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Nowadays, pollution of the environment is a huge problem for humans and other organisms’ health. Conventional methods of
pollutant removal like membrane filtration or ion exchange are not efficient enough to lower the number of pollutants to standard
levels. Biological methods, because of their higher efficiency and biocompatibility, are preferred for the remediation of pollutants.
These cost-effective and environment-friendly methods of reducing pollutants are called bioremediation. In bioremediation
methods, enzymes play the most crucial role. Enzymes can remedy different types of organic and inorganic pollutants, including
PAHs, azo dyes, polymers, organocyanides, lead, chromium, and mercury. Different enzymes isolated from various species have been
used for the bioremediation of pollutants. Discovering new enzymes and new subtypes with specific physicochemical characteristics

would be a promising way to find more efficient and cost-effective tools for the remediation of pollutants.

1. Introduction

The widespread use of chemicals in industries and militaries,
inadequate waste disposal, and accidental leakage cause
contamination of soil, water, and air. For instance, there are
34,000 contaminated sites just in Europe that need to be
treated. These pollutants are hazardous for humans, other
living beings, and even the biogeochemical cycle. Pollutants’
stability, low solubility, and resistance to various physical,
chemical, and biological degradation pathways are the main
reasons for their toxicity [1].

Different physical and chemical methods for cleaning up
pollutants have been used, such as oxidizing agents,

electrochemical treatments, adsorption of pollutants, ion
exchange, and membrane filtration [2]. Despite the ade-
quacy of traditional methods for the high concentration of
pollutants, they were not enough for lowering the amount of
contamination to regulatory limits [3]. Various disadvan-
tages of traditional methods for cleaning up pollutants in-
clude high cost, nonspecificity, and probable secondary
contamination production; therefore, ecofriendly and bio-
logical methods, called bioremediation, gained interest [4].

Bioremediation is defined as processes and products that
are cost-effective and practical to minimize pollutants in the
source and diminish danger to the environment and human
health [5]. Its main ways of degrading and detoxifying
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pollutants are through intracellular accumulation or enzy-
matic transformation [4]. Pollutant properties (i.e., chemical
structure, hydrophobicity, and polarity), environmental
conditions (i.e., temperature, pH, and redox condition), and
soil features (i.e., aggregation, thickness, dissolved organic
matter, and pollutants aging) affect biological degradation
and contaminants availability [6].

Enzymes are the most efficient bioremediation tools and
progress all chemical changes on pollutants. Enzymes’
specificity is usually broad enough to act on different
molecules with similar structures. Moreover, it is possible to
engineer the enzymes for enhancing their stability and ef-
ficiency for special conditions or particular substrates [7, 8].
Omics technologies have a significant role in these devel-
opments [2].

Using enzymes in bioremediation could be either in-
dividually that the isolated enzyme used and added to the
contaminated area or as a whole cell, e.g., bacteria, fungi, or
algae. In a second way, continuous aeration, inoculation, and
nutrition are necessary. Besides, environmental conditions
should be prepared for microorganisms living, even though
there might still be some toxic compounds in the envi-
ronment that inhibit microorganisms’ activity [1, 9]. The use
of individual enzymes has some advantages in comparison
with microbial whole cell including greater specificity, more
straightforward handling and storage, standardizable ac-
tivity, more mobility as a result of smaller size, being active
in the presence of high concentrations of toxic compounds,
and biodegradability that inhibits persistence and recalci-
trance [1, 10, 11]. This approach is much more efficient for
extracellular enzymes and cofactor-independent enzymes
[12, 13].

Enzyme production in the natural environment is low,
while it is possible to increase the produced enzyme under
controlled conditions. On the other hand, recombinant
DNA technology and gene engineering provide many op-
portunities to produce more efficient and more enzymes
[14]. Moreover, nanotechnology offers some tools to in-
crease enzymes stability by decreasing sensitivity to me-
chanical stress, preserving the third structure of enzymes,
and protecting them against proteases [9].

Enzymatic bioremediation could be in situ or ex situ. In
in situ methods with the least disturbance in the environ-
ment, the free or immobilized enzyme (adsorbed enzymes
on mineral supports that minimize the loss of enzymatic
activity) is added to the soil. This approach is less expensive
because of no need for excavation and transportation of soil.
Ex situ methods are feasible for highly contaminated soils
with toxic pollutants or when fast action is essential. During
this procedure, soil was excavated and treated in different
bioreactors in the best condition for enzymes’ activity [1]

(Figure 1).
Different enzymes like mono- or dioxygenases, halo-
genases, peroxidases, phosphotriesterases, hydrolases,

transferases, and oxidoreductases from various species of
bacteria, fungi, algae, and plants have been used for the
bioremediation of pollutants [10, 15]. We try to review the
most essential enzymes for the bioremediation of pollutants
and insight into their mechanism of action.
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2. Enzymes for Organic Substrates

Large amounts of organic pollutants, including herbicides,
pesticides, dyes, drugs, and plastics, pollute the air, soil, and
water every year. Polymers, aromatic molecules, polycyclic
aromatic hydrocarbons (PAHs), chlorinated hydrocarbons,
steroids, and organocyanides are the most organic com-
pounds that need to be cleaned up worldwide. Their stable
structure is the main reason for their toxicity.

2.1. Hydrolases (EC3). Esterases, nitrilases, aminohydrolases,
lipase, cutinase, and organophosphorus hydrolase are
among the hydrolase enzymes used in the bioremediation of
different chemicals such as herbicides, pesticides, organo-
phosphorus compounds, nitrile compounds, and polymers
[1, 2]. We would review some of them shortly as follows.

2.2. Esterases (3.1). Esterases catalyze the cleavage of ester
bonds in different chemicals like organophosphorus her-
bicides and pesticides, diethyl glycol adipate, polyurethanes,
and aromatic and aliphatic polyesters. Escherichia coli and
Pichia pastoris are two bacteria that express and colonize the
thermostable kind of enzymes. Moreover, a subgroup of
esterases found in E. coli is active in a cold environment and
can act on phthalate esters [2].

It is worth noting that the product of esterase reaction
with organophosphorus compounds, 3,5,6-trichloro-2-pyr-
idinol (TCP), is metabolized later to less toxic chemicals by
aminohydrolase (EC 3.5) [2].

2.3. Nitrilases (EC 3.5.5.1). Triple bonds between carbon and
nitrogen (nitrile group) of herbicides, polymers, and plastics
are hydrolyzed stereo-, regio-, or chemoselectively by
nitrilases to carboxylic acid and ammonia. Many species can
express these enzymes, including Streptomyces sp., Fusarium
solani, Rhodococcus rhodochrous, Aspergillus niger, Bacillus
pallidus, and Pseudomonas fluorescens. Moreover, an evo-
lution approach on Alcaligenes faecalis tends to isolate a
nitrilase that was active in the broader range of pH. Besides,
P. fluorescens nitrilase’s gene expressed in E. coli is probably
the most hopeful nitrilase [16, 17]. Cyanide dihydratase (EC
3.5.5) is one of the nitrilases and degrade cyanide into
formate and ammonia. Pseudomonas stutzeri and Bacillus
pumilus are two species that express this enzyme. Fur-
thermore, fungal cyanide hydratase (EC 4.2.1.66), isolated
from Fusarium lateritium, Neurospora crassa, and Gloeo-
cercospora sorghi, and some other species, is another cya-
nide-degrading enzyme that metabolizes it to formamide
[18]. These enzymes are promising for the bioremediation of
wastewaters from coal coking and metal-plating baths [17].

24.  Organophosphorus  Hydrolase ~ (EC  3.1.8.2).
Organophosphate compounds were developed and used as
pesticides and in warfare and even as a drug since 1937. They
are neurotoxic, and after a while, they were more than that
soil microbiota could remedy all of them. Organophos-
phorus hydrolase (also known as phosphotriesterase) is one
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FIGURE 1: A representative scheme of different methods of soil remediation. (a) Conventional in situ remediation. (b) Using a single-phase
bioreactor for solvent extraction. (c) Using a two-phase bioreactor for solvent extraction. Adapted from [1].

of the enzymes that can serve for organophosphorus
compounds bioremediation. It is mostly isolated from
Pseudomonas diminuta, although its fungal form is
expressed in Aspergillus niger and Penicillium lilacinum. It
can act on P-S, P-O, and P-F bonds. This enzyme has 7Zn*" as
a cofactor in its native form, while assays showed that
substitution of Co>" provides the most potent activity
against paraoxon [19]. This enzyme has the fastest catalytic
rate and is the most promising enzyme for engineering
activity against organophosphates [20].

2.4.1. Peroxidases

(1) Ligninolytic Peroxidases. Ligninolytic enzymes are a
family of enzymes with broad applications in bioremedia-
tion. This group of enzymes produced by white-rot fungi
(WRF) is in the condition of nutrient limitation known as
“ligninolytic.” Also, lignocellulosic materials can be an in-
ducer for the production of these enzymes [21]. Due to the
high nonspecificity and high nonstereoselectivity of these
enzymes, they can degrade a wide range of recalcitrant
compounds [22]. They degrade chemicals by pseudo-first-
order kinetic via a free-radical-based chain reaction using
H,0, and molecular oxygen [21-24].

Ligninolytic enzymes can be categorized into four main
enzymes, including laccase (LAC), lignin peroxidase (LiP),
manganese peroxidase (MnP), and versatile peroxidase (VP).

(2) Laccase. For oxidizing phenolic compounds, PAHs, dyes,
and pesticides benzenediol: oxygen oxidoreductase, known
as laccase, is a suitable enzyme. As an oxidase, laccase

substrates go through one of the following pathways: (1)
cleavage of aromatic rings, (2) polymerization, and (3)
degradation of covalent bonds between monomers. Four
atoms of copper are the principal part of the reaction, and
oxygen is the last electron receptor [2, 25]. The mechanism
of the reaction is shown in Figure 2.

Laccase is first discovered in different fungi species like
Panus conchatus and Polyporus sp. Later on, laccase was
found in Azospirillum lipoferum, as the first bacteria species.
Laccase is produced in different Gram-positive bacteria,
including Bacillus, Geobacillus, Aquisalibacillus, Lysiniba-
cillus, Staphylococcus, and Streptomyces. Many bacteria
produce laccase extracellularly, while some others are unable
to secrete the enzyme. Bacterial laccase is more resistant to
extreme temperature and pH conditions [1, 25].

There are two kinds of laccase, white and blue. The main
difference between these is that blue laccase is dependent on
a “mediator” for the degradation of nonphenolic substrates.
“Mediator” is an intermediator that laccase oxidizes and
turns into oxidized radicals that react with high redox po-
tential or bulky substrates. ABTS (2,20-azino-bis (3-ethyl-
benzothiazoline-6-sulfonic acid)) and N-heterocycles with
N-OH such as violuric acid, N-hydroxybenzotriazole, and
N-hydroxy-N-phenylacetamide have been used as effective
mediators [25].

Every year, approximately 7 x 10* — 1 x 10 tons of dyes
penetrate the environment [25]. Laccase is used for dyes
remediation. As an example, a Bacillus licheniformis 1S40-
derived laccase can decolorize azo, indigo, and anthraqui-
none dyes by 80% within one hour in the presence of
acetosyringone as a mediator [27].
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FIGURE 2: General reaction mechanism of bacterial laccases. Adapted from [26].

PAHs are xenobiotic pollutants because of their low
solubility and degradation rate. Laccase can convert PAHs to
their less toxic quinine form and CO,. There are some ex-
amples in Table 1. Notably, laccase can degrade some drugs
such as diclofenac and mefenamic acid in acidic pH [25].

(3) Lignin Peroxidase. Lignin peroxidases (LiPs) are a group
of heme-containing monomeric enzymes. Their weight
ranges between 38 and 43 kDa [30, 31] with iron in the ferric
state [21, 32]. LiPs with their high redox potential [32] are
capable of breaking alpha and beta carbon bonds, catalyzing
the degradation of phenolic and nonphenolic compounds,
demethylation, and opening aromatic ring of dyes [33]. LiPs
have a high redox potential for oxidizing nonphenolic
structures [31].

LiP activity increases in the presence of H,O, as an
electron acceptor. However, high concentrations of H,0,
could damage the LiPs [32]. In the first step of the reaction,
Fe’* binds to H,0, and oxo-ferryl intermediate named

compound I forms. Then, compound I, by a donation of one
electron from the substrate, reduces to compound II, finally;
by another electron donation from the substrate, iron in heme
returns to its ferric resting state, and the enzyme renews to its
initial form [31, 34]. In this three-step reaction, the reduction
of compound II is the rate-limiting step (Figure 3) [36]. Due
to this slow reduction rate, compound I is available for re-
action with H,0, and the formation of a complex between LiP
and superoxide (compound III) inactive enzyme [36].

Veratryl alcohol is a secondary metabolite that can play
essential roles in this oxidizing reaction. Veratryl alcohol can
be the mediator in the electron transfer reaction; it can play a
role in the catalytic cycle of LiP by an oxidizing terminal
substrate. Vertaryl alcohol can also prevent the formation of
compound IIT and, if compound III is established, reduce it
to its native form [36].

Many WRFs produce LiPs such as Phanerochaete
chrysosporium, Trametes versicolor, Bjerkandera adusta,
Phlebia radiate, and Ganoderma lucidum [22, 31].
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TaBLE 1: Examples of laccase’s pollutant bioremediation.
Substrate Bioremedied form References
1 Acenaphthylene 1, 2-Acenapthalenedione [28]
2 Acenaphthylene 1.8-Naphthalic acid [28]
3 Bisphenol A 4-Ethyl-2-methoxy phenol [29]
4 Benzo[a]pyrene Methyl-3-hydroxy-8-methoxy-9, 10-dioxo-1-propylanthracene-2-carboxylate [29]

H,0, H,0
[LiP]-Fe (III) [LiP]**-Fe (IV)
LiP native LiP I (compound I)
At A
A Ao+

[LiP]-Fe (IV)
LiP I (compound II)

FIGURE 3: Lignin peroxides catalytic reaction. Adapted from [35].

Many technologies have been applied to enhance activity
and increase catalytic characteristics of LiPs, such as LiP
entrapment in calcium beads [37].

(4) Manganese Peroxidase. Manganese peroxidases (MnPs)
are heme-containing glycol proteins with weight ranging
from 32 to 62.5 kDa [38]. Like other ligninolytic peroxidases,
MnP uses H,0,. By using H,O,, MnP can oxidase Mn** to
Mn**. The first step of the reaction is binding an oxygen
atom of H,0, to Fe’* of heme. Then, by two-electron
transfer from Fe’* to peroxide Fe*" oxo-porphyrin, com-
pound I radical forms. Then, compound I binds to mono-
chelated Mn** and Mn”" and compound II forms. Finally, by
oxidizing another Mn>* to Mn>*, compound II reduces and
the enzyme with Fe’* reforms (Figure 4) [32, 36].

Aliphatic organic acids such as lactate and oxalate can
induce Mn?" oxidation rate, and Mn>"-acid chelates have a
higher redox potential. MnP activity increases in the presence
of glutathione and unsaturated fatty acids, such as tween 80.
Many techniques have been utilized to immobilize and en-
hance the efficacy of bioremediation with MnP, such as
making calcium alginate beads and carbon nanotubes [39-41].

MnP can remediate PAHs and nitroaromatic com-
pounds [36, 42], azo dyes [43], and endocrine-disrupting
chemicals such as bisphenol A and alkylphenols [44, 45];
moreover, with the contribution of mediators such as lipid
and thiyl radicals, MnP is capable of oxidizing nonphenolic
structures [34].

Many species of fungi are able to produce MnP, such as
Phanerochaete chrysosporium, Trametes versicolor, Irpex
lacteus, Dichomitus squalens, and Ganoderma lucidum
[45, 46].

(5) Versatile Peroxidase. Versatile peroxidase (VP) is a heme-
containing ligninolytic enzyme considered as a hybrid

[MnP]**-Fe (IV)

[MnP]-Fe (III)

Ferric MnP MnP I (compound I)
Mn3* Mn2*
A
Mn?*  [MnP]-Fe (IV) Mn’* At
MnP II (compound IT)
At

A

FIGURE 4: Manganese peroxidase catalytic reaction. Adapted from
[35].

between LiP and MnP. VP has two active sites; therefore, it
can oxidize both Mn>" and veratryl alcohol by a similar
mechanism to MnP and LiP, respectively [32, 47].

VP can oxidize both low and high redox potential
compounds, polycyclic aromatic hydrocarbons, azo dyes,
high molecular weight aromatics, and both phenolic and
nonphenolic compounds and environmental pollutants
[32, 47, 48].

VP production is less common in WRFs than MnP and
LiP, but it can be found in some species such as Pleurotus
spp. and Bjerkandera spp. [32].

2.4.2. Horseradish Peroxidase. Horseradish peroxidase
(HRP) is an enzyme traditionally extracted and isolated from
the root of horseradish (Armoracia rusticana). The most
abundant isoenzyme found in the root of horseradish is C
isoenzyme (HRPC). HPRC is 44kDa heme-containing
glycopeptide with 308 amino acids, an iron atom in the ferric
state in protoporphyrin IX, and two calcium atoms in the
central zone [49-51]. HRP catalyzes oxidative reaction using
H,0,. In the presence of H,O,, the intermediate compound
formed via two-electron oxidation. Then by an oxidable
substrate, compound I reduces to compound II. Radical
formation occurs via these reactions, and finally, the initial
enzyme can be renewed by the reaction of compound II with
another substrate molecule. In comparison with LiP com-
pound, I and II are more electronegative in HRP (Figure 5)
[52].

HRP is applicable for removing and remediating phe-
nols, substrate phenols, and alkylphenols, aromatic amines
[53, 54], azo dyes [55, 56], endocrine-disrupting compounds
[54], and many other environmental pollutants.

Many techniques have been utilized to immobilize and
enhance the efficacy of enzyme by nanotechnology [57-59].



HRP + H,0, ——— > Compound I
Compound I + AH ———— > Compound IT + A*

Compound II + AH ————» HRP + A®

Figure 5: Horseradish peroxidase catalytic cycle. Adapted from
[52].

Using horseradish root is a standard method; using fertile
soil for horseradish cultivation to feed the population has
raised concern in recent years [60]. To solve this problem
and enhance the efficacy of the enzyme, many biotechno-
logical methods have been experienced, such as recombinant
production of HRP in E. coli, yeast, plants, and insect
systems [61].

2.5. Cytochrome p450 Monooxygenase (EC 1.14.14.1).
Cytochrome p450 monooxygenases (CYP) are a family of
heme-containing enzymes that catalyze different reactions
such as N-hydroxylation, N-dealkylation, O-dealkylation,
oxidative dehalogenation, and hydroxylation of C-H bonds.
CYP derives essential electrons for reactions from NADPH-
cytochrome p450 reductase, and the latter enzyme derives
electrons from atmospheric oxygen. So, the presence of a
reducing agent like NAD (P) H or FAD is necessary [62]. The
reaction cycle of CYP450 is shown in Figure 6.

CYPs are versatile enzymes expressed in various species
of bacteria, fungi, plants, and animals. About 7000 different
CYPs have been discovered till now. Saccharomyces,
Streptomyces, Basidiomycete, Dehalococcoides, Rhodococcus,
Bacillus, Escherichia, and Salmonella are among the genera
that their CYPs are used for bioremediation [64, 65].

While bacterial CYPs are attractive because of their
solubility, easy and low-cost production, and self-efficiency
(their electron transfer reductases, e.g., FMN, FAD, and
p450 monooxygenase, are on a single peptide), mammalian
CYPs are membrane-bounded, dependent on a redox
partner (e.g., NADPH) and have expansive applications [65].
Bacterial and eukaryotic CYPs can oxidize aliphatic hy-
drocarbons with 5-16 and 10-16 carbon lengths, respectively
[66]. Notably, eukaryotic CYPs need modification at
N-terminal, but prokaryotic ones are active in the native
form [64].

Dioxins, PCBs (polychlorinated biphenyls), PCDDs
(polychlorinated ~ dibenzo-p-dioxins), PCDFs  (poly-
chlorinated dibenzofurans), PAHs, aliphatic hydrocarbons,
and even Cr (VI) are pollutants that can be degraded and
bioremedied by CYPs [1, 14, 65, 67]. In Table 2, the list of
different CYPs and their substrates are shown. Immobilizing
CYPs can improve their activity even to 10-folds higher than
free enzyme. Besides, transgenic plants that can produce
special CYPs are a way toward herbicide-resistant plants
[65].

CYPs are interesting enzymes for bioremediation be-
cause of their wide range of substrates and diverse oxidative
reactions. Among the limitations of using CYPs are their
dependency on expensive cofactors, low stability, and low
activity [68].
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FIGURE 6: Cytochrome p450 reaction cycle. RH: substrate; ROH:
product. Adapted from [63].

3. Enzymes for Inorganic Substrates

In the presence of toxic heavy metals, most of the micro-
organisms produce metal-binding peptides such as phy-
tochelatins and metallothioneins, which reduce their toxicity
via sequestration [70]. For example, phytochelatin synthase
is the enzyme responsible for the production of phytoche-
latin that, in cooperation with GSH, accumulates heavy
metals [71]. Among the limitations of these metal-binding
proteins is their nonselectivity. To solve this problem, many
microorganisms developed specific pathways for resistance
against heavy metals [4]. Obviously, enzymes are the most
critical part of these pathways; we would review some of
these metal-specific enzymes as follows.

3.1. Arsenic. Arsenic is a heavy metal that exists in nature in
organic and inorganic forms. The inorganic forms (As’*
(arsenite) and As®* (arsenate)) are toxic and may cause
enzyme inactivation, carcinoma, hemolysis, keratosis, gan-
grene, and neurological and cardiovascular diseases [72, 73].
Arsenate and arsenite convert to each other by arsenate
reductase and arsenite oxidase through redox reactions. As®*
is more mobile and toxic. As>* is the terminal electron
acceptor in the absence of oxygen and reduces to As>* [63].
Ferredoxin or glutathione would be the electron source [74].
This process enhances the solubility of As and eases leaching
from soil [73]. The final As®* is excreted through efflux
pumps, ArsB and Acr3 [74]. Arsenite oxidase converts As’*
to less toxic As™" to be used either for a supplemental energy
source or as an electron donor for CO, fixation [74]. The
final arsenate is immobile and would be retained by sedi-
ments [73].

The methylated form of arsenic is volatile and would be
lost from the soil [73]. Interestingly, in methanogenic
bacteria, As methylation is coupled with methane
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TaBLE 2: Cytochrome p450 subtypes and their substrate for bioremediation.
Enzyme Substrate Reference
1 Rat CYP1A1 Dibenzo-p-dioxin (DD) and mono-, di-, and trichloro-DD [65, 67]
2 F240A 2,3,7,3,8-Tetrachloro-DD [65]
3 CYP101, CYP102, CYP1Al, CYP1A2, CYP1B1 PAHs [65]
4 Dog CYP2B11 PCBs [65]
5 CYP1A1, CYP1A2, CYP1B1 Low-chlorinated PCDDs [68]
6 CYP5145A3 1-MCDD, 2-MCDD, 2,3-DCDD [68]
7 CYP XplA RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) [69]

biosynthesis and can detoxify soil through this mechanism.
Coenzyme M is the biocatalyst of this detoxification process
[63].

Many species can remedy As in different ways. The
bacterial ones include Acinetobacter sp., Pseudomonas sp.,
and Sporosarcina ginsengisoli [75]. E. coli, Bacillus idriensis,
and Sphingomonas desiccabilis are engineered species for As
bioremediation [72]. Some fungi, including Rhizobium sp.,
Rhizopus sp., Trichoderma sp., Aspergillus flavus, and Pen-
icillium canescens, are As bioremediators too [63, 73].
Moreover, some yeasts like Saccharomyces cerevisiae can
reduce arsenate by ArsC (Figure 7), a protein that has As
reductase activity. Algae genera, like Hydrodictyon, Oedo-
gonium, Rhizoclonium, and even a plant, Pteris vittata from
Pteridaceae, have the potential to be used for bioremediation
[75].

3.2. Lead. Lead was found in a small amount in nature
before industrialization. However, now, through gasoline
burning, different Pb salts originate in and contaminate
water, soil, and air [72]. Lead toxicity may cause anemia and
appetite loss and gastrointestinal, neurological, and repro-
ductive disorders [73]. Organoleads, especially tetraethyl
lead and tetramethyl lead used in gasoline, are toxic forms of
lead. They are sensitive to photolysis and volatilization and
degrade to dialkyl species. Though, some bacteria can de-
grade organoleads through bioremediation processes [76].

Cupriavidus metallidurans can remove Pb** ions with
p-type ATPase and produce inorganic phosphate to se-
quester Pb** in the periplasm [76]. Staphylococcus epi-
dermidis can biomineralize Pb** by carbonate. Urease
enzymes form different carbonate crystalline Pb>". It can be
mineralized as oxalate and pyromorphite, too [77]. Agaricus
bisporus, Rhizopus nigricans, Penicillium canescens, Peni-
cillium chrysogenum, Saccharomyces cerevisiae, Aspergillus
niger, and Aspergillus terreus are among biotransforming
organisms [72, 73]. Moreover, it is reported that Arthro-
bacter and Phaeolus schweinitzii can degrade trimethyl lead
cations [78].

3.3. Mercury. Mercury is a heavy metal that is toxic in both
organic and inorganic forms, although the organic form is
more toxic. Hg toxicity would cause neurotoxicity, neph-
rotoxicity, allergies, and inability to speak [73, 79]. Hg is a
rare element in Earth crust, but it spreads and pollutes soil
and water because of different humic activities like gold
mining, various measurement tools (barometer,

thermometer, manometer, etc.), lamps, mercurial fungi-
cides, paper manufacturing industry, and battery cells [72].
Its environmental cycle is shown in Figure 8.

Mercury exists in three forms: metallic mercury (Hg°),
mercurous (Hg*'), and mercuric (Hg2+) forms. The most
toxic form of Hg is mercuric chloride. Organic mercury can
accumulate in living organisms and has an affinity for
proteins’ sulthydryl groups. Inorganic mercury has the
lowest toxicity because of its low solubility and high vapor
pressure. Mercury-resistant bacteria (such as Pseudomonas,
Aeromonas, Staphylococcus, Escherichia, Citrobacter, Bacil-
lus, and Rhodococcus) can reduce toxic organic forms of Hg
to less toxic metallic Hg. Mercuric reductase is the main
enzyme that reduces Hg. The mer operon is the collection of
mercury-resistance genes activated in the presence of an
inducible concentration of Hg. Mercuric reductase in co-
operation with FAD and NADPH, as electron sources, re-
duces Hg*" to Hg". The final metallic mercury is volatile and
spreads to the atmosphere [80, 81]. Also, dimethylmercury is
volatile and biomethylation can serve as a strategy for Hg
bioremediation [73]. The mer operon-independent volatil-
ization of mercury has been discovered, too, in Shewanella
oneidensis [82].

Another enzyme that plays a role in mercury biore-
mediation is organomercurial lyase that breaks the carbon-
mercury bonds in organo-Hg compounds [80, 81].

Various microorganisms such as Rhizopus arrhizus,
Penicillium canescens, Geobacter sulfurreducens, Pseudo-
monas putida, Acinetobacter calcoaceticus, Staphylococcus
aureus, and Shigella flexneri can remedy mercury [72, 80].
Enterobacter, Pseudomonas, and Bacillus are the most used
genera for this purpose [83].

3.4. Chromium. Cr (VI) is the most toxic heavy metal be-
cause of its high oxidative potential causing cell damage and
mutagenic, carcinogenic, and teratogenic effects [84]. The
wide use of chromium and its compounds and mining exerts
this pollutant to waters and soils. Bioremediation of hex-
avalent chromium is through reduction to trivalent species.
Pseudomonas, Bacillus, Escherichia, Shewanella, Enter-
obacter, and Thermus are some genera that are resistant to Cr
(VI) and can reduce it. The reduction of hexavalent chro-
mium may occur through aerobic or anaerobic pathways
[14]. In the anaerobic process, soluble cytoplasmic enzymes
are involved and reduce hexavalent chromium in two steps.
In the aerobic reduction of chromium, usually, Cr (VI) is a
terminal electron acceptor, while in different species,
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[14].

NADPH, NADH, or formate serves as an electron donor.
Chromate reductase, Ni-Fe dehydrogenase, and cytochrome
c3 are among the enzymes reported to have hexavalent
chromium-reducing activity [85]. Also, Fe** and S* pro-
duced in some bacteria can reduce Cr®" even faster than
chromate-reducing bacteria. The detailed mechanism of
chromate resistance in bacteria is shown in Figure 9.

Nitroreductase, iron reductase, flavin reductases, and
quinone reductases are bacterial enzymes that reduce Cr®"
[86, 87]. Mammals reduce this pollutant, too, by CYP, al-
dehyde oxidase, and DT-diaphorase. Some of these bacterial
enzymes are extracellular, including nitrate reductases,
flavin reductases, and ferrireductases [14].

4. Conclusion

In this review, we aim to provide an insight into the role of
the enzyme in the bioremediation of pollutants. While many
physical and chemical methods of treating contaminated soil
and water are not efficient enough, bioremediation opens a
new way to clean up toxic pollutants. Enzymes as practical
tools of living organisms are an ecofriendly and bio-based
strategy for bioremediation. Microorganisms exposed to
contaminated sites and specific pollutants are fascinating
sources for the isolation of active enzymes against those
pollutants. Interestingly, we may find some enzymes in
completely irrelevant places to pollutant sources.

Discovering TCP-degrading enzymes and chlorpyrifos-
degrading enzymes in the cow rumen microbiome is an
instance for this claim [2].

Overall, using enzymes for pollutant bioremediation
seems to be a cost-effective, efficient, and practical approach.
Although there are still many ways to go, further studies and
experiments on enzyme activity and mechanism of action
and isolating new enzymes would be a promising way to
reduce pollutants and make a healthier environment for
humans and all other species.
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