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Extracellular vesicle (EV) trafficking provides for a constitutive mode of cell-cell

communication within tissues and between organ systems. Different EV subtypes

have been identified that transfer regulatory molecules between cells, influencing gene

expression, and altering cellular phenotypes. Evidence from a range of studies suggests

that EV trafficking enhances cell survival and resistance to chemotherapy in solid

tumors. In acute myeloid leukemia (AML), EVs contribute to the dynamic crosstalk

between AML cells, hematopoietic elements and stromal cells and promote adaptation

of compartmental bone marrow (BM) function through transport of protein, RNA, and

DNA. Careful analysis of leukemia cell EV content and phenotypic outcomes provide

evidence that vesicles are implicated in transferring several known key mediators of

chemoresistance, including miR-155, IL-8, and BMP-2. Here, we review the current

understanding of how EVs exert their influence in the AML niche, and identify research

opportunities to improve outcomes for relapsed or refractory AML patients.

Keywords: acute myeloid leukemia, extracellular vesicles, chemoresistance, bone marrow microenvironment,

stroma

INTRODUCTION

Acute myeloid leukemia (AML) is a genetically heterogenous disease that arises from abnormal
proliferation of hematopoietic stem cells (HSCs) (1). Although most patients respond to current
treatment strategies, a majority of patients will ultimately experience relapse (2). Patient survival
rates remain low due largely to high rates of relapse as a consequence of intrinsic and extrinsic
resistance (3). Survival of residual leukemic cells that give rise to relapse is typically attributed
to clonal genetic adaptations that may precede treatment or emerge during chemotherapy (4).
Extrinsic mechanisms that actively confer protection of leukemic cells from complete elimination
in the bone marrow (BM) following therapy are increasingly recognized for their role in chemo-
resistance and clonal persistence; examples include nuclear factor kappa-light-chain-enhancer of
activated B-cells (NF-kB) mutation, drug efflux pump activation, and adaptive action of microRNA
(miRNA) mediated cell-cell crosstalk mechanisms (5, 6).

Extracellular vesicles (EVs) are membrane-bound particles secreted from cells, carrying a variety
of nucleic acid and protein cargo active in cell-cell communication (7). As a constitutive cellular
mechanism for the transport of bioactive cargo, EVs promote therapy resistance in the bone
marrow niche (8, 9). Now EV content and functional analyses are beginning to shed light on the
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some keymediators involved in chemoresistance such asmiRNA-
155 (miR-155), interleukin 8 (IL-8), and bone morphogenic
protein 2 (BMP-2) (10–12). In this review, we critically examine
the current evidence connecting EV trafficking and resistance to
both chemo- and immunotherapies, while highlighting key areas
of research.

ACUTE MYELOID LEUKEMIA

AML is a genetically heterogeneous disease characterized by
the successive acquisition of mutations in HSCs that cause
unchecked proliferation and a coincident differentiation arrest
(1). At diagnosis, patients typically present with symptoms
arising from leukocytosis, anemia, and thrombocytopenia. At an
annual incidence of 4.3 per 100,000 persons, AML is the most
common acute leukemia in adults, and second to acute lymphoid
leukemia (ALL) in children (13). The overall 5-year survival
rate is <50% in young adults, which drastically decreases in
elderly patients with a 2-year survival rate of <20% (3). With
well over 200 identified molecular lesions illustrating overall
disease heterogeneity, some common recurring cytogenetic
abnormalities are seen, including translocations between
chromosomes 8 and 21, deletions in chromosomes 5 and 7, and
inversions in chromosome 16 (3). Likewise, activating mutations
in several oncogenes have been shown to alter key components
in cell cycle regulation such as tumor protein p53, fms-like
tyrosine kinase 3 (FLT-3), WNT, and MYC (3). Individually and
in combination, these genetic abnormalities carry important
information for both diagnostic and treatment stratification of
AML. For example, depending on genetic context, mutations
in nucleophosmin (NPM1) found in about 30% of adult AML
cases can denote more favorable outcomes for patients (14).
Meanwhile, patients with FLT-3 internal tandem duplication
(FLT-3 ITD) account for ∼25% of AML cases and generally
denote a poor prognosis, except in combination with NPM1
(15). Other oncogene mutations such as mutations in the RAS
family of proteins, accounting for around 15% of AML cases,
are associated with a mixed prognostic impact (16). In spite of
the genetic heterogeneity, current AML treatment typically relies
on a backbone of cytarabine and anthracyclines in use since the
1970s, with the more recent addition of hypomethylating agents
for patients over the age of 65 (17). Critically, whereas most
patients initially respond to these treatments, many experience
relapse or develop refractory disease (18). While HSC transplant
can be a therapeutic option, the overall survival remains between
20 and 60%, due to ineffective salvage treatment regimens
(17, 19). Clearly, a better understanding of the barriers to
elimination of residual AML cells from their sanctuary in the BM
holds untapped therapeutic opportunities for patients.

GENETIC AND FUNCTIONAL ADAPTATION
TOWARD CELL-AUTONOMOUS
CHEMORESISTANCE IN AML CELLS

Development of drug resistance during chemotherapy is a
primary challenge to sustaining AML remission in patients. This

can occur as a direct consequence of mutations, or indirectly
through signaling pathways or enzyme activities that lead to
cancer cell protection (6). Conceptually, clonal evolution under
therapy can lead to the emergence of more chemo-resistant
clones, that further fuel cell growth and boost the survival
advantage (4, 20). For example, some patients acquire FLT-3 ITD
mutations during the course of treatment (21, 22). Interestingly,
the observation that treatment through tyrosine kinase inhibition
efficiently clears peripherally circulating blasts, but not those in
the in the BM does not reflect intrinsic genetic events (23).

Non-genetic chemoresistance mechanisms such as p-
glycoprotein (P-gp) overexpression, an ATPase efflux pump that
export drugs or their active metabolites, are also correlated with
poor disease outcomes (24). These direct effects are compounded
by the downstream activation of NF-κB signaling that controls
cell proliferation and counters apoptosis (6). Mechanistically,
NF-κB overactivation protects AML blasts from apoptosis as a
result of increased expression of pro-survival BCL-2 proteins
(25). Another common mechanism of chemoresistance involves
glutathione s-transferase (GST) overexpression, an enzyme that
typically protects against reactive electrophiles and DNA damage
(26). When overexpressed in cancer, GST has been shown to
increase chemoresistance, possibly by catalyzing the binding of
glutathione to chemotherapy drugs to minimize their effects,
preventing drugs from attacking DNA, or deactivating cisplatin,
a common platinum-based component of many chemotherapies
that targets DNA in cancer cells (6, 27, 28).

Evidence has also shown that cellular microRNAs are highly
involved in the development of drug resistance in AML (29).
For example, CXCR4-mediated signaling has been shown to
cause chemoresistance in AML cells by downregulating miR-let-
7a, which increases transcriptional activation of MYC oncogene
and BCL-XL in AML cells (30). Several miRNAs that bind
to DNA damage regulatory proteins are overexpressed in
AML. For example, overexpression of miR-181a in AML cells
downregulates ATM, a critical checkpoint kinase required for cell
cycle arrest, and in turn promotes cancer cell growth (31). miR-
128 is also overexpressed in AML, which downregulates RAD51
and reduces DNA damage response (32). Downregulation in
a number of different miRNAs such as miRs−15a (33),−15b
(34),−125b-5p (35),−139-5p (36),−145 (37), and−181a (38)
have been reported in other forms of cancer, which collectively
suggests that elevated BCL2 translation plays a major role in
resistance development. Intriguingly, EV secretion may alter
leukemogenic properties in a cell autonomous fashion and
promotes expansion and persistence of leukemia initiating
cells (39).

AML NICHE CONVERSION AND
ACQUISITION OF
NON-CELL-AUTONOMOUS
CHEMORESISTANCE

The bone marrow compartment comprises a range of cell
types that form HSC supportive microenvironments: endosteal
(comprised of osteoblasts, osteocytes, and osteoclasts) and
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vascular (comprised of endothelial cells and megakaryocytes)
niches (Figure 1A). The endosteal niche in the internal
surface of the bone helps maintain stem cell quiescence
through the binding of osteoblasts to HSCs (40), while the
vascular niche promotes the proliferation and differentiation
of HSCs through crosstalk between endothelial cells and HSCs
(40). Through successive adaptation of these niches, the BM
microenvironment contributes to leukemia cell proliferation
and survival (Figure 1B) (41–43). In the endosteal niche, AML
cells may induce mesenchymal stromal cells (MSCs) toward an
accelerated osteoblastic differentiation where accumulation of
these immature osteoblasts can lead to an overall decrease in
the number of functional osteoblasts (5). One study showed
that AML and myelodysplastic syndrome patients had an
osteoblast count 55% lower than healthy controls, consistent
with observations in mice bearing acute leukemia, that exhibited
osteoblast deficits inversely proportional to circulating blast
burden and survival (44).

Emerging evidence also suggests that AML blasts localize
and integrate with the BM vascular niche. A study by Cogle
et al. showed that some AML cells have the capacity to fuse
with vascular endothelium (vascular-AML), acquiring several
endothelial characteristics before assuming a state of quiescence
(45). Moreover, these vascular-AML cells remain leukemogenic
and were able to give rise to leukemia following transplantation
into healthy mice, suggesting that AML cells that have integrated
into the vascular niche may be implicated in relapse (45). Within
the BM microenvironment, crosstalk between AML cells and
BM stromal cells (BMSCs) also plays a role in chemoresistance
development. For example, AML cells can induce secretion of
growth arrest-specific gene 6 (GAS6) in BMSCs, which protects
AML cells from cell death (46). More recently, findings further
illustrate the significance of BMSC-AML interactions, whereby
AML cells remodel the endosteal vascular niche by producing
pro-inflammatory and anti-angiogenic cytokines that results in
the loss of endosteal blood vessels and BMSCs surrounding
blood vessels and bones (47). These endosteal AML cells were
found to have elevated expression of tumor necrosis factor
(TNF) and CXCL2, which are involved in vascular destruction
and angiogenesis inhibition, respectively. In addition, AML-
induced remodeling of the niche disrupts HSC homing, and
reduces the efficiency of drug transport, increasing the risk of
chemoresistance (48).

MECHANISMS OF CELL-CELL
CROSSTALK

Several mechanisms of intercellular communication contribute
to the conversion of BM from a homeostatic-supportive
compartment to an oncogenic compartment (Table 1).
Traditionally, cells communicate via soluble factors such as
cytokines, neurotransmitters, hormones, and growth factors,
where they act in a juxtacrine, paracrine, or endocrine manner.
In recent years, EVs have emerged as a novel mechanism
of intercellular communication. Based on their method of
biogenesis, content, and physical properties, EVs can be broadly

categorized into exosomes, exomeres, microvesicles, and
apoptotic bodies (52, 53). Like other types of EVs, exosomes
sized at up to 120 nm, are equipped to traffic proteins, lipids,
mRNAs, multiple types of non-coding RNAs, DNAs, and
chemokines/cytokines between cells (52). Observations in
multiple types of cancer (Table 2) indicate that cells with
malignant potential release exosomes at an increased rate,
selectively capturing certain molecules that promote the
proliferation of cancer cells, metastasis, and drug resistance
(59). Exosomes have been implicated in the transformation
of BM microenvironment into a leukemia-permissive space.
For example, one recent xenograft study revealed that AML-
derived exosomes upregulate DKK1 in BMSCs, suppressing
hematopoiesis and inhibiting osteoblast differentiation via
Wnt pathway signals (43). Specifically, these AML derived
exosomes downregulate gene expression that otherwise
sustains normal hematopoiesis (Igf1, Cxcl12, Kitl, and Il-7),
and genes involved in normal bone development (Ocn and
Col1A1). In addition to playing a key role in transforming
the BM niche, exosomes may in part contribute toward
the protection of leukemia blasts during chemotherapy
treatment (43).

Another well-characterized mechanism of cell-cell crosstalk
is the transmission of signals involving direct cell-cell contacts
such as gap junctions composed of membrane protein called
connexins, that transfer ions and small molecules serving
as second messengers in a neighboring cell. Connexins
have been shown to act as either tumor promoters or
suppressors in breast cancer, prostate cancer, and brain
cancer (60–63). A more recently described method of direct
cell-cell communication is through tunneling nanotubes
(TNTs), cell membrane protrusions composed of F-actin that
transiently connect cells to exchange proteins, pathogens, or
even organelles. Formation of TNTs appears to increase in
cells under stress, potentially increasing survival through the
exchange of mitochondria (64, 65). TNT trafficking of bioactive
cargo influences differentiation, metabolism and immune
response (65).

DIRECTIONAL TRANSFER OF
CHEMORESISTANCE VIA EVS BETWEEN
AML CELLS

An elegant study in glioma reported by Al-Nedawi provided the
first compelling evidence that shows EV-mediated intratumoral
transfer of functional resistance factors between differentially
chemo-sensitive cancer cells (66). In recent years, emerging
evidence has shown that EV-mediated resistance transfer also
exists in AML (Figure 1B), where proteins and miRNAs can be
transported by EVs between AML cells and elicit differential
gene expression profiles and cell activity in recipient AML cells
(67, 68). More specifically, a co-culture experiment showed
that chemo-resistant AML cells can induce chemoresistance
in chemo-sensitive AML cells by triggering anti-apoptotic
protein BCL-2 upregulation in chemo-sensitive AML cells,
while chemo-sensitive AML cells could not induce BCL-2
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FIGURE 1 | EV mediated transfer of chemoresistance between leukemia cells in the BM microenvironment. (A) Diagram of the BM microenvironment, composed of

the hematopoietic niche (right) stromal compartment (left). Hematopoietic Stem and Progenitor Cell (HSPC) give rise to Common Myeloid Progenitors (CMP),

Granulo-Monocytic Progenitor Cells (GMP), Erythroblasts (EB), Megakaryocytes (Mk), and many other cell types that populate the cells of the blood. In the stromal

compartment, Mesenchymal Stromal Cells (MSC) give rise to Osteoprogenitor Cells (OPC) and Osteoblasts (OB), together these cells function to form bone and

regulate hematopoiesis in part through EV-mediated signaling. (B) Expansion of leukemic cells results in microenvironmental dysregulation. EV trafficking between

AML cells transfers regulatory factors that induce resistance to chemotherapy. (C) Chemo-experienced AML cells shed EVs containing NMP1, SRSF1, and SRSF9,

which increase apoptosis resistance through upregulation of BCL-2 and NPM1 in unexperienced recipient AML cells. (D) EVs from chemo-experienced AML cells also

contain miR-19b and−20a, which reduce TGF-β signaling and increase Akt signaling and the expression of MRP1 chemo-efflux pump in recipient AML cells.

upregulation in other chemo-sensitive AML cells (67). Aberrant
expression of apoptosis-regulating proteins may allow AML
cells to escape apoptosis, which can also be used to predict
minimal residual disease (69). In addition to anti-apoptotic
effects, upregulation of BCL-2 family of proteins also have
implications in reducing unfolded protein response (UPR)
stress in cancer cells through IRE1α pro-survival pathway
activation (67). Activation of the IRE1α pathway involves
the splicing of Xbp1, leading to endoplasmic reticulum (ER)
chaperone synthesis and ER-associated protein degradation
complex formation that ultimately supports cancer cells in
adapting to ER-stress (70). Proteomic analysis of secretomes
derived from both apoptotic-resistant and apoptosis-sensitive
AML cells reveal an increase of apoptosis-regulating proteins

are present in the secretome of apoptosis-sensitive AML
cells (67). Furthermore, functional clusters of proteins within
apoptosis-resistant cell-derived exosomes were associated with
gene ontology (GO) terms such as non-coding RNA (ncRNA)
metabolism, DNA replication and repair, translation elongation,
and mRNA splicing. In addition, these exosomes contained
NPM1, a protein associated with increased apoptosis-resistance.
Meanwhile, exosomes from apoptosis-sensitive cells were more
strongly associated with inflammatory and stress response GO
terms. These findings suggest that apoptosis resistance can be
transferred from apoptosis-resistant to apoptosis-sensitive AML
cells via exosomes (Figure 1C) (67).

EV-mediated transfer of miRNAs is known to increase
chemoresistance in several types of cancer (68, 71, 72).
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TABLE 1 | Modes of cell-cell communication and their potential role in drug resistance.

Mode of

communication

Action Effects in cancer Representative source

Exosomes Membrane-bound vesicles that transport

molecules between cells

Transfer proteins, miRNA, and other

molecules that increase proliferation,

metastasis, and chemoresistance

(29)

Cytokines Small proteins that are secreted from cells and

act on receptors in order to have effects on

immunity, inflammation, and hematopoiesis

Alterations in levels of pro- and

anti-inflammatory cytokines has been shown

to increase cell proliferation, survival, and

resistance to chemotherapy

(49)

Gap junctions Integral membrane proteins that enable a transfer

of ions and small molecules that act as second

messengers

Gap junctions have been shown to be

involved in cell communication in leukemia

and chemosensitivity

(50)

Tunneling

nanotubes

Cell surface protrusions that enable exchange of

signals, proteins, pathogens, and organelles

Have been shown to transfer mitochondria,

resulting in increased drug resistance

(51)

TABLE 2 | Transfer of molecular cargo via exosomes in cancer.

Cell type EV cargo Example Effect Representative source

AML mRNA IGF-IR Upregulate VEGF expression and modulate

proliferative signaling

(8)

Breast cancer miRNA miR-155 Involved in TGF-β-induced

epithelial-mesenchymal transition, invasion,

metastasis, and drug resistance

(54)

Non-small cell Lung

cancer

Long non-coding

RNA

MALAT-1 Promotes tumor growth and migration and

prevents apoptosis in tumor cells

(55)

Gastric cancer siRNA HGF Downregulates HGF expression, inhibits tumor

growth, and angiogenesis, suppresses

proliferation and migration of vascular and cancer

cells

(56)

AML Proteins BMP-2 Contributes to an osteogenic differentiation bias

and plays a role in the induction of the unfolded

protein response

(12)

Pancreatic cancer DNA DNA spanning all

chromosomes with mutations

in KRAS and P53

Regulatory influence on recipient cells (57)

AML Cytokines TGF-β1 Down-regulate NKG2D expression and impair

natural killer cell cytotoxicity

(58)

Exosomes derived from BMSCs of AML patients express
different miRNA profile compared to healthy controls (10).
More specifically, analysis of BMSC-derived exosomes from
eight AML patients revealed that miR-155 and miR-375 are
consistently enriched in exosomes, unlike exosomes derived
from healthy donor BMSCs. Furthermore, the effect of
these miRNAs in chemoresistance was demonstrated in a
tyrosine kinase inhibitor AC220 challenge, where Molm14 AML
cells pretreated with AML BMSC-derived exosomes gained
resistance to tyrosine kinase inhibitor and conferred AML cell
protection (10).

EV-mediated resistance transfer was also demonstrated
in a separate study, where multidrug-resistant AML cells
were able to transfer chemoresistance properties to chemo-
sensitive AML cells via EV and induce the expression of
drug efflux pump multidrug resistance protein 1 (MRP-1)
(68). Tracking of fluorescently-labeled EVs derived from
chemo-resistant cells showed that those EVs were uptaken

by 85% of chemo-sensitive AML cells, which provided
increased resistance to daunorubicin. Exposing EV-treated
chemo-sensitive AML cells with MRP-1 inhibitor led to
increased intracellular retention of daunorubicin following
daunorubicin treatment. However, it is unclear whether the
exosomes directly transferred MRP-1 or MRP-1 regulatory
factors. To better understand the role of exosomes in this
gain of chemoresistance, a miRNA analysis of exosomes was
performed and showed that exosomes from chemo-resistant
cells, in comparison to exosomes from chemo-sensitive cells,
contained four-fold more miR-19b and miR-20a, which are
often overexpressed in cancer. Both miRNAs play a role
in the inhibition of TGF-β signaling (73). Additionally,
research suggests that elevated levels of both miRNAs may
activate PI3 kinase/Akt signaling, which could lead to the
overexpression of MRP-1, supporting the possibility that
exosomes mediate the transfer of chemoresistance via miRNAs
transport (Figure 1D) (68, 74).
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DIRECTIONAL TRANSFER VIA EVS
BETWEEN AML AND STROMAL
ELEMENTS

In addition to exosome-mediated transfer of chemoresistance
phenotypes between chemo-resistant and chemo-sensitive
leukemic cells, exosomes can also transport cargo from AML
cells to BMSCs that may contribute to the formation of a
leukemia-supportive BM microenvironment (Figure 2A).
A recent study reported that treatment of AML cells with
BMSC-derived exosomes modestly decreased etoposide-induced
apoptosis (11). However, in AML cells and BMSCs co-culture,
levels of pro-inflammatory cytokine IL-8 significantly increased
in BMSCs and protected AML cells from etoposide-induced
apoptosis (Figure 2B). Furthermore, inhibition of exosome
secretion using an inhibitor of the EV budding regulator neutral
sphingomyelinase (GW4869) resulted in a reduction of IL-8
secretion from BMSCs in a BMSC-AML co-culture setting,
which had no effect on IL-8 secretion levels in BMSCs cultured
alone (75). This finding provides evidence that AML cells secrete
exosomes that induce BMSCs to release IL-8, which in turn
makes AML cells more resistant to etoposide (11). Similarly,
in a study of chronic myelogenous leukemia (CML), IL-8
secreted from BMSCs treated with CML exosomes binds to
two transmembrane domain receptors, CXCR-1 and CXCR-2,
and increased cell adhesion, motility, and survival of CML
cells (76).

Our own recent study suggests that AML exosomes may
also modulate the microenvironment by transfer of ER stress
responses via exosomes in BMSCs (12). During chemotherapy,
leukemic cells can become deprived of oxygen, nutrients, and
intracellular calcium, leading to the accumulation of unfolded
proteins within the ER (77). This leads to activation of the UPR,
decreasing the synthesis of new proteins, increasing unfolded
protein degradation and protein folding chaperone levels, while
helping cancer cells evade chemo-induced apoptosis (77). We
have shown that the transfer of EVs from AML cells to
BMSCs can enhance extrinsic chemoresistance and propose that
AML exosomes trigger UPR by transferring BMP-2, a protein
known to be upregulated in AML (Figure 2C). The trafficking
of BMP-2 may cause increased osteogenic differentiation in
MSCs, and an increase AML growth by inducing connective
tissue growth factor (CTGF) expression in MSCs (42). In
our study, ELISA analysis of EVs released from Molm-14
cells treated with Thapsigargin, a drug that induces UPR by
inhibiting sarcoplasmic/endoplasmic reticulum Ca2+-ATPase,
showed higher levels of BMP-2 than EVs released from untreated
Molm-14 cells (12). Additional evidence supports that AML
EVs traffic to the ER of MSCs and OPCs in vitro and induce
upregulation of both GRP78, a key chaperone protein involved
in UPR, and spliced Xbp1, a transcription factor for chaperones
and ER stress sensors (12). Finally, high levels of BMP signaling
have been linked to elevated expression of anti-apoptotic genes
(42). Mechanistically, BMP actionmay involve additional cellular
targets, as have been identified in CML where BMP-2 and
BMP-4 were found to promote overexpression of the BMPR1a
and altered downstream signaling in leukemic stem cells (78).

Therapeutically, BMP-mediated leukemic myeloid progenitor
expansion can be rescued through neutralization of circulating
BMP-2 and BMP-4 proteins using soluble BMP receptor acting
as a decoy. Taken together, these observations suggest that
BMP-2 trafficked by exosomes influences recipient cell ER
stress responses, increasing AML cell survival by altering gene
expression and driving osteogenic MSC differentiation.

EXOSOMES PROTECT LEUKEMIA CELLS
AGAINST IMMUNOTHERAPY

While several chemoresistance mechanisms in leukemia involve
the direct delivery of critical molecules via exosomes, resistance
can also arise through immune dysregulation. For example,
exosomes can reduce the efficacy of adoptive natural killer (NK)
cell therapy in AML patients through interaction with activated
NK-92 cells (79). More specifically, exosomes appeared to reduce
the efficacy of activated NK-92 by transporting inhibitory ligands
to NK-92 surface receptors, as demonstrated through a co-
incubation study that exosomes derived from AML patients
with NK-92 cells resulted in a 40% reduction of NKG2D
receptor expression on NK-92 cell surface. As NKG2D receptor
is involved in initiating a cytotoxic and cytokine response against
threats, and inhibition of this receptor results in a reduction
in cytotoxicity of NK-92 cells against AML blasts (Figure 3A).
Exosome delivery of TGF-β to NK-92 cells is believed to be in
part responsible for the decrease in NKG2D through TGFβRI/II
pathway activation (79). Conceptually, exosomes may also
contribute toward immunotherapy resistance through binding
of antibodies to their surface. One study suggested that in CLL,
exosomes may lower the bioavailability of rituximab, a common
immunomodulatory antibody that targets the CD20 epitope on
B-cells. Exosomal binding of anti-CD20 reduces circulating levels
of rituximab, which in turn protects lymphocytic leukemia cells
from anti-CD20 mediated opsonization (Figure 3B) and may
explain why a number of CLL patients develop resistance to
rituximab treatment (80).

AML cells also release exosomes that contain a potent
immunosuppressive protein, programmed death-receptor ligand
1 (PD-L1) (79). PD-L1 binding to its cognate receptor,
programed death-receptor 1 (PD-1), in both leukemia and solid
tumors are able to suppress T cell activation in response to
T cell receptor stimulation (81, 82). Expression of PD-L1 by
tumor cells prevents T cell- and NK cell-mediated immune
recognition and clearance, which increases the number of T
cells with an “exhausted” and unreactive phenotype. It has been
shown in both prostate cancer and melanoma that exosome-
bound PD-L1 contributes to T cell suppression in vitro and
in vivo. Additionally, exosomal PD-L1 has been shown to act
as a decoy, sequestering anti-PD-L1 checkpoint inhibitors and
outcompeting the anti-PD-1 checkpoint blockade for binding
sites on cytotoxic CD8+ T cells (83, 84). Similar to prostate and
melanoma models, we have found that AML EVs suppress T cell
activation and adsorb anti-PD-L1 antibodies, suggesting that EVs
may also contribute to immune checkpoint inhibitor resistance in
AML (Figure 3C) (Butler, unpublished).
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FIGURE 2 | EV trafficking between leukemia and stromal cells reduces sensitivity to chemotherapeutics. (A) Bidirectional trafficking between leukemia and stromal

cells leads to alterations in both the cellular composition and secretome of the stromal compartment. (B) In CML, EV-mediated signaling upregulates the secretion of

IL-8 from BM stromal cells. Increased IL-8 in the leukemic microenvironment increases CML cell adhesion, motility, and survival through CXCR1 and CXCR2

engagement, and promotes resistance to etoposide. (C) AML cells from the nutrient-depleted leukemic microenvironment exhibit marked endoplasmic reticulum (ER)

stress and upregulation of BMP-2. AML-EVs transfer BMP-2 and ER-stress to stromal MSCs and OPCs, activating the unfolded protein response pathway (UPR).

UPR activation induces osteogenic differentiation in MSCs and causes increased apoptosis in osteoprogenitor cells, altering the cellular composition of the BM, AML

survival, and response to chemotherapy.

FIGURE 3 | EV mediated resistance to immunotherapy. (A) AML EVs contain numerous immunosuppressive ligands (TRAIL, FASL, MICA/B) that reduce natural killer

(NK) cell reactivity through receptor mediated binding. This EV-mediated signaling interferes with cell-based therapy, diminishing cytotoxic killing of tumor cells

following adoptive transfer of NK cells. (B) EVs in CLL contain surface CD20, which acts as a decoy by sequestering Rituximab (anti-CD20) and preventing

therapeutic antibodies from binding and opsonizing the tumor cells. (C) AML cells release EVs that contain the immunosuppressive ligand PD-L1. The transfer of

PD-L1 via EVs reduces T cell activation in response to TCR stimulus, while also acting as decoys that compete with checkpoint inhibitor binding and prevent

therapeutic antibodies from reaching their intended target.

CONCLUSION AND PERSPECTIVE

Recent research has uncovered numerous mechanisms through
which EVs modulate proliferation, migration, and survival of

malignant cells. While studies have implicated several specific
proteins, cytokines, mRNAs, and miRNAs in the EV-mediated
transfer of chemoresistance, the full spectrum of EV cargo
involved in extrinsic chemoresistance remains to be fully defined.
Additionally, the mechanisms through which many of these

transferred miRNAs and proteins influence cell survival during
chemotherapy are not fully understood. Investigation into
leukemic stem cells and their role in transferring functional
resistance factors similarly remains a potential focus for future
AML EV research. In vivo trafficking of EVs could also provide
additional perspectives on how the chemoresistance phenotype
is being transferred (85). While phenotypic changes have been
observed due to the trafficking of miRNAs and other molecules
via EVs, these EVs may additionally influence cells through
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novel ligand-receptor mediated mechanisms with EV surface
molecules. Here, a recent study provides an elegant approach
to EV surface protein profiling, and it would be valuable to
investigate whether EVs exhibit preferential targeting based
on surface epitopes, and how this may alter chemoresistance
(86). Recent work suggesting EV involvement in metastatic
dissemination and functional conversion of other tissues is
instructive, and may hold insight into the spread of AML to
extramedullary sites (87). It will be critical to improve our
understanding of dose and potency of EVs needed to confer
drug resistance and whether a certain tumor burden must first
exist, before AML-derived EVs have a significant influence on
the leukemic niche. With numerous pathways implicated in the
development of extrinsic chemoresistance, selectively targeting
EV biogenesis or uptake represents a potential way to prevent
intracellular leukemia cell survival signaling. As a proof-of-
concept toward EV-uptake inhibition as a therapeutic strategy,
Ortiz et al. recently showed that tumor EV-mediated pre-
metastatic niche conversion can be prevented pharmacologically
via administration of an EV-uptake inhibitor (87). On the
other hand, Rab27 alpha and -beta (Rab27a/b) have both been
identified as a critical modulators of EV biogenesis and secretion
(39, 88). Thus, blocking EV biogenesis via loss of Rab27a/b
function (89) represents a potential therapeutic approach. The
ultimate goal, of course, is not so much to suppress EV trafficking

per se, but rather to exploit our understanding of EV biology
to identify cellular targets to overcome chemoresistance and
achieve sustained long-term remissions. As an example, we
previously have identified the role of miR-155, highly abundant
in AML-EV, in the suppression of residual hematopoiesis in
the AML BM (90). That study also introduced a discovery
approach for novel EV-miRNA targets utilizing of molecular
(RNA-induced silencing complex trap) and STING database
(bioinformatic methodologies). Such an approach enables a
broader understanding of complex AML-EV-mediated signaling
and novel candidate targets (90). From a disease standpoint,
minimizing and reversing the functional adaptation of the BM
into a leukemia reinforcing compartment provides untapped
opportunities to improve treatment outcomes in AML patients.
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