

impairments by novel drugs designed to improve human

cognition. Here, we addressed these limitations with a novel

time-based PRL task and show that, unlike a widely used

performance-based task (Floresco et al., 2008; Bari et al., 2010;

Ineichen et al., 2012), MK-801 impairs task performance across

several reversals.

Methods

Animals

Forty-four 280–300 g male Lister hooded rats from Charles

River Germany were group-housed (2-4/Makrolon type-IV cage,

standard enrichment) on a reverse 12 h light/dark cycle with

controlled temperature (20°C–24°C) and relative humidity

(~45%–65%). Upon arrival, animals were fed ad libitum for

1 week and then habituated to handling and food restricted to

~90% of their free-feeding weight. Experiments were conducted

in the dark phase and in accordance with German animal welfare

legislation, Association for Assessment and Accreditation of

Laboratory Animal Care (AAALAC) regulations, and the

USDA Animal Welfare Act, and approved by the Local

Animal Care and Use Committee (18-017-G).

Behavioral training

All behavior took place in operant boxes (Med Associates)

controlled by custom MEDState scripts. Boxes were equipped

with an illuminable food receptacle flanked by two retractable

levers, cue lights above each lever, and a house light high above

the receptacle. A photobeam measured receptacle entry and exit

times. A pellet dispenser outside the chamber was used to deliver

45 mg sugar pellets (5TUL, TestDiet) into the receptacle.

Behavioral events were recorded with a resolution of 1 ms.

Performance-based probabilistic reversal
learning

First, 14 animals were trained to enter the food receptacle after

concurrent illumination and pellet delivery, which triggered a 10-s

delay before the next pellet was dropped, and this was repeated

200 times. In stage two, both levers extended and a press at either

lever was rewarded. Subsequent reward receptacle entries triggered a

5-s inter-trial interval (ITI), and the session ended with a maximum

of 200 rewards. Once lever pressing stabilized, stage three required a

nose poke at the illuminated food receptacle which triggered

extension of both levers. After the lever was pressed, levers

retracted and the reward was delivered. In stage four, a single

lever was extended for 50 trials, after which the active lever was

switched, and this pattern continued for 200 trials, which helps

prevent side bias. To accustom animals to probabilistic reward, 80%

of lever presses were rewarded. On unrewarded trials, the house light

came on for 10 s before the next trial. In stage five, optimal and

suboptimal levers were randomly and programmatically determined
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at the beginning of each session. Both levers were extended, and

responses were rewarded with probabilities of 80% (optimal) and

20% (suboptimal), respectively. After reward collection, a 5-s ITI was

triggered, but on non-rewarded trials, the house light switched on for

10 s. Reward contingencies were reversed (i.e., the optimal lever

became suboptimal and vice versa) after eight consecutive responses

on the optimal lever (Bari et al., 2010). To reduce predictability,

0–4 trials were added after 8 consecutive correct responses but

before reversal. Sessions ended after 60 min, and the learning

criterion was reached when animals made >10 reversals in a session.

Time-based probabilistic reversal learning

In a separate cohort, training of 30 animals was identical to

that of performance-based PRL, except there was one additional

training stage. In the time-based schedule, reward contingencies

were reversed randomly in time (~10 min per block). Reversal

times were drawn from a list without replacement (540, 480, 600,

660, and 720 s) for 6 total blocks and a session time of 60 min.

Drugs

Experiments were within-subject where each animal

received both the drug and vehicle on different days. On

experimental days, 0.045 mg/kg (freebase) MK-801 [(+)-MK-

801 hydrogen maleate, CAS 77086-22-7, Sigma-Aldrich] was

dissolved in saline and half the cohort received this or a saline

control subcutaneously 15 min before placing the animals in

the chambers. On the following experiment day, treatment

groups were reversed. Drugs were administered on Tuesdays

and Fridays, followed by a washout day with no behavioral

training.

FIGURE 1
Performance- and time-based reversal tasks. (A) Schematics of the experiment and the performance-based PRL task schedule where reversals
are triggered by 8 responses on the optimal lever. (B) Number of completed reversals in vehicle (black) and MK-801 (red) in the performance-based
PRL. (C)Mean number of trials to criterion over all reversals in the performance-based PRL. (D) Proportion correct responses over the whole 60-min
session (E) Number of trials to criterion for individual reversals. Data show mean ± SEM. (F) Schematic of the time-based PRL task schedule
where reversals occur on an average every 10 min. (G) Number of completed reversals determined with a performance criterion (>8 consecutive
correct responses) in the time-based PRL. (H)Mean number of trials to criterion across all reversals in the time-based PRL. (I) Average proportion of
correct lever presses in the time-based PRL over thewhole session. (J)Whisker plots ofmean baseline parameters for performance-based (dark gray)
and time-based PRL (light gray). Left: number of total trials; right: number of trials within reversals. For all figures, saline is shown in black andMK-801
in red. Whisker plots show the median and inner quartiles and whiskers extend the 1.5x interquartile range. *p < 0.05, ***p < 0.001, ****p < 0.0001.
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Trials to criterion

To calculate trials to criterion (Figures 1C,E,H), trial

number to 8 consecutive optimal lever presses was

determined for each animal on each reversal, 8 was

subtracted from this count, and these values were averaged

across reversals. For Figure 1E, all animals

achieved >6 reversals, but if later reversals were not

completed they were excluded from those reversal means.

Proportion correct response smoothed
averages

To obtain continuous performance estimates for the

proportion of correct responses (Figure 2B), binary response

vectors were smoothed with a Gaussian kernel (ksmooth

function, Base R, bandwidth = 9) with kernel estimates

computed for every response time which reflects a weighted

smoothed average of response vectors over time.

FIGURE 2
Sustained reversal deficit in time-based PRL in MK-801. (A) Proportion of correct responses in saline (black) and MK-801 (red) for individual
reversal blocks. Data show mean ± SEM. Note the sustained effect of MK-801 in multiple reversals (red line, blocks 2-4) (for stats, see Table 1). (B)
Single rat’s performance; trace shows a smoothed proportion of correct lever responses in saline (top) and MK-801 (below). Tick marks above and
below each graph indicate right and left lever presses, respectively. Vertical dashed lines indicate reversals. (C) Proportion of perseverative and
regressive errors in reversal blocks 2–6 (for stats, see Table 1). (D) Early and late trial performancemeasured as the proportion of correct lever presses
collapsed over the whole session. (E) Same as in D, but for individual reversal blocks (for stats, see Table 1). (F) Proportion of correct responses for
individual animals, stratified based on MK-801 block 1 performance (p (correct) > 0.5, top and p (correct) < 0.5 bottom). Dashed circles indicate
selection criterion. (G) Probability of staying at the same lever after rewarded (win) and unrewarded trials (loss). (H) Conditional probability to stay
after loss trials dependent on optimal and suboptimal choice. (I) Choice preference for optimal and suboptimal levers measured as the difference
between the conditional staying probability (optimal–suboptimal) shown in (H). (J) Same as J, but for performance-based PRL. *p < 0.05, **p < 0.001,
****p < 0.0001 (see Table 1 for statistical results).
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Early and late trial performance

To estimate performance in early and late trials within blocks

(Figures 2D,E), we counted within-block trials, divided these in

half, and calculated the proportion of correct responses in the

first and second halves of each block. Next, we averaged these

within-phase values for each animal across all blocks (Figure 2D).

Error analysis

In Figure 2C, within-animal regressive and perseverative

errors were determined for blocks 2–6 based on choice

history. Suboptimal lever presses were considered regressive

errors after >8 consecutive responses on the optimal lever,

while earlier suboptimal lever responses were considered

perseverative errors.

Probability of staying

In Figure 2G, win-stay and lose-stay probabilities were

calculated for each animal by flagging responses on the same

lever after rewarded (win) or unrewarded (loss) trials and

dividing this number by the total number of win or loss trials,

respectively. For Figure 2H, correct lose-stay and incorrect lose-

stay probabilities for each animal were calculated for optimal or

suboptimal levers.

Reinforcement learning models

Four models were fit to data from both PRL tasks. Model

1 was a Rescorla–Wagner Q-learning model where the reward

value of a choice Qt
k is updated on trial t:

Qk
t+1 � Qk

t + α(rt − Qk
t )

where Qk
t is the reward expectancy of choice k at trial t, α is

the learning rate, and r is the reward. The probability of choosing

option k is expressed in the softmax function:

pk
t �

exp(βQk
t )

∑k
i exp(βQi

t)

Model 2 included a stickiness parameter for repeating

previous choices (Verharen et al., 2020). For Model 2,

softmax was

pk
t �

exp(βQk
t + θkφ)

∑k
i exp(βQi

t + θiφ)

where θ is 1 if the current choice is the same as the previous trial

and 0 otherwise, and φ is the weight to repeat the last choice.

Model 3 included a bias term for the left or right lever, which

accounts for side bias. The softmax function was identical to that

of Model 1, but Q-bias was added in each trial t to the value ofQ1
t

so that positive Q-bias values favor choice 1 and negative values

favor choice 2 (Wilson and Collins, 2019).

Model 4 was a win-stay/lose-shift model with noise (∈)
(Wilson and Collins, 2019). Responses depended only on

previous feedback. Noise term ∈ added variability in the

choice selection with the probability of choosing lever k.

if (lt−1 � k and rt−1 � 1)OR (lt−1 ≠ k and rt−1 � 0)→ pk
t

� 1 − ∈ /

2

if (lt−1 ≠ k and rt−1 � 1 )OR (lt−1 � k and rt−1 � 0) → pk
t � ∈ /

2

lt−1 � 1 or 2 for left or right levers at trial t-1, and rt−1 � 1 or 0

for rewarded and unrewarded trials, respectively.

Models were fit in R (optimal function; BFGS method; fixed

upper/lower bounds; L-BFGS-B), and bounds, based on the

literature, were: a (0.1; 1.0), β (0.1; 10.0), φ (−5.0; 5.0), Q-bias

(−1.0; 1.0), and ∈ (0.01; 1). Starting parameters were randomly

selected and parameters fit to the training data of each animal

using maximum likelihood. To compare models, we used the

Bayesian information criterion (BIC) and the lowest score was

selected as the winning model.

Distribution of log latency values

Latencies for trial initiation, lever press, reward collection

(Figures 3G,J), and magazine entry after loss trials (Figures

3K,M) were log-transformed (log10). Trial initiation latency

was the time from trial onset to the first subsequent receptacle

entry. Lever press latency was the time after trial initiation to

lever press. Reward collection and magazine entry after loss

trials were the time from lever press to the first subsequent

receptacle entry. Histograms (bin size 0.15 s) show within-

condition pooled relative frequency distributions of log

latency values from all animals on all trials. Vertical dashed

lines indicate the median.

Data analysis and statistics

Behavioral time stamps were analyzed and plotted with

custom routines in R (version 3.6.1, R Core Team, 2019).

Unless otherwise stated, paired Wilcoxon signed-rank tests

were used for statistical comparisons. For mixed repeated

measures ANOVA, within-subject factors were animal and

reversal number (Figures 2A,C,E). To evaluate potential order

effects, in a separate analysis for Figure 2A, the treatment day was

included as an independent factor [treatment*order:F (1,28) =

4.98, p = 0.034], but post hoc comparisons were not significant
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FIGURE 3
Comparison of behavior in time- and performance-based PRL tasks in MK-801. (A) BIC scores of four Rescorla–Wagner (RW) reinforcement
learning models fit to the time-based PRL data; 1: standard RW, 2: RW + stickiness, 3: RW + side bias, and 4: win-stay/lose-shift model. (B) Model
2 coefficients (α, β, and φ) fit to the time-based PRL data. (C,D) Same as A and B, models were fit to performance-based task data. (E)Number of trials
in the time-based PRL. (F) Time-based PRLmean trial duration across all trials (log10 transformed). (G) Time-based PRL log latency distributions
of trial initiation (G, left), lever presses (G, middle), and reward collection (G, right). Dashed line indicates median values. (H) Number of trials in the
performance-based PRL. (I) Performance-based PRL trial duration (log10 transformed). (J) Same as in G but for the performance-based PRL. (K) Time
to magazine entry after unrewarded trials for the performance based PRL. (L) Proportion of short (<1 s, L, left) and long latency (>1 s, L, right)
magazine entries on non-rewarded trials in the performance-based PRL (mean ± SEM). (M,N) Same as in K and L but for the time-based PRL task.
Solid and empty boxplots show time- and performance-based task data, respectively. *p < 0.05, **p < 0.001, ****p < 0.0001 (see Table 1 for statistical
results).
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TABLE 1 Summary statistics.

Figure Variable n Measure 1 Measure 2 Test/Statistic p-value Adjusted Signif.

p-value (Holm)

Figure 2 A p(correct) Saline SE MK-801 Paired Wilcoxon

Mean Mean signed rank test

1 30 0.77 0.03 0.6 0.05 368 0.004 0.016 *

2 30 0.78 0.02 0.42 0.05 445 6.91e-7 4.15e-6 ****

3 30 0.81 0.02 0.65 0.05 366 0.005 0.016 *

4 30 0.83 0.02 0.63 0.04 397 3.8e-4 1.9e-4 **

5 30 0.79 0.02 0.72 0.03 299 0.08 0.16 ns

6 30 0.77 0.04 0.73 0.03 316 0.088 0.16 ns

Figure 2 A Order effects Saline Saline Wilcoxon rank

of treatment Day 1 Day 2 sum test

15 0.81 0.01 0.79 0.01 155 0.082 ns

MK-801 MK-801 Wilcoxon rank

Day1 Day2 sum test

15 0.63 0.01 0.67 0.01 68 0.068 ns

Figure 2 C p n Saline IQR MK-801 IQR Paired Wilcoxon p-value Adjusted Signif

(perseverative errors) Median Median signed rank test p-value (Holm)

2 30 0.06 0.09 0.61 0.61 34 4.7e-5 2.32e-4 ****

3 30 0.06 0.09 0.08 0.56 112 0.023 0.069 ns

4 30 0.04 0.06 0.20 0.37 73 6.1e-4 0.002432 **

5 30 0.07 0.09 0.08 0.24 182.5 0.309 0.5 ns

6 30 0.10 0.13 0.10 0.19 152 0.25 0.5 ns

p n Saline IQR MK-801 IQR Paired Wilcoxon p-value Adjusted Signif

(regressive errors) Median Median signed rank test p-value (Holm)

2 30 0.12 0.11 0.03 0.06 290 0.048 0.24 ns

3 30 0.09 0.11 0.06 0.11 239 0.234 0.702 ns

4 30 0.09 0.11 0.11 0.11 261 0.57 1 ns

5 30 0.08 0.11 0.11 0.11 231 0.984 1 ns

6 30 0.08 0.12 0.12 0.12 144 0.115 0.46 ns

Figure 2 E p(correct) n Saline IQR MK-801 IQR Paired Wilcoxon p-value Adjusted Signif

early Median Median signed rank test p-value (Holm)

1 30 0.76 0.24 0.61 0.42 318 0.08 0.154 ns

2 30 0.77 0.25 0.37 0.42 424 1.8e-5 9.1e-5 ****

(Continued on following page)
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TABLE 1 (Continued) Summary statistics.

Figure Variable n Measure 1 Measure 2 Test/Statistic p-value Adjusted Signif.

p-value (Holm)

3 30 0.81 0.15 0.6 0.48 352 0.013 0.039 *

4 30 0.8 0.21 0.53 0.34 384 0.001 0.004 **

5 30 0.76 0.23 0.71 0.32 319 0.077 0.154 ns

6 29 0.76 0.21 0.64 0.32

p(correct) n Saline IQR MK-801 IQR Paired Wilcoxon p-value Adjusted Signif

late Median Median signed rank test p-value (Holm)

1 30 0.85 0.17 0.67 0.56 374 0.003 0.012 *

2 30 0.87 0.14 0.38 0.35 453 1.3e-7 7.8e-7 ****

3 30 0.86 0.14 0.77 0.46 346.5 0.02 0.06 ns

4 30 0.91 0.12 0.77 0.31 397 3.8e-4 0.0019 **

5 30 0.87 0.13 0.86 0.21 252 0.7 0.7 ns

6 30 0.87 0.26 0.81 0.2 276 0.21 0.42 ns

Figure 2 H p(staying|loss) n Optimal IQR Suboptimal IQR Paired Wilcoxon p-value Signif

Median Median signed rank test

Saline 30 0.69 0.09 0.5 0.11 465 1.86e-9 ****

MK-801 30 0.68 0.15 0.63 0.1 335 0.034 *

Figure 3 A model n Median model Median n Paired Wilcoxon signed rank test p-value Adjusted Signif

p-value (Holm)

1 30 276.22 2 255.28 30 450 2.55e-7 1.54e-6 ****

2 30 255.28 3 276.23 30 50 5.59e-5 3.5e-4 ***

2 30 255.28 4 425.21 30 0 1.86e-9 1.12e-8 ****

1 30 276.22 3 276.23 30 217 0.761 1 ns

Figure 3 B model Saline IQR MK-801 IQR Paired Wilcoxon p-value Adjusted Signif

coefficient Median Median signed rank test p-value (Holm)

α 30 0.78 0.16 0.36 0.695 403 2.0e-4 4.18e-4 ***

β 30 2.78 1.11 1.15 0.57 461 1.3e-8 3.9e-08 ****

φ 30 0.79 0.55 1.01 0.466 118 0.018 0.018 *

Figure 3 C model n Median model Median n Paired Wilcoxon p-value Adjusted Signif

signed rank test p-value (Holm)

1 30 341.85 2 345.24 30 63 0.542 1 ns

2 30 345.24 3 344.44 30 37 0.358 1 ns

2 30 345.24 4 367.6 30 3 6.1e-4 0.00366 **

(Continued on following page)

Fro
n
tie

rs
in

P
h
arm

ac
o
lo
g
y

fro
n
tie

rsin
.o
rg

0
8

Latu
ske

e
t
al.

10
.3
3
8
9
/fp

h
ar.2

0
2
2
.8
9
8
5
4
8

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.898548


TABLE 1 (Continued) Summary statistics.

Figure Variable n Measure 1 Measure 2 Test/Statistic p-value Adjusted Signif.

p-value (Holm)

1 30 341.85 3 344.44 30 25 0.091 0.546 ns

Figure 3 D model Saline IQR MK-801 IQR Paired Wilcoxon p-value Adjusted Signif

coefficient Median Median signed rank test p-value (Holm)

α 14 0.968 0.082 0.842 0.102 89 0.02 0.02 *

β 14 3.01 1.165 1.357 0.532 102 6.1e-4 0.00183 ***

φ 14 0.093 0.496 0.656 0.185 5 0.001 0.002 **

Figure 3 G Time-based n Saline IQR MK-801 IQR Paired Wilcoxon p-value Adjusted signif Signif

PRL Median Median signed rank test p-value (Holm)

log latency to 30 −0.46 0.15 0.13 0.15 6 2.61e-8 ****

initiate

log latency to 30 −0.18 0.12 0.02 0.13 11 1.02e-7 ****

response

log latency to 30 −0.25 0.13 −0.21 0.11 288 0.017 *

reward

Figure 3 M log latency to 30 0.59 0.46 0.08 0.25 459 2.61e-8 ****

check

Figure 3 J Performance n Saline IQR MK-801 IQR Paired Wilcoxon p-value Adjusted Signif

based PRL Median Median signed rank test p-value (Holm)

log latency to 14 −0.62 0.15 −0.2 0.26 11 7.01e-5 ***

initiate

log latency to 14 −0.17 0.23 0 0.15 1 2.44e-4 ***

response

log latency to 14 −0.409 0.19 −3.67 0.14 27.5 0.124 ns

reward

Figure 3 K log latency to 14 0.6 0.75 −0.13 1.14 67 0.391 ns
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(for details, see Table 1). The significance threshold for all

statistical tests was set at p < 0.05.

Results

Performance-based probabilistic reversal
learning

First, we trained 14 rats on performance-based PRL with 80%

and 20% reward probabilities where eight consecutive responses on

the optimal lever triggered contingency reversals (Figure 1A). To

assess pharmacological sensitivity, we compared performance in

MK-801 and vehicle control.

In MK-801, rats showed a modest deficit primarily reflected

in a reduced number of completed reversals (Figure 1B; p = 0.01),

an increased number of errors to reach criterion (Figure 1C; p =

0.035), and fewer correct lever presses (Figure 1D; p = 0.01).

However, due to high variability, trials to the criterion for

individual reversals (Figure 1E, notably block 2) did not differ

in MK-801 and control. Consistent with previous reports, MK-

801 had little effect after the first reversal (van der Meulen et al.,

2003; Kumar et al., 2015).

Due to these weak effects, we modified the task with the goal

of increasing its pharmacological sensitivity. We reasoned that

rapid switching of contingency may facilitate adaptive strategies

like win-stay/lose-shift and thus reduce MK-801 sensitivity. To

test this hypothesis, we implemented a time-based protocol

where reward contingencies were reversed approximately

every 10 min for 60 min, thereby increasing within-block trial

numbers and reducing reversal frequency (Figure 1F; see

Methods for details).

Time-based probabilistic reversal learning

We trained 30 rats on the time-based PRL and found the total

number of trials did not differ between tasks (Figure 1J; p = 0.093,

Wilcoxon rank-sum test), but, as expected, the number of trials

within block was increased in time-based PRL (Figure 1J; p =

1.7 × 10−11, Wilcoxon rank-sum test). Post hoc analysis of blocks

1–6 with the learning criterion (8 consecutive optimal lever

presses) showed that animals learned slightly faster after

reversal in time-based PRL (11.4 (time-based) vs. 13.8

(performance-based); p < 0.05, Wilcoxon rank-sum test, data

not shown).

Next, in cross-over, we tested MK-801 sensitivity of time-

based PRL. For direct comparison, we applied post hoc the

performance criterion and found that MK-801 significantly

reduced completed reversals (Figure 1G; p = 2.3 × 10−13) and

increased trials to criterion (Figure 1H; p = 6.8 × 10−4). MK-801

also significantly reduced the proportion of correct responses

compared to saline in the 60-min session (Figure 1I; p = 1.8

× 10−9) and these differences were more robust than those in

performance-based PRL.

The analysis of individual reversal blocks showed that MK-

801 reduced correct responses most profoundly in block 2, but

this deficit was sustained for 3 reversals (Figure 2A; p = 1.82 ×

10−16, two-way ANOVA, and Table 1). Next, we calculated a

smoothed kernel average of the proportion of correct responses

across the entire session. This showed that, after reversal, saline-

treated rats responded predominantly to the previously optimal

(but now suboptimal) lever (Figure 2B) and that this bias

gradually shifted toward the newly optimal lever. However,

this shift was not so pronounced in MK-801. To quantify this,

we calculated within-block probability of perseverative and

regressive errors (see Methods for details) and found that in

MK-801, animals made more perseverative errors than in control

(Figure 2C; p = 9.57 × 10−13, two-way ANOVA). The analysis of

individual blocks revealed that MK-801 greatly increased

perseverative errors in reversal blocks 2–4 (Figure 2C; left

panel, see Table 1) with no effect on regressive errors.

To quantify within-block learning, we calculated the

proportion of correct responses for early and late trials by

halving reversal blocks based on the number of trials and

compared performance in MK-801 and control (Figures

2D,E). In early trials, ANOVA revealed a main effect of

treatment (Figure 2E; p = 1.27 × 10−12, two-way ANOVA). A

post hoc comparison showed that MK-801 reduced the

percentage of correct choices in reversal blocks 2–4 (see

Table 1) and that initial discrimination (block 1) was

unimpaired. In late trials, MK-801 reduced performance in

reversal blocks 1, 2, and 4 (Figure 2E; p = 3.13 × 10−13, two-

way ANOVA). In MK-801, we saw impaired average behavior in

block 4 but not in late block 3 trials. To investigate this in detail,

we stratified animals into two groups based on performance (p

(correct) > 0.5 and p (correct) < 0.5) in MK-801 in the first block

(Figure 2F). Interestingly, most animals (n = 22) with good

performance in initial discrimination (block 1) exhibited

profound impairment in blocks 2 and 4, whereas the smaller

group (n = 8) was impaired in blocks 1 and 3.When averaged, the

MK-801 induced side bias in alternating blocks drives reversal

deficits in blocks 2–4. Taken together, unlike in performance-

based PRL, where reversals can occur with a higher frequency,

MK-801 impaired performance in time-based PRL up to reversal

block 4 and, consistent with its pharmacokinetic profile, for

~50 min (Wegener et al., 2011).

To understand how outcomes influence choice, we calculated

conditional probabilities for choosing the same lever after

rewarded and unrewarded choices. In MK-801, the probability

to repeat choices after rewarded trials was lower than that in

vehicle (Figure 2G; p = 1.9 × 10−9) and higher after unrewarded

trials (Figure 2G; p = 0.011), suggesting that in MK-801 rats are

less sensitive to reward-based feedback.

Previous reports suggest rats infer task features to optimize

response strategies (Dhawan et al., 2019). Thus, we hypothesized
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that if rats tracked current reward probabilities, this should be

reflected in staying probabilities for optimal and suboptimal

levers after non-rewarded trials. Indeed, in saline, rats stayed

more on optimal than on suboptimal levers after loss trials

(Figure 2H; Table 1). Quantification of choosing the same

lever after unrewarded trials showed that MK-801 reduced

optimal lever preference in the absence of positive feedback

(Figure 2I; p = 1.2 × 10−5). Interestingly, there was no

difference in lever differentiation in performance-based PRL,

suggesting different strategies may be employed in the two tasks

(Figure 2J; p = 0.42).

Next, for direct comparison of strategy in the two tasks, we

implemented a Rescorla–Wagner Q-learning model (Model 1)

with extensions for stickiness (Model 2), or side-bias (Model 3)

and a win-stay/lose-shift model (Model 4) that differentially

integrates reward history relative to trial-by-trial choice. Using

the Bayesian information criterion (BIC), we compared model

fit to training data and found that Model 2 (with the stickiness

parameter) best fit time-based PRL data (Figure 3A; p = 1.67 ×

10−20, two-way ANOVA, see Table 1) and models

1–3 performed equally well for performance-based PRL

(Figure 3C). Thus, we applied Model 2 to predict the

learning rate (α), inverse temperature (ß), and stickiness (φ)

in both tasks. We found a remarkable decrease in the learning

rate in time-based PRL in MK-801 and weaker effects in

performance-based PRL (Figures 3B,D). MK-801 also

reduced ß, reflecting a decrease in value-driven choice

(Figures 3B,D), and increased the tendency to repeat choices

by increasing stickiness (Figures 3B,D; for stats Table 1). These

results support the idea that MK-801 reduces reward sensitivity

and increases perseverative behavior (Stefani and Moghaddam,

2005; Thonnard et al., 2019) but with larger effect sizes in the

time-based protocol.

To examine whether reduced reward sensitivity reflects

motivational deficits, we compared trial numbers between

conditions and found that MK-801 reduced the total number

of trials in time-based PRL (387 (saline) vs. 326 (MK-801),

median; Figure 3E; p = 8.8 × 10−6). Consequently, we

examined how MK-801 influenced processing and reaction

times. In time-based PRL, MK-801-treated animals were

slower to initiate trials, press levers, and collect rewards

(Figure 3G; Table 1). These small, but significant, lengthening

of latency accumulated to an average of 0.75 s per trial, which

may partially account for reduced response rates in MK-801.

Next, we calculated trial durations (time between initiation cues),

which includes the 10 s after unrewarded trials that occur more in

MK-801. In time-based PRL, MK-801 increased median trial

length by 3.5 s compared to the vehicle (Figure 3F, median, 7.4 s

(saline) vs. 10.9 s (MK-801); p = 9.75 × 10−10). In the

performance-based PRL, we also observed a reduction in trial

number (Figure 3H; p = 1.03 × 10−4), longer behavioral latencies

(Figure 3J), and increased median trial lengths, albeit to a lesser

extent (Figure 3I, 6.9 s (saline) vs. 8.9 s (MK-801); p = 4.99

× 10−8). Taken together, these results suggest MK-801 may not

reduce motivation per se but rather induce motoric and/or

attentional impairment leading to less lever pressing.

In saline and MK-801, receptacle latencies after non-

rewarded choices were bimodal in performance-based PRL

(Figures 3K,L), and both peaks were right shifted by MK-801.

In contrast, in time-based PRL, MK-801 strongly shifted the

distribution toward shorter latencies (<1 s; Figures 3M,N). To

quantify this effect, which may reflect altered reward

anticipation, we split the distributions into short (<1 s) and

long (>1 s) latencies and calculated the relevant areas under

the curve. In performance-based PRL, MK-801 induced shorter

latencies than saline (Figures 3L; p = 0.004), but this shift was

bigger in time-based PRL (Figures 3N; p = 1.3 × 10−7), where

twice as many latencies were <1 s than in saline. These short-

latency non-rewarded entries likely reflect false reward

anticipation, while longer latency entries may be premature

trial initiation attempts. These data suggest that in MK-801,

animals falsely anticipate reward on loss trials, and this effect is

bigger in time-based PRL.

Discussion

Here, we developed a probabilistic reversal learning task where

reversals occur pseudo-randomly in time at relatively long intervals

and compared this paradigm to performance-based reversal learning

in which reversals tend to occur with higher frequency. We found

that MK-801 had weak transient effects on performance-based PRL

(Figures 1D,E) but severely impaired time-based PRL across four

reversal blocks (Figures 2A–F). These sustained deficits were

accompanied by strong perseveration (Figure 2C) and impaired,

but not broken choice-outcome association (Figures 2G,H). We

found that time-based PRL had several advantages: first, greater

time spent in each block and lower reversal frequency make it

difficult for animals to adjust to sudden changes in reward

contingencies; second, more within-block choices make estimation

of learning and performance more reliable and robust. Furthermore,

our results suggest rats use a different strategy in time-based PRL that

renders behavior more sensitive to MK-801.

One potential explanation for increased MK-801 sensitivity is

that time-based PRL requires sustained cortical and cognitive

engagement. Indeed, in serial reversal tasks, pharmacological

challenges and brain region-specific inactivation tend to impair

the first of several reversals (Boulougouris et al., 2007; Young and

Shapiro, 2009; Dalton et al., 2016). While the mechanism is

unknown, animals may develop attentional-sets or rules

rendering later reversals easier to solve which may be driven by

reduction in choice sampling or overtraining (Mackintosh and

Little, 1969; Dhawan et al., 2019). In time-based PRL, performance

was impaired across four blocks (Figure 2A) indicating later

reversals remained difficult in MK-801. These sustained deficits

are likely due to longer inter-reversal times which prevent
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behavioral adaptations aimed at simplifying the task. Indeed, high-

frequency reversals are less dependent on OFC (Riceberg and

Shapiro, 2017) which suggests that low-frequency and high-

frequency reversals engage the cortex differently. Consistent

with this idea, we found that in time-based PRL optimal

lever preference was maintained after unrewarded trials

(Figure 2I) which was not the case in performance-based

PRL (Figure 2J). Furthermore, our modeling results suggest

that in time-based PRL rats did not follow a win-stay/lose-shift

strategy (Figures 3A,C), but that choice value is integrated over

longer periods of time. In contrast, in performance-based PRL

where reward probabilities are less stable recent reward history

is more relevant. This conclusion is further strengthened by

lower learning rate (α) and higher stickiness coefficients (φ) in

the time-based task suggesting lower value of recent reward

(Figures 3A–D) (Zhang et al., 2020), and higher stickiness at the

optimal lever irrespective of outcome (Figures 2H,I). In

addition, a weak learning criterion of 8 optimal lever presses

can be reached by chance and lead to 2–3 reversals in 400 trials

(Metha et al., 2020). The possibility of some success with a

random strategy likely increases data variability and reduces

pharmacological effect sizes in performance-based PRL.

In Figure 2F, in MK-801, two-thirds of animals (n = 22)

found the optimal lever in block 1 and then largely perseverated

at that lever through block 4, while the remaining animals (n = 8)

had an antiphase-like pattern of perseveration. This strong

perseveration in blocks 2–4 (Figure 2C) makes it appear that

performance improves in block 3 and then is impaired again in

block 4. However, this is driven by reward contingency reversal

where the optimal lever becomes the same as the one at which

they chose to perseverate. Thus, apparently good performance in

block 3 also reflects behavioral impairment. In most animals,

discrimination in block 1 was good (Figure 2F), suggesting MK-

801 effects in blocks 2–4 are reversal deficits driven by

perseverative behavior consistent with sustained cognitive

flexibility deficits.

Surprisingly, MK-801 reduced the number of trials in

both tasks (Figures 3E,H). This was unexpected, as MK-801

induces hyperactivity, and in some tasks, it increases lever

pressing (Gastambide et al., 2013). Here, in MK-801, animals

were slower to initiate trials, press levers, and collect rewards

(Figures 3G–J). In addition, MK-801 increased sub-optimal

pressing (Figures 1D,I), and 80% of these choices lead to a

10 s timeout which reduces the time levers are available for

pressing. Together, slower trial completion and more errors

can account for the ~14% reduction of responses in MK-801;

this likely reflects generalized motoric and/or attentional

delay and is not consistent with motivational deficits one

might expect with specific impairments in reward approach

and/or reward collection latency.

Previous studies have shown that cortex is differentially

required depending on reward stability, reversal frequency

(Riceberg and Shapiro, 2017) and the inclusion of irrelevant

stimuli or non-rewarded choice options (Ragozzino, 2007).

Related to this, our data suggest that time- and performance-

based tasks likely engage neural circuits differently. Future

studies will evaluate the cortical and subcortical neural

circuits and neurotransmitter systems that support flexible

choice behavior in the time-based PRL task. Our analysis

suggests time-based PRL may facilitate drug discovery by

allowing higher-throughput compound screening,

acquisition of relevant physiological readouts for biomarker

identification, and thereby aid discovery of novel and

efficacious drugs to treat cognitive flexibility deficits in

human patients.
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