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Abstract  The temporal organization of molecular and physiological processes is 
driven by environmental and behavioral cycles as well as by self-sustained 
molecular circadian oscillators. Quantification of phase, amplitude, period, and 
disruption of circadian oscillators is essential for understanding their contribu-
tion to sleep-wake disorders, social jet lag, interindividual differences in entrain-
ment, and the development of chrono-therapeutics. Traditionally, assessment of 
the human circadian system, and the output of the SCN in particular, has 
required collection of long time series of univariate markers such as melatonin or 
core body temperature. Data were collected in specialized laboratory protocols 
designed to control for environmental and behavioral influences on rhythmicity. 
These protocols are time-consuming, expensive, and not practical for assessing 
circadian status in patients or in participants in epidemiologic studies. Novel 
approaches for assessment of circadian parameters of the SCN or peripheral 
oscillators have been developed. They are based on machine learning or mathe-
matical model-informed analyses of features extracted from 1 or a few samples 
of high-dimensional data, such as transcriptomes, metabolomes, long-term 
simultaneous recording of activity, light exposure, skin temperature, and heart 
rate or in vitro approaches. Here, we review whether these approaches success-
fully quantify parameters of central and peripheral circadian oscillators as 
indexed by gold standard markers. Although several approaches perform well 
under entrained conditions when sleep occurs at night, the methods either per-
form worse in other conditions such as shift work or they have not been assessed 
under any conditions other than entrainment and thus we do not yet know how 
robust they are. Novel approaches for the assessment of circadian parameters 
hold promise for circadian medicine, chrono-therapeutics, and chrono-epidemi-
ology. There remains a need to validate these approaches against gold standard 
markers, in individuals of all sexes and ages, in patient populations, and, in par-
ticular, under conditions in which behavioral cycles are displaced.
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Assessing the phase, period, and amplitude of cir-
cadian oscillators is central to the study of circadian 
rhythms, be it in cyanobacteria, mice, or humans 
(Kuhlman et al., 2018). Accurate phase measurements 
enable description of the phase relationship (relative 
timing) of circadian oscillations with the environmen-
tal and behavioral cycles in the study of entrainment 
in humans (Duffy et  al., 1999; Wright et  al., 2005). 
Accurate phase assessments are also a prerequisite to 
describe the interrelations between circadian oscilla-
tors in any multioscillator system, be it hierarchically 
organized or not (Honma, 2018; Dijk and Lockley, 
2002). Accurate assessments of period and amplitude 
enable identification of mechanisms underlying 
abnormal entrainment or lack of robustness in circa-
dian regulation of physiological processes. Developing 
accurate and unobtrusive methods to assess period, 
phase, amplitude, robustness, and disruption is criti-
cal in understanding the role of circadian rhythms in 
physical and mental health and their disorders. 
Traditional human circadian rhythm research areas 
include shift work, jet lag, and circadian rhythm sleep-
wake disorders (Sack et  al., 2007a). More recently, 
phenomena such as social jet lag and applications 
like chrono-therapeutics and chrono-medicine have 
gained attention, and the epidemiology of circadian 
disruption is an emerging area of interest (Roenneberg 
and Merrow, 2016). Methods that can accurately 
assess circadian parameters and be implemented at 
scale and at low cost are critical for the translation of 
basic circadian rhythm research to all these areas 
(Cederroth et al., 2019; Mullington et al., 2016; Munch 
and Kramer, 2019). Recent years have seen the intro-
duction of novel approaches to the assessment of cir-
cadian parameters and, in particular, circadian phase 
in humans. Some of these methodologies use machine-
learning approaches to extract features that predict 
circadian parameters from high-dimensional “omics” 
data, whereas others are based on multiple behav-
ioral, environmental, and physiological variables col-
lected from research or consumer-grade wearables, 
combinations of mathematical modeling and wear-
able-based data acquisition, or analyses of in vitro cir-
cadian behavior in human cell cultures. Here, we will 
revisit (Duffy and Dijk, 2002) some of the issues, pit-
falls, and requirements for the assessment of circadian 
parameters in humans and discuss some of the novel 
approaches within that context.

Diurnal Rhythmicity, Circadian 
Rhythmicity, Endogenous Circadian 

Components, behavioral masking

Rhythmicity may be observed in any physio-
logic or behavioral variable, and quantification of 

this rhythmicity may be of intrinsic interest. However, 
rhythmicity is often assessed not for its own sake but 
rather to quantify characteristics of an underlying cir-
cadian oscillator, which is assumed to drive the 
rhythmicity being assessed. A central concept in cir-
cadian rhythm research is that an overt 24-h diurnal 
rhythm can only be considered a circadian rhythm 
when it persists in the absence of masking by external 
environmental and behavioral 24-h cycles (Kuhlman 
et al., 2018). Many laboratory experiments in which 
organisms, including humans, were studied while 
shielded from 24-h environmental cycles have dem-
onstrated that at least part of overt rhythmicity is 
driven by endogenous circadian oscillators. However, 
those studies have also revealed that 24-h environ-
mental and behavioral cycles contribute to 24-h 
rhythmicity in many aspects of physiology. This  
distinction between diurnal rhythmicity (due to 
24-h rhythms in the environment and in behavior) 
and circadian rhythmicity (due to endogenous pro-
cesses) is critical to take into account when develop-
ing and applying methods for the quantitative 
assessment of circadian rhythmicity. Unfortunately, 
this important distinction is often overlooked, and 
we believe it has hampered progress in developing 
novel methods for assessing circadian timing and in 
understanding the role of circadian oscillators in 
disease (Lyall et al., 2018).

In the context of the distinction between diurnal 
and circadian rhythmicity, human circadian rhythm 
researchers also make a distinction between endoge-
nous circadian components of a rhythm and evoked 
components. This distinction relates to the concept of 
behavioral masking and implies that assessment of 
the endogenous circadian component of a rhythm not 
only requires that components driven (masked) by 
environmental cycles are removed but also that com-
ponents driven (masked) by behavioral cycles must 
be controlled (Rietveld et al., 1993). It has now become 
clear that behavioral and environmental masking 
extends to rhythmicity at the molecular level. Thus, 
rhythmicity in the brain and blood transcriptome is 
to a large extent driven by the timing of the sleep-
wake cycle (Maret et al., 2007; Hor et al., 2019; Archer 
et al., 2014; Archer and Oster, 2015) and is affected by 
insufficient sleep (Moller-Levet et  al., 2013; Laing 
et al., 2019b). Likewise, rhythmicity in the liver is to a 
large extent driven by feeding rhythms and influ-
enced by light (Atger et  al., 2015; Greenwell et  al., 
2019; Koronowski et al., 2019). Protocols such as the 
constant routine or forced desynchrony, which elimi-
nate or distribute masking uniformly across the circa-
dian cycle, were developed to control this behavioral 
masking so that aspects of rhythmicity driven 
“directly” by circadian clocks could be quantified. 
These protocols have been used primarily in human 
studies, and the confounding effects of behavioral 
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cycles, and the rest-activity cycle in particular, have 
often been ignored in animal studies.

Novel circadian biomarkers must be robust to 
altered environmental and behavioral influences for 
them to be useful in patients with circadian rhythm 
disorders, in people who do shift work or have 
recently travelled to another time zone, and in indi-
viduals with social jet lag or who keep irregular sleep 
schedules. Therefore, in our evaluation of novel 
methods to quantify circadian rhythmicity, we con-
sider the extent to which they can distinguish between 
environmental, behavioral, or endogenous circadian 
components of overt rhythmicity.

A biomarker for circadian phase, 
amplitude, and period of which oscil-

lator?

Now that it has been established that circadian 
oscillators are present in every tissue, organ, and cell, 
it is more important than ever to be explicit about the 
circadian oscillator of interest when assessing a rhyth-
mic output (Mohawk et  al., 2012; Mure et  al., 2018; 
Fig. 1). Traditionally, and particularly so in research 
on circadian rhythm sleep-wake disorders, there has 
been a focus on assessing parameters of the master 
circadian pacemaker located in the SCN (Sack et al., 
2007a, 2007b). Obviously, there is more to the human 
circadian system than the SCN. Cardiologists may be 
interested in the phase, period, or amplitude of circa-
dian oscillators in the heart (Thosar et  al., 2018) or 
how the timing of antihypertensives affect blood pres-
sure control (Smolensky et al., 2017), and clinicians or 
researchers of metabolism may want to assess circa-
dian parameters in the pancreas or adipocytes (Qian 
and Scheer, 2016). In fact, insulin sensitivity rhythms, 
glucose rhythms, and many other rhythms related 
to metabolism have already been characterized in 
humans (Poggiogalle et  al., 2018). Immunologists 
may be interested in the extent to which the various 
white blood cell types vary across the diurnal cycle 
(Pick et al., 2019), how molecular processes related to 
immune function oscillate within each of these cell 
types, and how far these intracellular or intercellular 
rhythms are directly modulated by local circadian 
clocks (Baxter and Ray, 2019; Downton et al., 2019). 
Oncologists are interested in rhythmicity in tumors 
and how circadian phase assessment may allow the 
most effective timing of chemo- or radiotherapies 
(Shafi and Knudsen, 2019; Shuboni-Mulligan et  al., 
2019). Neurologists and psychiatrists are interested in 
circadian rhythms in mood, seizures, and neurode-
generation (Logan and McClung, 2019; Khan et  al., 
2018; Leng et  al., 2019; Pavlova et  al., 2009; Lucey 
et  al., 2017). Whether these rhythms in heart rate, 

glucose, insulin sensitivity, or leukocytes are driven 
by local tissue clocks and/or through central control 
from the SCN, and to what extent these rhythms 
reflect “endogenous” circadian rhythms, or diurnal 
rhythmicity, or instead are driven by rhythmic behav-
iors, is not easily established. Nevertheless, novel 
methods and biomarkers to quantify rhythmicity and 
biomarkers may facilitate the characterization of tis-
sue-specific local oscillators, allowing for increased 
understanding of many normal and pathological 
physiological processes and the application of chro-
notherapies targeting specific organs and tissues.

Standard parameters of circadian oscillators and 
the rhythms they generate are phase and intrinsic 
period, but aspects such as amplitude and waveform 
of rhythms can also be used to characterize rhythms, 
although the latter two are rarely assessed.

Traditional Peripheral markers for 
SCN Phase and Period

The SCN drives many daily rhythms, including 
those observed in the autonomic nervous system 
(Buijs et  al., 2013), endocrine rhythms (Czeisler and 
Klerman, 1999; Morris et al., 2012), and in particular 
the circadian component of the sleep propensity 
rhythm (Dijk and Czeisler, 1995). The desire to assess 
characteristics of the circadian pacemaker located in 
the SCN arose from hypotheses predicting that 
changes in endogenous circadian parameters were the 
cause of changes in sleep timing, such as observed in 
aging, circadian rhythm sleep-wake disorders, or 
between chronotypes (Sack et  al., 2007b). Diagnosis 
and understanding of the etiology of circadian rhythm 
sleep-wake disorders may be informed by accurate 
assessment of the SCN’s intrinsic period, amplitude, 
and/or phase. This desire to understand the status of 
the SCN pacemaker is also driven by the recognition 
that effects of sleep-wake therapeutics, be it light 
treatment or melatonin administration, are dependent 
on the circadian phase at which they are administered 
(Duffy and Wright, 2005; Keijzer et al., 2014). Effective 
timing of chrono-therapies aiming to correct SCN-
driven rhythms requires accurate assessment of the 
SCN phase to determine when they should be applied 
to obtain the desired results.

Because the SCN is not directly accessible in 
humans, the timing of peripheral markers is used as a 
proxy for SCN phase. The choice of which marker(s) 
to use is influenced by the ease of assessment, cost, 
and reliability of the marker itself. While sleep-wake 
propensity is influenced by the circadian system, the 
timing of the sleep-wake cycle is not considered a 
reliable marker of SCN phase or period in humans 
(Czeisler et  al., 1999).Even though the circadian 
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(SCN) phase at which sleep occurs affects the dura-
tion and structure of sleep, studies of shift workers 
and jet-lagged travelers as well as laboratory studies 
of spontaneous and forced desynchrony have dem-
onstrated that sleep can occur at many phases and 
that the relationship between the timing of the sleep-
wake cycle and SCN phase varies across conditions 
and both between and within individuals (Dijk and 
Lockley, 2002).

Peripheral rhythms such as core body tempera-
ture, cortisol, and melatonin rhythms have been used 
extensively as markers for circadian phase of the SCN. 
Several lines of evidence support the validity of these 
peripheral markers for SCN phase. Neuroanatomical 
tracer and lesion studies show that through its pro-
jections to the paraventricular nucleus and other 
hypothalamic nuclei, the SCN drives rhythmicity 
in melatonin and cortisol as well as core body 

temperature (Moore, 2013). Further evidence comes 
from the observation that exposure to light induces 
equivalent phase shifts in these phase markers 
(Czeisler et al., 1990), and the sleep-propensity rhythm 
is closely coupled to the core body temperature and 
melatonin rhythms (Dijk et  al., 1997). Reductions in 
amplitude induced by light pulses or phase shifts of 
the light-dark and sleep-wake cycle are correlated 
across melatonin, cortisol, and core body temperature 
(Dijk et al., 2012; Czeisler et al., 1990).

Given the validity of these phase markers, assess-
ing the phase of the SCN relative to clock time or to 
the external light-dark cycle, or even relative to 
another oscillator, would seem to be straightforward. 
However, the key pitfall in using these phase mark-
ers remains that their overt rhythmicity is com-
posed of both “endogenous” circadian components 
and “evoked” components. In humans, the plasma 

Figure 1.  A biomarker for which rhythm and what generates this rhythm? Modified from Bollinger and Schibler (2014). Structure of 
the human circadian timing system. Molecular clocks and circadian rhythms are present in the brain, including the SCN-based oscilla-
tor and periphery. A circadian biomarker may provide information about the rhythms in the SCN or in peripheral tissues and organs. 
Rhythms in organs and tissues are influenced by external rhythmic signals, SCN-driven signals, local circadian oscillators, and behav-
ioral rhythms, such as sleep or eating. A biological sample will contain many features (transcripts, proteins, metabolites). These various 
features will be influenced by SCN input, the local circadian oscillator, and behavior. The selection of the final feature set for the bio-
marker will depend on the purpose of the biomarker (e.g., assessing SCN phase or phase of tissue-specific circadian oscillator). In many 
cases, the tissue or organ of interest will not be accessible, and the features will be extracted from, for example, blood, which makes the 
identification of robust biomarkers even more challenging.
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melatonin rhythm serves as an example of this. In 
constant darkness, a prominent rhythm of melatonin 
concentration in blood or saliva can be observed, 
with high values during the biological (subjective) 
night and low values during the biological (subjec-
tive) day. However, light has long been known to 
suppress melatonin. While initially it was thought 
that only bright light could do so, it is now recog-
nized that light intensities as low as 6 lux can acutely 
suppress melatonin by 50% in some participants, 
thereby “masking” the endogenous SCN phase and 
amplitude (Phillips et  al., 2019; Zeitzer et  al., 2000; 
Fig. 2D). Therefore, accurate estimation of the phase 
of the melatonin rhythm requires a time series of 
blood or saliva samples to be collected in very dim 
light (Benloucif et al., 2008), a requirement that is not 
easily met in the real world. The cortisol rhythm, 
besides being affected by light (Rahman et al., 2019), 
is also masked by stress and fasting but, just like mel-
atonin, is little affected by sleep (Oster et  al., 2017; 
Fig. 2B).

Whereas, in the case of melatonin, the primary 
confounding variable is environmental (i.e., light), 

for other markers of SCN phase, the primary con-
founding variables are behavioral. Core body tem-
perature is lower at night than during the day. The 
amplitude and phase of the observed core body tem-
perature rhythm are very much influenced by the 
timing of rest/sleep. This is demonstrated by data 
showing that when sleep occurs at night, the ampli-
tude of the temperature rhythm is high, whereas 
when sleep occurs during the day, the amplitude of 
the rhythm is greatly reduced (Fig. 2A). In fact, this 
masking can be so extreme as to cause an observed 
temperature nadir to occur during the day, even 
though the true endogenous nadir (revealed under 
appropriate conditions) is located at night. The mask-
ing impact of sleep on core temperature is due to a 
combination of supine posture, inactivity, and sleep 
itself (Krauchi and Deboer, 2010). The difficulty of 
assessing circadian phase on the basis of temperature 
may be further illustrated by contrasting core tem-
perature and skin temperature: whereas sleep lowers 
core temperature, skin temperature rises when we lie 
down and fall asleep, and the pattern of temperature 
varies across distal and proximal parts of the body 

Figure 2.  Effects of sleep-wake cycle and light exposure on rhythmic variables. (A) Daily rhythm of core body temperature is altered 
when sleep occurs in phase (at night) versus out of phase. Recalculated from Dijk and Czeisler (1995). (B) Rhythms of plasma melatonin 
and cortisol are not much affected by sleeping in phase (during the night) or out of phase (during the day). Data from Archer et al. (2014). 
(C) Frequency distribution of the acrohases of rhythmic transcripts in whole blood when sleeping in phase (blue) and out of phase. 
From Archer et al. (2014). (D) Individual-level dose-response curves for melatonin suppression and light levels. Blue, high-sensitivity 
individual; red, low-sensitivity individual. From Phillips et al. (2019).
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(Krauchi et al., 2000; Krauchi and Wirz-Justice, 1994). 
The conditions in which assessment of SCN phase is 
of most interest are also conditions in which this 
assessment is most challenging. In shift work and jet 
lag, sleep will often be displaced from the normal cir-
cadian phase and/or normal clock time. Altered 
phase relationships between sleep and SCN phase 
also occur in circadian rhythm sleep-wake disorders, 
social jet lag, and neurodegeneration (Rahman et al., 
2009). Furthermore, the sleep-wake cycle is almost 
always associated with cycles of dark-light and fast-
ing-feeding, and these latter cycles also affect physi-
ological, endocrine, and molecular rhythms. Thus, 
these peripheral markers (melatonin, cortisol, core 
temperature) can be used to assess SCN status only 
when the masking effects of environmental and 
behavioral cycles are adequately controlled. For the 
same reasons, adequate environmental and behav-
ioral control should be a prerequisite in the search for 
any novel methods to assess SCN status.

Univariate markers such as melatonin, cortisol, or 
core temperature can only be used as markers of the 
SCN status by collection of a time series. The time 
series should be sufficiently long to identify the phase 
(i.e., minimum, maximum, onset or offset, of the vari-
able under study). If the amplitude of the central 
clock is of interest, the time series must be at least a 
full circadian cycle (24 h). In the search for novel 
methods to assess SCN status, a minimum duration 
time series of at least 24 h should be used.

In summary, peripheral univariate markers can be 
used to assess circadian parameters such as phase 
and amplitude, but they require carefully controlled 
conditions, costly and labor-intensive protocols, with 
repeated sampling of blood, urine, or saliva over 
extended periods of time, and are often burdensome 
for the research participant.

The dim-light melatonin onset (DLMO; Lewy 
et al., 1999) assessed in blood or saliva has emerged 
as the gold standard marker of choice, but urinary 
6-sulphatoxy melatonin has also been used success-
fully (e.g., Lockley et al., 2015), although the duration 
of collection is longer and the temporal resolution of 
the phase assessment may be lower than for the 
DLMO.

DLMO as a biomarker for SCN Phase

The term biomarker is frequently used in medicine 
and clinical trials and is defined as “a characteristic 
that is objectively measured and evaluated as an indi-
cator of normal biological processes, pathogenic pro-
cesses, or pharmacologic responses to a therapeutic 
intervention” (Menetski et  al., 2019). Some of the 
required or desirable characteristics of a biomarker 

are that it is present in easily accessible tissues or flu-
ids, that it can be reliably quantified through estab-
lished essays, and that it is sensitive, specific, and 
valid in a wide variety of situations (robustness) and 
populations. The DLMO is essentially a biomarker 
for SCN phase, and it meets many biomarker require-
ments. Importantly, even though melatonin is masked 
by light, the masking effects of the sleep-wake cycle 
itself on melatonin are small. This implies that mela-
tonin is a robust marker for central circadian phase in 
those conditions in which the phase relationship 
between sleep and SCN may be changed.

Even though the DLMO is considered a gold stan-
dard, its assessment is not without error. This might 
be simple measurement error, such as assay errors or 
errors related to imperfect implementation of the dim-
light protocol. In addition, it may be that the phase 
relation between the melatonin rhythm and the rele-
vant SCN rhythm (e.g., the phase-response curve to 
light or the sleep-propensity rhythm) varies between 
individuals or conditions.

Kronauer and colleagues (2002) estimated the 
error of melatonin-based phase assessments of the 
human circadian pacemaker in a detailed comparison 
of the variability of phase assessments using melato-
nin, cortisol, and core body temperature. It was con-
cluded that melatonin-based methods were superior 
and that the standard deviation for melatonin-based 
methods ranged from 14 to 21 min. This implies that 
within an individual, phase differences of more than 
an approximately 30-min phase can be reliably 
assessed. For a description of how accuracy and 
uncertainty of melatonin-based phase assessments 
are affected by sampling frequency, analysis meth-
ods, populations studied, and thresholds applied, we 
refer to Klerman et al. (2002), Danilenko et al. (2014), 
and Lewy et al. (1999).

In its standard implementation, the main draw-
backs of the DLMO are that (1) it requires special 
environmental conditions (dim light) and (2) it 
requires a time series of at least several hours of sam-
ples. The required sampling frequency and duration 
of the time series depends on any a priori knowledge 
about the approximate phase and on the required 
precision of the phase assessment. In many situa-
tions, it can be assumed that melatonin will rise 
sometime in the evening hours or early night (a few 
hours prior to usual bedtime), whereas in other situa-
tions, no such assumptions can be made (e.g., non–
24-h sleep-wake disorder, shift work, or jet lag), and a 
time series of 24 h may be required to capture the 
DLMO. Whereas the DLMO is most commonly 
assessed under controlled laboratory conditions, pro-
tocols for the use of the DLMO in the home environ-
ment have been developed and validated in patient 
populations (Keijzer et al., 2011; Pullman et al., 2012; 
Burgess et al., 2016).
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Requirements/Desirables for Novel 
Approaches fo assess Parameters of 

the SCN in Humans

The main aim of novel approaches is to overcome 
the limitations of current approaches. At the same 
time, these novel approaches should meet the require-
ments outlined above, such as being robust against 
masking effects and be able to accurately reflect SCN 
phase. Thus, novel phase markers should be evalu-
ated against a gold standard phase marker for SCN 
(e.g., DLMO). The precision of the biomarker should 
meet the requirements of its application or use case. 
Importantly, for many applications/use cases, the 
biomarker should assess the circadian parameter of 
interest with sufficient precision to quantify the 
parameter at the level of the individual, rather than 
the “group” level.

How to Quantify the Performance of a New 
Marker?

The performance of a new marker against a gold 
standard can be quantified in a variety of ways, and 
different publications use different methods. Some of 
the metrics used are the error and its standard devia-
tion, the absolute error and its standard deviation, the 
median error and its range, the fraction of samples 
with an error less than a particular threshold, the cor-
relation between gold standard and novel marker, 
regression analysis of gold standard versus novel 
method, and there are probably others. All of these 
methods have their advantages and disadvantages, 
and their validity depends on whether underlying 
assumptions about the distribution of the data (e.g., a 
normal distribution) are valid. An issue relevant for 
assessing errors of phase is that the circular nature of 
the data needs to be taken into account (e.g., a phase 
at 23:59 and 00:02 h are very close). Another point to 
keep in mind is that a mean error may simply repre-
sent a systematic bias and can be corrected for, and an 
absolute error is useful only if a systematic error 
(bias) cannot be corrected for.

Novel Approaches to assess Circadian 
Phase in Humans

The novel approaches can be broadly classified 
into (1) circadian phase assessments based on 1 or a 
few samples of high-dimensional (i.e., multivariate) 
material, such as the transcriptome or metabolome, 
and (2) circadian phase assessments based on long-
term passive sampling of behavioral, physiological, 
and/or environmental variables (Fig. 3).

-Omics-based Assessment of Circadian Phase of 
Central Pacemaker Using Few Samples

High dimensional or multivariate refers to samples 
that contain a large number of variables or features, 
the constellation of which varies with circadian 
phase, such that 1 time point suffices to assess any 
circadian phase. It has long been recognized that a 
single time point sample of high-dimensional data 
may contain as much information about circadian 
phase as a time series of univariate data. The classical 
example is Linnaeus’s flower clock. Various species 
of flowers open at different times of day, and any 
given time of day is characterized by a constellation 
of open/closed flowers. It turns out that Linnaeus 
may never have actually planted a flower clock, and 
the accuracy of flower clocks that were planted by 
botanical gardens were affected by weather, latitude, 
and seasonal changes (https://en.wikipedia.org/
wiki/Linnaeus%27s_flower_clock). The transcrip-
tome, proteome, and metabolome are high-dimen-
sional data, and a considerable fraction of the 
thousands of variables in each of these -omics data 
sets has been shown to be rhythmic in human blood, 
adipose tissue, skin, and brain (Moller-Levet et  al., 

Figure 3. U nivariate multiple sampling versus multivariate 
single sample. (A) A multivariate biomarker will require 1 or 2 
samples separated by several hours, and by containing informa-
tion about multiple rhythmic features, the relative level of each 
of those features can classify the overall circadian timing (Laing 
et al., 2017). (B) With a univariate biomarker, a time series of points 
assessing a single feature is collected. Depending on the variabil-
ity of the feature, “noise” from periodic behaviors or physiologic 
changes and/or environmental changes may influence any 1 data 
point or cycle, but multiple cycles of data will provide an accurate 
assessment of the underlying rhythmic process.
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2013; Christou et  al., 2019; Depner et  al., 2018; Ang 
et al., 2012; Dallmann et al., 2012; Wu et al., 2018).

A main problem in the development of biomarkers 
from high-dimensional data is the selection of rele-
vant features. Several approaches exist and may be 
subdivided in those that use a priori knowledge, for 
example, focus on RNAs from core circadian genes or 
unbiased approaches (for a discussion, see Laing 
et  al., 2017; Laing et  al., 2019b). When unbiased 
approaches are applied to, for example, the transcrip-
tome, we are exposed to the curse of high dimension-
ality (e.g., ~20,000 transcripts) and the resultant risk 
of “overfitting.” When there are many more features 
than data points to be predicted or described, it is 
always possible to find a set of features that will fit or 
describe a particular data set (such as the training 
data set), but this set of features is much less likely to 
fit an independent data set (a test set). This problem 
of overfitting is addressed in machine-learning 
approaches to feature selection and will not be dis-
cussed in detail here (Smith et al., 2014).

A first single-time-point sampling method for 
the assessment of circadian phase was developed 
in mice. This was an approach based on a priori 
knowledge because it used more than 100 time-
indicating genes in the liver (Ueda et  al., 2004). 
Subsequently, a single-time-point method for 
assessment of circadian phase in mice was devel-
oped based on plasma metabolites (Minami et al., 
2009). The strengths of these single-time-point 
methods in animals are that the methods were 
developed while controlling for effects of feeding, 
sex, age, and the light-dark cycle, as well as that 
they were validated against gold standard SCN 
markers such as corticosterone.

In humans, a first blood metabolite-based time 
table method was developed based on data from 3 
participants and validated in 6 participants using 
plasma cortisol and melatonin as gold standards 
(Kasukawa et  al., 2012). Data were collected under 
constant routine conditions at the beginning and end 
of a forced desynchrony protocol, with blood samples 
drawn every 2 h during a 39-h episode of wakeful-
ness following sleep episodes during the biological 
night. Using 2 blood samples taken 12 h apart, the 
reported accuracy was approximately 3 h. The set of 
metabolites used for the time table construction con-
sisted of 58 rhythmic metabolites, a large fraction of 
which belonged to metabolism pathways of steroid 
hormones, such as cortisol.

The first method to use the human blood tran-
scriptome for the prediction of SCN phase was devel-
oped based on 329 mRNA samples from 26 
participants to build the model, and a validation set 
of 349 mRNA samples from 27 participants (Laing 
et al., 2017). The blood samples were collected during 

a residential stay in a clinical research center while 
participants were scheduled to a normal sleep-wake 
cycle, a misplaced sleep-wake cycle, or underwent a 
period of approximately 40 h of sleep deprivation 
after a week of sufficient or insufficient sleep (Moller-
Levet et  al., 2013; Archer et  al., 2014). These condi-
tions to some extent mimic conditions such as shift 
work. Plasma melatonin data were used as a gold 
standard proxy for SCN phase.

The development of a circadian biomarker based 
on these data was not based on an initial identifica-
tion of rhythmic transcripts but used an unbiased 
machine-learning approach (partial least squares 
regression) to build a model. Transcripts were quanti-
fied by microarray technology using an Agilent plat-
form. For the development of the model, data from 
all conditions were used, that is, not just baseline but 
also conditions in which the circadian system was 
perturbed. The rationale for using samples from vari-
ous conditions for model development was that in 
real-world situations, a sample may come from either 
normal or perturbed conditions, and this will often be 
unknown. That the effects of sleep timing on putative 
transcriptome-based biomarkers can be very sub-
stantial has been demonstrated in forced desyn-
chrony experiments (Fig. 2B). A sample collected in a 
shift-work setting may come from a shift worker in 
whom SCN phase may or may not have adapted to 
shift work, and it will be unknown whether sleep is 
or is not displaced relative to SCN phase.

This approach identified a set of 100 mRNA abun-
dance features, which was able to predict the melato-
nin phase in the validation set with an accuracy (SD 
or error) of 3 h based on 1 sample and 1 h:40 min 
based on 2 samples taken 12 h apart (82% of samples 
had an error less than 2 h). The latter approach is 
essentially a within-subject normalization procedure 
that improves performance of the method because it 
removes the large between-subject variation in the 
blood transcriptome (i.e., the blood transcriptome is 
to some extent trait-like). The median error (which 
means that 50% of the samples have an error less than 
this number) was less than 1 h for the differential 
model. Importantly, even though the model was 
developed from samples across a variety of sleep-
wake conditions, the accuracy was still less when 
sleep occurred out of phase (see Fig. 4).

The unbiased approach used in Laing et al. (2017) 
outperformed time-table methods and ZeitZeiger 
when applied to the same data set.

Comparing the features identified by each of these 
methods revealed that many of the features are not 
directly related to clock genes, but many are related 
to glucocorticoid signaling pathways.

Hughey and colleagues applied an algorithm 
(ZeitZeiger) in which a rhythmic spline is fitted to 
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the data (Hughey, 2017) to publicly available data 
sets collected at the University of Surrey and the 
University of Pennsylvania (Moller-Levet et  al., 
2013; Archer et  al., 2014; Arnardottir et  al., 2014). 
The algorithm builds a predictor for what is called 
“circadian time.” Importantly, in this analysis, circa-
dian time does not refer to the circadian phase of a 
sample based on the melatonin phase in that indi-
vidual but to the time of the sample relative to 
sunrise or the melatonin phase averaged across 
individuals. The model was developed on data col-
lected under baseline sleep-wake conditions, and 
when applied to baseline data, the absolute mean 
error was 2.1 h. When the model was tested on 

conditions during which the sleep-wake cycle was 
displaced, the performance was worse, such that 
the variability in prediction error increased by 
42%, with a median absolute error greater than 3 h. 
Hughey and colleagues then developed strategies 
to improve prediction at the individual level by 
using more than 1 sample per participant, such that 
using 2 samples taken 8 to 9 h apart resulted in an 
average improvement in prediction of 0.43 h to 
approximately 1.67 h. A strength of the ZeitZeiger 
predictor is that it is based on a small set of 15 genes. 
In accordance with the results from Laing et  al. 
(2017), only a very few of these 15 genes were core 
clock genes.

Figure 4.  Examples of predictors of circadian melatonin phase and impact of sleeping “out of phase” on accuracy of biomarker predic-
tion. (A) Prediction of plasma melatonin phase from 2 samples taken 12 h apart across the circadian cycle during wakefulness (green 
symbols), nocturnal sleep (light blue symbols), and misplaced sleep (dark blue circles). From Laing et al. (2017). (B) Prediction of salivary 
melatonin phase from one sample taken in the afternoon during wakefulness from extreme morning and evening types living on their 
habitual sleep-wake schedule. Men, triangles; women, circles. The size of the circles indicates the age of the participants. From Witten-
brink et al. (2018). (C) Prediction of urinary 6 sulfatoxy melatonin phase from recordings of activity, light exposure, and a mathematical 
model for the effects of light in participants living on a nocturnal schedule. From Stone et al. (2019a). (D) Absolute error and its standard 
deviation of various biomarkers when tested on participants sleeping during the night (in phase) or during the day (out of phase) in 
either the laboratory or in a shift-work situation. In all cases, the biomarker-predicted phase was compared with a gold standard phase 
marker (plasma melatonin for the transcriptome predictors; Laing et al., 2017) and urinary 6-sulfatoxy melatonin for the neural network 
(Stone et al., 2019b) and light model (Stone et al., 2019a). In all cases, accuracy was worse for the out-of-phase condition. Color version 
of the figure is available online.
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Braun et  al. (2018) developed a new algorithm 
using the University of Surrey and the University of 
Pennsylvania data sets, as well as a new data set con-
sisting of RNAseq data obtained from healthy par-
ticipants collected during unperturbed baseline 
conditions. The authors used a 2-sample approach, 
and their method requires at least 2 samples, which, 
for optimal performance, should be drawn 10 to 12 h 
apart. Unfortunately, the authors did not use a circa-
dian phase marker to validate their method but 
instead used external clock time (this limitation has 
been discussed previously; Laing et al., 2019a; Braun 
et  al., 2019). They identified a set consisting of 
approximately 40 genes, a few of which were core 
clock genes. The reported median error based on 2 
samples was 2 h.

Whereas the Laing et al., Hughey et al., and Braun 
(CHANGE-18) et al. approaches were based on whole 
blood, Wittenbrink and colleagues (2018) used mono-
cytes as the source of their transcripts, assuming that 
rhythmicity would be more robust in this cell type. In 
addition, the authors argued that because microarray 
and RNAseq platforms are relatively inaccurate in 
detecting transcript levels, it may be beneficial to use 
other platforms for the implementation of circadian 
phase biomarker sets. Wittenbrink and colleagues 
took this into consideration when they developed a 
biomarker for circadian phase using a 2-step process. 
In the first step, they used ZeitZeiger to identify a set 
of transcripts quantified by RNAseq. This predictor 
set was then implemented on a NanoString platform. 
Their initial search used samples collected in a group 
of healthy young men in a constant routine protocol, 
and their validation data set was from a group of 
individuals with extreme chronotypes living in real-
world conditions from whom samples were collected 
in the morning and afternoon. In both cases, the gold 
standard proxy for circadian phase was salivary 
DLMO, which in the validation set varied between 
approximately 1700 and 0100 h. The authors created 4 
predictors: 1 sample–12 genes, 1 sample–2 genes, 2 
sample–13 genes, and 2 sample–2 genes. In the vali-
dation set, the median absolute error using the 
Nanostring platform was less than 1 h across all pre-
dictors and timing of validation samples (morning, 
afternoon). The 1 sample–12 genes predictor had an 
absolute median error of 0.7 h for a morning sample 
and 0.8 h for afternoon sample. The performance of 
the 2-sample predictors was similar to the 1-sample 
predictors (see Fig. 4b). A weakness of this otherwise 
elegant study is that performance was not assessed 
under conditions in which sleep was displaced, such 
as in forced desynchrony, jet lag, or shift work. Thus, 
we do not yet know to what extent the performance 
of this method will be affected by the masking effects 

of sleep, activity, posture, or feeding-fasting, which 
have been shown to be considerable.

Long-term Passive Sampling-based Assessment of 
Circadian Phase Using Activity, Skin Temperature, 
Heart Rate, Light Exposure, and Other Variables

The desire to assess the SCN phase based on pas-
sive monitoring of physiologic and behavioral vari-
ables has a long history. Traditionally, these approaches 
used linear methods in which estimated masking 
effects were added or subtracted from the observed 
variables. However, the effects of masking differ 
across individuals and interact with circadian phase 
(that is, the masking effects are larger at some circa-
dian phases than others), rendering simple addition/
subtraction methods inadequate (Klerman et  al., 
1999). Recently, more sophisticated approaches in 
which multiple variables are recorded simultaneously 
and algorithms are used to predict melatonin phase 
have been developed using multiple regression or 
artificial neural network approaches. The various 
approaches differ primarily with respect to the 
included variables and required duration of data 
collection.

Skin Temperature, Light, and Activity

Whereas core body temperature has long been 
considered a valuable marker of circadian phase, it is 
cumbersome to measure by either rectal sensors or 
thermistor pills that are swallowed. Skin temperature 
can be measured in a less intrusive manner. The circa-
dian and sleep-wake and activity-dependent regula-
tion of skin temperature has been investigated 
extensively (Krauchi and Wirz-Justice, 1994). Based 
on these findings, skin temperature has been evalu-
ated as a source of information about central circa-
dian phase. Kolodyazhniy and colleagues published 
2 approaches based on ambulatory skin temperature 
recordings (from 6 locations), (blue) light recordings 
from a sensor mounted on glasses, and motion 
(Kolodyazhniy et al., 2011; Kolodyazhniy et al., 2012). 
Models were constructed using either multiple 
regression or artificial neural networks, and the gold 
standard estimation of SCN phase was based on sali-
vary melatonin collected under constant routine con-
ditions. Participants were healthy but of various 
chronotypes, with a range of melatonin phases of 
slightly more than 5 h. Performance of the algorithms 
was derived from leave-one-participant-out cross-
validation. The best model correlated well with mela-
tonin phase (r = 0.97), with a SD of the error of only 
23 min. In one of the very few instances in which a 
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model developed by one group was tested by another 
group, Stone et al. (2019b) put this model to the test. 
Importantly, in this study, the model was tested not 
only in participants on a normal sleep-wake schedule 
but also in shift workers, and the gold standard proxy 
for SCN phase was either DLMO or 6-sulphatoxy 
melatonin. Whereas in this independent validation, 
the model performed well under baseline conditions, 
the performance deteriorated dramatically for assess-
ments in night-shift workers, such that the error was 
more than 2 h in approximately half of the assess-
ments (see. Fig. 4c). This poor performance persisted 
even when the model was trained on night-shift data. 
Performance was even worse when the model was 
trained on non–shift-work data. The findings of this 
comprehensive study underscore the necessity to val-
idate any method for circadian phase assessment in 
situations in which sleep and other masking effects 
are displaced, not only because these are more chal-
lenging conditions for most methods but also because 
they represent situations in which circadian biomark-
ers will be used.

Combining a Mathematical Model for Light with 
Light Exposure and Activity Data

Although in the studies of Kolodyazhniy et al. and 
Stone et al., light information was used to build a pre-
dictor algorithm, no specific model for how light 
affects the human circadian pacemaker was 
employed. Kronauer’s mathematical model for the 
effects of light (and activity) on the human circadian 
pacemaker (Jewett et al., 1999; St Hilaire et al., 2007; 
Kronauer et al., 1982), which is based on the extensive 
laboratory studies by Czeisler and colleagues (Duffy 
et  al., 1996; Boivin et  al., 1996; Czeisler et  al., 1989; 
Jewett et al., 1991; Gronfier et al., 2004; Chang et al., 
2012), remains the only quantitative model to date 
(Duffy and Wright, 2005). It uses light, quantified as 
lux, as input, and no provision for the spectral com-
position of light is available. The primary assumption 
underlying the use of Kronauer’s model to predict 
circadian phase is that light is the most powerful zeit-
geber for the human SCN and that variations in tim-
ing and intensity of light exposure, which are in part 
driven by the timing of sleep and social constraints 
(Skeldon et  al., 2017), are the main determinants of 
variations in circadian phase. Determinants of phase 
of entrainment are well understood at a theoretical 
level (Granada et al., 2013). Phase of entrainment is 
determined by individual differences in intrinsic 
period (Wright et al., 2005) and theoretically also by 
individual differences in light sensitivity. Woelders 
and colleagues (2017) used Kronauer’s model and 
reported that DLMO was associated with individual 
differences in light exposure, such that light + model 

explained 52% of the variance. When light data and 
Kronauer’s model were supplemented with activity 
data, DLMO could be predicted with an SD or error 
of 1.1 h (i.e., 95% of the predictions had an error of 2.2 
h or less). It is noted that although the participants 
varied with respect to chronotype with a consider-
able range of measured DLMOs of 9.3 h, they were all 
sleeping at their habitual bedtimes for the duration of 
the study. In a study of shift workers on either a diur-
nal or night schedule, Stone and colleagues (2019a) 
used a similar approach; that is, they used either a 
photic-only model or a combination of photic input 
to Kronauer’s model and activity. The proxy for SCN 
phase was 6-sulphatoxy melatonin. Performance on 
the diurnal schedule was comparable and even 
slightly better than in the Woelders et al. (2017) study. 
Although performance of the predictors deteriorated 
somewhat on the night schedule, performance was 
still rather good, with a SD of 1.39 h and 80% of pre-
dictions within 2 h of the observed values (see Fig. 
4C). St. Hilaire and colleagues have also used indi-
vidual light exposure data input to the Kronauer 
model to predict phase shifts in a simulated shift 
work study, in which salivary DLMO was assessed 
before and after a series of night shifts. They found 
that 85% of the model predictions were within 2 h of 
the observed DLMO shifts (St. Hilaire and Duffy, per-
sonal communication, March 1, 2020).

Heart Rate

Heart rate and heart rate variability are under con-
trol of the autonomic nervous system, which in turn 
is under SCN control. The masking effect of activity 
and sleep on heart rate is considerable, but constant 
routine protocols have demonstrated an endogenous 
circadian component to heart rate (Viola et al., 2002; 
Vandewalle et al., 2007). In principle, this implies that 
ambulatory monitoring of heart rate may provide 
information on SCN phase provided that masking 
can be accounted for. Gil and colleagues (2013, 2014) 
investigated the potential of heart rate measures for 
circadian phase prediction using only 24 h of data. 
The proxy for SCN phase was DLMO measured in 11 
participants for model development and 19 partici-
pants for performance testing. Participants slept at 
their habitual times, and the range of chronotypes 
and DLMOs was relatively small (i.e., approximately 
3 h). The model was based on an autoregressive mov-
ing average with a linear combination of external 
inputs (e.g., heart rate or light). Using only heart rate 
as a predictor resulted in an SD of 56 min, similar to 
the performance of a light input–only model (with 
light transformed with a power function, as in 
Kronauer’s model). Combining heart rate and light 
resulted in performance with an SD of 39 min, and 
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adding activity did not improve performance signifi-
cantly. Although the performance of these models 
appears impressive, it should be noted that the range 
of DLMO was limited, and this model has not been 
tested under conditions of displaced sleep.

New Methods to assess Intrinsic 
Circadian Period

The gold standard assessment of the intrinsic 
period of the SCN in sighted people is achieved 
through forced desynchrony of the sleep-wake cycle 
from the endogenous circadian rhythms by schedul-
ing sleep-wake and the associated dim light-dark 
cycle to a noncircadian cycle length that is outside the 
range of entrainment (Klerman et al., 1996; Czeisler 
et al., 1999; Duffy et al., 2011; Lazar et al., 2013). In 
totally blind individuals, the intrinsic period can be 
assessed by repeated phase assessments of 48-h uri-
nary 6-sulphatoxy melatonin while the participants 
are living in their habitual environment (Hack et al., 
2003; Lockley et  al., 2015). These experiments have 
provided important insights into the role of interindi-
vidual variation in intrinsic period in entrainment. 
Several variants of the forced desynchrony protocol 
have been developed, and a consistent finding across 
studies is that that in participants without circadian 
rhythm sleep-wake disorders, the average period is 
about 24.2 h, with a small standard deviation (Czeisler 
et  al., 1999; Duffy et  al., 2011; Micic et  al., 2016; 
Eastman et al., 2017; Hasan et al., 2012). Two alterna-
tive period assessment methods have emerged: (1) in 
vitro recording of circadian rhythms in human cell 
cultures, in which cells are modified to express a 
luciferase gene under the control of the promoter of a 
clock gene, and (2) reducing the residual variance of 
light exposure and mathematical model-derived pre-
diction of circadian phase (DLMO) by optimizing the 
period parameter of Kronauer’s model at the level of 
the individual. The latter method has yielded a realis-
tic population average and SD for circadian period, 
but individual estimates have not been validated 
against gold standard assessments. Furthermore, the 
period estimates were based on only 1 circadian 
phase assessment per participant, and the optimiza-
tion procedure may therefore not reflect intrinsic 
period but rather the period that best predicts this 
single circadian phase (Woelders et al., 2017).

For the in vitro circadian period assessment meth-
ods, a number of validated studies are available in 
both blind and sighted individuals. However, in 
these studies, the average in vitro period is longer 
than that derived from forced desynchrony studies 
and systematically longer than that derived in the 
same individuals by melatonin (Pagani et  al., 2010; 

Hasan et al., 2012). In fact, the correlation between the  
in vitro periods and the periods as assessed by uri-
nary 6-sulphatoxy melatonin (in blind individuals) or 
by plasma melatonin in forced desynchrony studies 
in sighted people are weak and sometimes not even 
significant. It thus appears that the current in vitro 
assessments will not be able to accurately assess 
intrinsic period at the level of the individual.

New Methods to assess Intrinsic 
Circadian Amplitude/Circadian 

Disruption

Changes in the amplitude of overt rhythms such as 
activity or body temperature are often observed in, 
for example, aging, and it is also often tacitly assumed 
that these changes reflect changes in the amplitude of 
the endogenous circadian components of these vari-
ables. As we have previously argued, protocols such 
as the constant routine are needed to ascertain this 
(Duffy and Dijk, 2002). However, in general, the con-
cept of circadian amplitude is not well defined, and a 
simple gold standard measure for circadian ampli-
tude has not been agreed upon. For example, there is 
substantial variation in melatonin amplitude between 
individuals and little evidence that those individual 
differences reflect differences in SCN amplitude. 
Studies in which a constant routine has been carried 
out before and after the circadian system has been 
perturbed have demonstrated that changes in the 
amplitudes of cortisol, melatonin, and core body tem-
perature in response to an intervention are generally 
correlated (Jewett et al., 1991; Dijk et al., 2012). This 
suggests that the amplitudes of these measures may 
reflect the amplitude of oscillations within the SCN 
and that it might be possible to develop a metric for 
circadian amplitude.

New approaches to assess endogenous circadian 
amplitude are based on multivariate approaches. 
These methods may not necessarily aim to assess the 
amplitude of the SCN but may be targeted at assess-
ment of peripheral oscillators. In fact, these methods 
may not aim to assess the simple construct of ampli-
tude but instead metrics that reflect the robustness or 
“normality” of circadian processes. The assumption 
is that under normal conditions, diurnal oscillations 
in a particular organ or tissue are characterized by a 
typical progression of expression levels of genes (a 
tissue-specific temporal program) and in particular 
genes that are at the core of the generation of circa-
dian rhythmicity. Shilts and colleagues (2018) 
designed a method to quantify circadian disruption 
by computing a metric called the clock correlation 
distance, which is based on the coexpression patterns 
of 12 clock genes. A larger clock correlation distance 
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indicates less normal, or less robust, rhythmicity. The 
method was developed on samples from various 
mouse tissues but then applied to samples from 
human blood, skin, brain, and in vitro cell cultures. 
The robustness of circadian rhythmicity as detected 
by this method varied between blood, skin, brain, 
and in vitro cell cultures. The method does not require 
samples to be labeled with time of day and works 
best if the entire circadian cycle is covered, but it can 
perform reasonably well if only part (e.g., one-third) 
of the circadian cycle is covered. For the method to 
produce reliable results in humans, it requires 
approximately 30 samples, and the method cannot be 
applied to a single sample. One application for this 
method is in cancer research, and it was indeed 
shown that this method detects disruption of circa-
dian rhythmicity in tumors.

Vlachou and coworkers (2020) also aimed to 
develop a method to quantify circadian disruption as 
well as circadian time with intended application in 
oncology. Their method, called “time teller,” is based 
on 10 to 15 genes, requires only 1 sample, and is 
designed to be used to assess both circadian phase 
and as circadian dysfunction. As mentioned, these 
methods to assess circadian disruption are built on 
the notion that during a normal circadian cycle, at 
any point in the cycle there is a specific constellation 
of rhythmic genes being expressed. This assumption 
can be used to tell time from a single sample but also 
can be used to detect disruption of circadian organi-
zation. Obviously, these methods are very much 
focused on the local circadian organization of the tis-
sue from which the sample was obtained. Circadian 
disruption in the periphery does not necessarily 
imply circadian disruption in the central circadian 
clock. For example, severe disruption of circadian 
organization of the transcriptome, including expres-
sion of core clock genes, has been observed in the 
whole-blood transcriptome when sleep was dis-
placed to the daytime, while at the same time, the 
phase and amplitude of the plasma melatonin rhythm 
were similar to when sleep occurred at night (Archer 
et al., 2014).

These observations highlight both the potential of 
using multivariate data in the periphery to detect cir-
cadian disruption or quantify amplitude while at the 
same time emphasizing the need for careful valida-
tion and interpretation of these data. For the assess-
ment of the physiological patency of a local tissue, the 
cause of the disruption of temporal programs may 
not be that important. However, in any multioscilla-
tor system, local rhythmicity and its disruption may 
sometimes reflect the disruption of local clocks, dis-
ruption of circadian rhythmicity downstream from 
those local clocks, or disruption of central clocks 
imposing rhythmicity on those local tissues.

Concluding Remarks

Wearables and -omics data combined with machine 
learning and mathematical modeling hold great 
promise for the development of novel methods to 
quantify circadian processes in humans. The optimal 
choice of variables to be collected by wearables, the 
-omics to be used in “1-sample” methods, or the 
source of samples (i.e., blood, skin, saliva) remain to 
be established. This choice of variable(s) will be influ-
enced by the purpose of the biomarker (see Figs. 1 
and 2). Until now, much emphasis has been on the 
development of sophisticated algorithms without 
clearly stating the purpose of the biomarker. Little 
effort has been devoted to comparison of these bio-
markers to gold standards, validating them in realis-
tic protocols, or defining the required accuracy across 
use cases. A variety of performance measures have 
been used in different studies, and reaching a consen-
sus on the performance metrics of biomarkers will 
facilitate comparison across methods.

It will be useful to evaluate these new methods 
within a framework that is based on concepts devel-
oped in circadian rhythm research together with 
concepts from the field of biomarker develop-
ment. Organizations such as the Food and Drug 
Administration and the National Institutes of Health 
together with industry partners have provided guide-
lines for the evidence needed for biomarker qualifica-
tion and a description of the workflow and decision 
processes in biomarker development (Leptak et  al., 
2017). Some of the key concepts that can be applied to 
circadian biomarkers are “context of use,” which 
relates to “what question does the biomarker address,” 
the “biological rationale for use of biomarker,” “inde-
pendent data sets for qualification,” and “comparison 
to current standard.”

Circadian concepts such as diurnal versus circa-
dian rhythmicity and masked versus endogenous cir-
cadian rhythms will remain useful when evaluating 
new markers for circadian processes. Likewise, bio-
marker concepts such as robustness, reliability, sensi-
tivity, and specificity should be formalized for our 
field and applied to any novel method designed for 
quantifying circadian rhythms. It may be unrealistic 
to expect that a particular biomarker for, for example, 
circadian phase, is universally robust, that is, it can be 
applied in a wide range of situations and popula-
tions, and it may be that situation-, population-, or 
diagnosis-specific approaches can be developed. 
However, in practice, the precise situation, popula-
tion, or diagnosis will be often unknown. Therefore, 
for these novel, be it universal or specific, biomarkers 
to be useful, they should be validated in controlled 
laboratory settings where the rest-activity schedules 
of participants are manipulated, tested in men and 
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women of all ages, tested in large groups of normal 
individuals in real-life situations, and tested in patient 
populations, particularly those patient populations in 
which these methods will be applied.
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