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In this paper we report results on benchmarking a HRP-2 humanoid robot. The humanoid

robots of this serie are known to be very robust. They have been successfully used by

several research groups for the design of new motion generation algorithms. As such it

is a reference in the category of electrically driven humanoid robot. As new humanoid

robots are continuously built it is interesting to compare the performances of these

new prototypes to those of HRP-2. This benchmarking study was realized through a

campaign of measurements in an advanced equipped testing laboratory that provides

a well adapted controlled environment. We have investigated the effect of temperatures

variation on the robot walking capabilities. In order to benchmark various environmental

conditions and algorithms we computed a set of performance indicators for bipedal

locomotion. The scope of the algorithms for motion generation evaluated here ranges

from analytical solution to numerical optimization approach, enabling real-time walking

or multi-contacts motions.

Keywords: benchmarking, bipedal locomotion, humanoid robot HRP-2, controlled environment, numerical

optimization, walking

1. INTRODUCTION

From the seminal work of Chestnutt (2010) to the recent methods proposed in the frame of the
Darpa Robotics Challenge (DRC) (Radford et al., 2015; DeDonato et al., 2017; Johnson et al., 2017;
Lim et al., 2017; Marion et al., 2017; Tsagarakis et al., 2017), humanoid robots use for moving
a control architecture that roughly follows the general framework depicted in Figure 1. Based
on an internal representation of the environment and the localization of the robot (r̂b and θ̂b
being, respectively, the base position and orientation), the Motion Planner (MP) plans a sequence
of reference end-effector contact positions (f ref ), or a reference center of mass linear velocity
combined with a reference waist angular velocity (Vref ). These references are then provided to a
Model-Predictive Whole-Body Controller (MPWBC) which generates a motor command for each
joint (joint torques (τ ref ), positions (qref ), velocities (q̇ref ) and accelerations (q̈ref )). This block is
critical in terms of safety as it maintains the dynamic feasibility of the control and the balance of the
robot. The Model-Predictive Whole-Body Controller can be expressed as a unique optimal control
problem but at the cost of efficiency in terms of computation time or solution quality. This is why
this controller is usually organized in two stages. First, trajectories for the robot center of mass cref

and the positions of contacts with the environment f ref are found using a Centroidal Dynamics
Pattern Generator (CDPG). Then, a Whole-Body Controller (WBC) computes an instantaneous
controller enabling to track these trajectories. More details about the CDPG can be found in the
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FIGURE 1 | General architecture used to generate humanoid robot motions. In this paper the modules in the orange boxes are the ones that are benchmarked,

whereas those in blue are not benchmarked.

next paragraph. The whole body reference is in turn sent to the
Robot Hardware, which can be either the simulator or the real
robot. The feedback terms are based upon the measurements of
the different sensors. The encoders evaluate the joint position
(q̃). The inertial measurement unit (IMU) measures the angular
velocity (ω̃IMU) and the linear acceleration (ãIMU) of the robot
torso, which give information about the orientation of the robot
with respect to the gravity field. Finally the interaction with
the environment is provided by the force sensors classically
located at the end-effectors (FEE ∈ {FRF , FLF , FRH , FLH}, where
the subscripts have the following meaning: (EE): end-effector,
(RF): right foot, (LF): left foot, (RH): right hand, (LH): left
hand). All these information are treated in an Estimator to
extract the needed values for the different algorithms. Finally
the Localization block is used to locate as precisely as possible
the robot in its 3D environment. Various implementations of
this architecture have been proposed with various levels of
success from the highly impressive Boston Dynamics System,
to robots widely available such as Nao. An open question is
the robustness and the repeatability of such a control system
as well as its performance. In this paper our main contribution
is to propose a benchmarking of the HRP-2 robot in various
setups and provide performance indicators in scenarios which
are possibly interesting for industrial applications. We hope
this study will provide a quantitative comparison and will
serve as a baseline for the elaboration of new algorithms. In
addition we believe that this paper is one of the first attempt to
apply the detailed performance indicators provided by Torricelli
et al. (2015) to a human size humanoid robot. The paper is
structured as follows: firstly, the section 2 presents the related
work on control and benchmarking for humanoid robots. Then
section 2.3 depicts our precedent contribution in the Koroibot
project and how it relates to this work. To continue, section
3 lists the materials and different methods used to perform
the benchmarking. In turn section 4 shows the experimental
results using the indicators from section 3. Finally the conclusion
in section 5 summaries the contributions and results of the
study.

2. RELATED WORK

In this paragraph we present the work that has been done relative
to the control and the benchmarking of the HRP2 humanoid
robot.

2.1. Motion Generation for Humanoid
Robots
The different benchmarks included in this paper are relative
to the MPWBC sketched in Figure 1. This related work is
presented in this first subsection. Several techniques are used
to mathematically formulate this problem. For instance hybrid-
dynamics formulations as proposed by Grizzle et al. (2010) or
Westervelt et al. (2007) are efficient but difficult to generalize.
The approaches used in this paper are based on mathematical
optimization which is broadly used in the humanoid robotics
community. More precisely, the locomotion problem can be
described as an Optimal Control Problem (OCP). The robot
generalized configuration (qref ) and velocity (q̇ref ) usually
compose the state (x ∈ R

n). The future contact points can be
precomputed by a Motion Planner or included in the state of
the problem. The control of this system u ∈ R

m, can be the
robot generalized acceleration (q̈ref ), the contact wrench (φk with
k ∈ {0, . . . , Number of Contact}), or the motor torques (τ ref ).
We denote by x and u the state and control trajectories. The
following optimal control problem (OCP) represents a generic
form of the locomotion problem (which can be for instance a
direct multiple shooting problem):

min
x, u

S
∑

s= 1

∫ ts+1ts

ts

ℓs(x, u) dt (1a)

s.t. ∀t ẋ = dyn(x, u) (1b)

∀t φ ∈ K (1c)

∀t x ∈ Bx ⊂ R
n (1d)
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∀t u ∈ Bu ⊂ R
m (1e)

x(0) = x0 (1f)

x(T) ∈ X∗ ⊂ R
n (1g)

where ts+1 = ts + 1ts is the starting time of the phase s
(with t0 = 0 and tS = T). In the direct multiple shooting
problem a phase s corresponds to an interval where the system
is simulated using constraint (1b) which makes sure that the
motion is dynamically consistent. Phases are connected through
the constraints (1d) and (1e) which impose bounds on the state
and the control, they are lying, respectively, in admissible set of
states Bx and in admissible set of controls Bu. Constraint (1c)
enforces balance with respect to the contact model. Breaking and
adding contact are usually done at phases junctions because it
changes the structure of the dynamics. Constraint (1f) imposes
the trajectory to start from a given state (estimated by the sensor
of the real robot). Constraint (1g) imposes the terminal state to be
in the viable terminal states set X∗ (Wieber, 2008). The cost (1a)
is decoupled ℓs(x, u) = ℓx(x)+ℓu(u) and its parameters may vary
depending on the phase. ℓx is generally used to regularize and to
smooth the state trajectory while ℓu tends to minimize the forces.
The resulting control is stable as soon as ℓx comprehends the
L2 norm of the first order derivative of the robot center of mass
(CoM), Wieber et al. (2015). Problem (1) is difficult to solve in
its generic form. And specifically (1b) is a challenging constraint.
Most of the time the shape of the problem varies from one solver
to another one only by the formulation of this constraint. The
difficulty is due to two main factors: (1) There is a large number
of degrees of freedom (DoF). In practice we need to compute
36 DoF for the robot on a preview window with 320 iterations
(1.6 s) to take into account the system inertia. (2) The dynamics
of the system is nonlinear. Figure 2 depicts the structure of the
problem. To be able to solve the whole problem, represented
by the full rectangle in Figure 2 researchers often use nonlinear
optimization. In this paper we evaluated a resolution of the
MPWBC based on the formulation given by Equation (1). In this
approach described in Koch et al. (2014), the authors computed
a dynamical step-over motion with the HRP-2 robot, but this
process can take several hours of computation. So simplifications
are necessary, for example Tassa et al. (2014), Koenemann et al.
(2015) use simplifications on the contact model. This method
is very efficient but not suitable for complex contacts during
walking. Seminal works (Kajita et al., 2003b; Orin et al., 2013)
show that (1b) can be divided into two parts, the non-convex
centroidal dynamics (top horizontal rectangle in Figure 2) (Orin
et al., 2013) that includes fewDoF, and the convex joint dynamics
(vertical rectangle in Figure 2). Kuindersma et al. (2014) and
Sherikov (2016) chose to deal the two aforementioned parts of
Figure 2 at once. They optimize for the centroidal momentum
on a preview horizon and the next whole body control. Qiu et al.
(2011), Rotella et al. (2015), and Perrin et al. (2015) decouple
the two separated aforementioned rectangles in Figure 2. They
solve first for the centroidal momentum and then for the whole
body control. In general the centroidal momentum remains
difficult to handle due to its non-convexity. Finally Kajita

FIGURE 2 | Representation of the dimension of the locomotion problem. The

abscissa represents the duration of the predicted horizon and the ordinate the

number of robot DoF.

et al. (2003a), Herdt et al. (2010), and Sherikov et al. (2014)
linearize the centroidal momentum which provides a convex
formulation of the locomotion problem. In Deits and Tedrake
(2014), the problemwas formulated has amixed-integer program
(i.e., having both continuous and discrete variables) in case of flat
contact. InMordatch et al. (2012), the same problemwas handled
using a dedicated solver relying on a continuation heuristic, and
used to animate the motion of virtual avatars.

2.2. Benchmarking
Different methods exist to benchmark robot control
architectures. In del Pobil et al. (2006) the authors argue
that robotic challenges offer an efficient way to do so. For
example, the results of the DARPA Robotics Challenge published
in the Journal of Field Robotics special issues Iagnemma and
Overholt (2015) and Spenko et al. (2017), show the different
control architecture in a determined context. Each behavior
successfully accomplished grants point to the team and the
best team wins the challenge. This benchmarking was however
costly as the robots had no system to support them in case of
fall. In addition, as it is mostly application driven, the challenge
provides an overall evaluation of the system integration but not
of the independent sub-parts.

For the specific case of motion generation, it has been recently
proposed by Brandao et al. (2017) to use a scenario called
“Disaster Scenario Dataset.” It allows benchmarking posture
generation (solved by the WBC) and trajectory generation
(MPWBC) using optimization. A set of problems is proposed by
means of foot step locations (FRF , FLF). Using this approach, it is
possible to compare algorithms realizing the two functionalities
(WBC and MPWBC). The evaluation is realized in simulation
using the Atlas robot and the ODE dynamic simulator. This first
step is necessary but one step further is required to benchmark
a real humanoid platform. For this paper we used a more
systematic decomposition of the humanoid bipedal locomotion
(Torricelli et al., 2015). Further description can be found in
section 3.7. This paper focuses on evaluating the MPWBC and
WBC on the Robot Hardware. The Estimator used in this context
is important but it is reflected in the stabilization process. The
Motion Planning is not evaluated here as the planned motion is
always the same or solved at the MPWBC level. The Localization
is provided by a motion capture system.
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FIGURE 3 | (Left) Graphical representation of the scientific approach of the Koroibot project. (Right) View of the humanoid robot used in the Koroibot project

dreaming of human walking capabilities (Pictures taken from http://www.koroibot.eu).

2.3. A Motivating Example: The Koroibot
Project
The work presented in this paper takes its root in the context
of the European project Koroibot (http://www.koroibot.eu/).
The goal of the Koroibot project was to enhance the ability of
humanoid robots to walk in a dynamic and versatile way, and
to bring them closer to human capabilities. The Koroibot project
partners had to study human motions and use this knowledge to
control humanoid robots via optimal control methods. Human
motions were recorded with motion capture systems and stored
in an open source data base which can be found at https://
koroibot-motion-database.humanoids.kit.edu/. With these data
several possibilities were exploited:

• Criteria that humans are assumed tominimize using Inverse
Optimal Control.

• Transfer from human behaviors to robots given by walking
alphabets and learning methods (Mandery et al., 2016).

• Human behaviors safely integrated in robots by means of
optimal controllers.

• Design principles derived for new humanoid robots (Clever
et al., 2017; Mukovskiy et al., 2017).

In order to evaluate the progress of the algorithms at the
beginning and at the end of the project, a set of challenges
focusing specifically on walking were designed (see Figure 4).
Figure 3 (right) shows all the robots hosted by the Koroibot
partners. Each team owning a robot had to perform some of these

challenges considering the current and the potential state of their
robots and controllers.

2.4. The Key Performance Indicators (KPI)
In this context and in collaboration with the H2R project, a
detailed set of key performance indicators (KPI) have been
proposed (Torricelli et al., 2015). These KPI try to capture all
the bipedal locomotion patterns. Specific sub-functions of the
global motor behaviors were analyzed (see Figure 5, right). The
results are expressed as two different sub-function sets. First,
the sub-functions associated with the body posture task without
locomotion. Second, the same sub-functions but including the
robot body transport. The initial condition may vary depending
on the experiment to perform. This is the idea of the intertrial
variability. The sub-functions are also classified by taking into
account the changes in the environment or not. Each of these
functions can be evaluated for different robots using the criteria
depicted in Figure 5 (left). The performances are classified
into two sub categories, quantitative performances and human
likeness. In addition, information in the last two columns indicate
whether the criteria is applicable on a standing task or on a
locomotion task. Again, all the teams owning a robot had to
perform an evaluation of these KPI, considering the current and
potential state of their robots and controllers.

2.5. The Work Done in the Koroibot Context
In the Koroibot context the Gepetto team evaluated the KPI one
the robot HRP-2 (second robot from the left in (Figure 3, right).
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FIGURE 4 | Challenges of the Koroibot project. In red the challenges chosen by the LAAS-CNRS.

FIGURE 5 | (Left) Performances indicators, (Right) motor skills considered in the benchmarking scheme. This scheme is limited to bipedal locomotion skills. The

concept of intertrial variability represents modifications of the environment between trials. (dashed) motor skills evaluated in Naveau (2016) (not dashed) motor skills

evaluated in this paper.

Among the challenges presented in Figure 4, we considered the
following ones:

• walking on a flat ground,
• walking on an uneven ground,
• walking on a mattress,
• walking on a beam without handrail,

• climbing a stair case with/without handrail,
• walking on stepping stones,
• going down a stair case without handrail,

They are depicted by red circles in Figure 4. In addition to these
challenges we added the perturbation rejection. Considering the
selected challenges we picked the following KPI:
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• horizontal ground at constant speed,
• stairs,
• bearing constant weight (the robot’s own weight)

while considering the following motor-skills:

• success rate across N different trials,
• mechanical energy,
• mechanical plus electrical energy,

All these choices are shown in Figure 5 by red ellipses in the
table. The mathematical details and results are presented below
in section 3.7.

3. MATERIALS AND METHODS

The experimental setups used to compute each of the
performance indicators given in section 3.7 are described in
this section. The motor skills given in Figure 5 and their
implementation are also presented. In addition, the algorithms
used to perform the different tests are depicted in section 3.8 and
illustrated in Figure 6.

3.1. Different Temperatures
The LNE is equipped with temperature-varying rooms which
allowed us to measure some of the performance indicators
at various temperatures ranging from 5◦C to 45◦C. In this
way, we evaluated the robustness and limits of our robot with
respect to the performance indicators in different environmental
conditions. It appeared that the robot behavior deteriorates at
low temperatures. At 5◦C it is not possible to perform the
calibration procedure as the robot could not move. At 10◦C
the friction is sufficiently low such that the robot could move.
Another phenomenon occurs above 40◦C after few motions due
to internal temperature build up: thermal protection prevents
the robot from moving if the temperature is too high. In this
room, apart from these extreme cases, the motions and indicators
measurements have been performed as expected on a flat ground
or on the staircase testbed of the Koroibot project. This staircase
is made of 4 15 cm high stairs and a top platform. The dimension
of one stair case is 1 m× 0.25 m× 0.05 m.

3.2. Tilted Surfaces
In the context of the body skills in motion, we considered
tilting surfaces. This was tested with the stabilizer commercially
available with HRP-2. The setup is a platform which can be tilted
upward and downward on one side with a hydraulic actuator.
The surface was tilted continuously until the robot fell off. On the
other hand, we tested walking algorithms with different angles
(pointing up or down) until the robot fell down. Tests were
realized with the robot pointing down, pointing up and across
the slope. In Figure 5 this test corresponds to Body Posture—
Continuous Surface Tilts.

3.3. Horizontal Translations
We used a mobile plate controlled in the horizontal plane to
perform continuous oscillating surface translations at various
frequencies and various amplitudes. The platform was moved
by a hydraulic actuator. The aim was to find the frequency

and the amplitude that the controlled robot is able to sustain.
In Figure 5 this test corresponds to Body Posture—Continuous
Surface translations.

3.4. Bearing
In order to test the robot capability to bear weights, we loaded
it with additional masses (bags of 5–15 kgs) in such way that
its balance is maintained. This approach is a bit limited as they
are several ways to bear a weight. Indeed it can be done with
a backpack, in collaboration with someone, or by holding the
object against its chest. Each of this approach comes with its own
specific constraint. In order to avoid such constraints, we decided
to take the simplest choice and hang soft weights on the front and
the back of the robot chest. In Figure 5 this test corresponds to
Body Transport—Bearing Constant Weight.

3.5. Pushes
This paragraph presents the pushes experiments. We tried to
find the sufficient force to make the robot fall down. This was
achieved by using a stick on top of which was fixed a force sensor
displaying the maximum force measured during an experiment.
The sensor used was a HBM 1000 N of type u3 together with a
HBM Scout 55 amplifier. The experience was realized while the
robot was standing and walking. The force was applied in the
sagittal and frontal planes until making HRP-2 fall. The force was
applied from behind the waist of the robot. This part of HRP-2
was made specifically soft to support impacts. The walking part is
themost difficult in terms of repeatability as the robot might be in
different foot support and thereforemore or less stable depending
on the configuration. In Figure 5 this test corresponds to Body
Posture—Pushes and Body Transport—Pushes.

3.6. Data
A CAD model of the staircase used is available on the
github repository where all the log of the experiments
are also present: https://github.com/laas/koroibot_KPI. All the
computations performed on the logs and implementing the key
performance indicators are available here: https://github.com/
laas/EnergyComputation.

3.7. Key Performance Indicators (KPI)
In this section the performance indicators used to evaluate
the humanoid robot HRP-2 are described. They are mostly
based on the work proposed in Torricelli et al. (2015). In the
Koroibot project we used key performance indicators (KPI)
to analyze the behavior of the robot at the beginning and
at the end of the project. These results lead us toward the
improvements to be made. In 2013 the algorithm mostly
used and implemented on HRP-2 in LAAS-CNRS where the
walking pattern generators described in Morisawa et al. (2007)
and Herdt et al. (2010). The performance indicators chosen
were:

• The execution time TM = tend − tbegin, where tbegin is
the time at which the sum of the norm of the motor axis
velocities reaches 6 rad s−1 for the first time in the log and
tend is when the sum of the norm of the motor axis velocities
passes below 0.5 rad s−1.
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FIGURE 6 | Pictures of the experimental setup at LNE (A) the robot hang up to walk on a slope (B) the translational plate (C) the temperature-controlled chamber

(end of the robot climbing 15 cm at 10◦C).

• The walked distance, being the distance between the
final base position and the initial one. The base pose is
reconstructed using odometry with the joint positions only.
The drift of this odometry is 8 cm over 3.6 m during a
straight walk.

• The success rate, being the number of time a specific task
could be performed without falling, over the total number
of trials of the task.

• The maximum tracking error from the planned trajectory,

TrackingError(t) =

∫ t+0.1

t
|qref − q̃|dt/0.1

MaxTrackingError = max
t
(TrackingError(t))

with TrackingError being the average normed difference
between the desired joint trajectory (qref ) and the joint pose
measured from the encoder (q̃) during 0.1 s starting at time
t. And MaxTrackingError being the maximum value of the
TrackingError function.

• The mechanical energy consumed normalized over the
walking distance D and the execution time TM .

Emechanical =

∫ tend

tbegin

|τω|dt/(TM D)

with Emechanical being the integral over time of the
mechanical power, τ being the torques applied at the robot
joints and ω being the velocity of the robot joints.

• The electrical energy dissipated by the motor resistance
normalized over the walking distance D and the execution
time TM ,

Emotor resistance =

∫ tend

tbegin

R i2dt/(TM D)

=

∫ tend

tbegin

R k2c τ 2dt/(TM D)

with Emotor resistance being the integral over time of the
electric power dissipated, R being the motor resistances, kc
being the electric motor torque constant and τ being again
the torques applied at the robot joints.

• The total energy consumed during the walking distance D
and the execution time TM ,

Etotal = Emechanical + Emotor resistance + Eelectronics

with Etotal being the sum of the energy consumed by
the system normalized over the walking distance D and
the execution time TM , and Eelectronics being the energy
consumed by the on-board electronic cards. Eelectronics is
neglected in this study so:

Etotal = Emechanical + Emotor resistance

• The mechanical cost of transport and the total cost of
transport,

Emechanical cost transport =

∫ tend

tbegin

|τω|dt/(m g D)

Etotal cost transport =

(

∫ tend

tbegin

|τω|dt +

∫ tend

tbegin

R k2c τ2dt

)

/(m g D)

with Emechanical cost transport and Etotal cost transport being,
respectively, the mechanical and total cost of transport, m
being the total mass of the robot, and g = 9.81ms−2 the
gravity constant.

• The Froude number,

Fr =
v
√

gl

v =
D

TM

where v is the robot center of mass mean velocity along
the horizontal plane and l is the leg length. This number
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FIGURE 7 | Sample of the experimental setup of the Koroibot project in LAAS-CNRS.

represents the ratio between the kinetic energy and the
potential energy. It can also be interpreted as an indicator
on the stepping frequency.

The trajectories were generated off line and repeatedly played on
the robot to analyze their robustness. Views of the experimental
setups are given in Figure 7.

3.8. Motion Generation for Humanoid
Robot Locomotion
This section explains the links between the motion generation
architecture depicted in Figure 1 and the Key Performance
Indicators given in the section 3.7. The set of functions
entitled body posture, depicted in Figure 1 (right), represents
the behavior which is provided by what is called a whole-body
controller. It consists of two parts:

• an estimator, which provides the orientation of the robot
with respect to the gravity field and the positions of the
end-effectors in contact with the environment.

• a whole-body controller which guarantees that the robot
balance is maintained with respect to cref , f ref and possibly a
qref .

In this paper we have evaluated independently only one whole
body motion controller. It is the stabilizer provided by Kawada
Inc. We give detailed performances evaluation of this controller
in the experimental part of this paper. It was described in

various paper such as Kajita et al. (2007) and Kajita et al.
(2001).

The set of function entitled body transport, depicted in
Figure 1 (right) in this paper, are four CDPG and one MPWBC.
The four CDPG evaluated in this paper are the following ones:
Carpentier et al. (2016), a multi-contact centroidal dynamic
pattern generator used to climb stairs with given contact
positions, Kajita et al. (2003a), the original walking pattern
generator implemented by Shuuji Kajita with given foot steps,
Morisawa et al. (2007), an analytical walking pattern generator
allowing immediate foot step modifications, Naveau et al.
(2017), a real time nonlinear pattern generator able to decide
autonomously foot-steps positions. In each case the goal of the
CDPG is to generate a center of mass trajectory and the foot-steps
trajectories. For Kajita et al. (2003a), Naveau et al. (2017), and
Morisawa et al. (2007) a dynamical filter is used to correct the
center of mass trajectory to improve the dynamical consistency
of the motion. In each case, a whole body motion generator (not
to be confused with a whole body motion controller) is used
without feedback to generate the reference position qref , and the
desired zref which are then sent to the stabilizer. For Naveau
et al. (2017) and Morisawa et al. (2007) we used the stack of
tasks described in Mansard et al. (2009) as a Generalized Inverse
Kinematics scheme. In Carpentier et al. (2016) a Generalized
Inverse Dynamics was used to generate the reference value for
qref and cref . The MPWBC provides the controls directly. The
one used is from Koch et al. (2014) using the Muscod-II Diehl
et al. (2001) nonlinear solver.
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FIGURE 8 | Climbing 10 cm stairs without handrail.

4. RESULTS

In this paragraph we present the numerical results obtained from
the computation of the KPI explained in detail in section 3.7
for each set of experiments. As a reminder the list of the KPI is
recalled:

• walked distance,
• success rate,
• max tracking error,
• duration of the experiment,
• mechanical joint energy,
• actuators energy,
• cost of transport,
• mechanical cost of transport,
• Froude number.

A video displaying a mosaic of all the experiments is
available at the following URL: https://www.youtube.com/
watch?v=djWGsb44JmY&feature=youtu.be or as a
Supplementary Material on the editor site of this paper.

4.1. Climbing Stairs
4.1.1. Stairs of 10 cm

In this experiment, the humanoid robot HRP-2 is climbing stairs
of 10 cm height without any handrail. The difficulty of this task
is that the robot has to perform quite large steps and vertical
motion. For this reason, the robot is climbing one stair at a time,
which means that the robot puts successively one foot on the
next stair and the other one on the same stair. This avoids a

too large joint velocity that the robot could not track. Morisawa
et al. (2007) CDPG was evaluated at the beginning of the project
although the variation of height violates the assumption of the
cart-table model. But thanks to the dynamical filter the motion
generated was dynamically consistent so that the stabilizer
could cope with the situation. Because this experiment was not
performed at the LNE (it was done 3 years before) it was not
possible to control carefully the room temperature but the test
was performed at 20◦C. The KPI results can be seen in Figure 11

(tool upstairs). The other test was performed at the end of the
project using the CDPG (Carpentier et al., 2016). This time the
CDPG took into account the center of mass height variation but
not the whole body motion. The stabilizer should theoretically
have less trouble to compensate for the simplifications made. For
Carpentier et al. (2016) three different temperatures were tested:
10◦C, 20◦C, and 35◦C. The numerical results are depicted in
Figure 8. Interestingly, the temperature level has a direct impact
in terms of mechanical cost as it diminishes with the increase in
temperature. It is reflected in the tracking error. This intertrial
variation does not come from the change of reference trajectory
as it is strictly the same for every trial. There is a level of
adaptation due to the stabilizer, but each temperature has been
tested at least 4 times. A possible explanation is the fact that the
grease in the harmonic drives generates less friction at higher
temperature. As the cost of transport is dimensionless it allows
the two motions to be compared regardless of their duration. It is
then interesting to see that the cost of transport in Figure 11 (tool
upstairs) and in Figure 8 (10◦C) are very similar. And that, at the
same temperature, the total cost of transport for Carpentier et al.
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FIGURE 9 | Climbing 15 cm stairs with a handrail.

(2016) CDPG is 9.6% better (from 6.71 to 6.06). One explanation
is that the motion from Carpentier et al. (2016) CDPG being
more dynamically consistent, the stabilizer consumes less energy
to compensate for the model simplifications.

4.1.2. Stairs of 15 cm

In this experiment, the humanoid robot HRP-2 is climbing stairs
of 15 cm height using a handrail. In addition the robot is not
using any stabilization algorithm, because there are non-coplanar
contacts. In this setup the Morisawa et al. (2007) CDPG has to
be used without handrail because of the model simplifications.
Trials have therefore been done using a WBC (described in
Mansard et al., 2009) without the handrail. The results show
that the current demanded by the motors went up to 45 A.
And because the HRP-2 batteries cannot provide more than
32 A, all trials failed. This is the reason why the results are
not shown in this study. Nevertheless, tests using the handrail
could be performed with Carpentier et al. (2016) CDPG. The
corresponding results are depicted in Figure 9. It confirms that
the energy is decreasing with the increase of temperature without
the stabilizer. Note that the energy spent by the robot is clearly
higher than for the experience on the 10 cm stairs, i.e., a 36% of
increase of the energy for walking.

4.1.3. Stepping Stones
In this experience, the humanoid robot HRP-2 had to walk up
and down on stairs made of red interlocking paving stones.
Between each stair there is a height difference of ±5 cm. The
CDPG described in Morisawa et al. (2007) was used. this test

is slightly different from the previous experiments because the
robot cannot put his two feet on a same level surface (contrary to
a stair step). To cope with this, the generated trajectories had to
always change the height of the next support foot. As the paving
stones were always slightly moving due to the robot weight, the
balance was difficult to obtain in a reliable way. As indicated in
the graph depicted in Figure 11, despite a success rate of 1, the
tracking error reaches a level (8e−03 rad). This tracking error
is greater than the one obtained during the 10 cm climbing
experiment at 10◦C but lower than the one obtained during the
15 cm climbing experiment at 35◦C (which is the lowest for this
temperature and the CDPG). A possible explanation of why the
energy consumption is greater than during the 10 cm climbing
stairs might be the instability of the stones and the fact that in
this experiment the robot climb the stairs in a human fashion,
i.e., not one stair at a time.

4.2. Walking on a Beam
This experiment was realized using the CDPG Morisawa et al.
(2007). In this experiment the humanoid robot HRP-2 is walking
on a beam. Initially, the experiment success rate on a real beam
was around 20%. This rate was improved to achieve a 90%
success rate, thanks a new implementation of the dynamical filter
presented in Kajita et al. (2003a). It reduced the drift which is
important as the beam length is 3m long. This could probably
be improved by a proper vision feed-back. However, in these
experiments, the robot walked on a normal ground as if it was on
a beam. The reason is the absence of a beam in the temperature-
controlled room. Even though the foot step location is discarded,
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FIGURE 10 | Walking on a beam.

FIGURE 11 | Multiple algorithms: Slopes at 5 degrees using Kajita algorithm (Skor), going up with a tool on a wooden pallet 10 cm (tool upstairs), going down on a

wooden pallet 10 cm (down stairs), going over an obstacle solving an OCP approach (Muscod), stepping on a interlocking paving stones (stepping stones).
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FIGURE 12 | Straight walk with Kajita’s walking pattern generator (Kajita et al., 2003a).

the balance problem is exactly the same. Here, the success rate is
1. The corresponding result is depicted in Figure 10.

To perform the motion on a limited bandwidth (beam), the
robot has to execute faster motions with its legs in order to place
its foot ahead the previous one. It is emphasized by the increase
of the cost of transport compared to normal straight walking (see
Figure 12). Though the robot’s legs are moving faster, the step
frequency is lowered compared to a normal walking in order to
keep the joint velocities in the feasible domain. This is reflected by
the fact that the Froude number is around 35% less than during a
straight walking (see Figure 12).

4.3. Straight Walking on Flat Ground
4.3.1. Temperatures
In the temperature-controlled room the humanoid robot
HRP-2 is performing a 2m straight walking following the
implementation of Kajita et al. (2003a). The corresponding result
is depicted in Figure 12. Note that the energy with respect to the
temperature is following the same trend as for the experiments on
the stairs and on the beam. We also tested the algorithm (Naveau
et al., 2017) at 10◦C. The total cost of transport is higher than
the algorithm (Kajita et al., 2003a) at the same temperature but
lower than the one used for walking over the beam. It is however
strongly less than the total cost of transport for climbing stairs
at 10◦C. The fact that the energy cost is higher for Naveau et al.
(2017) than for Kajita et al. (2003a) at the same temperature is
that Naveau et al. (2017) (illustrated in Figure 13) provides a
higher range of motion but the generated motions are closer to
the limit of the system, so the stabilizer spends more energy to
compensate for this.

4.3.2. Bearing Weights
Wemade the humanoid robot HRP-2 walk while bearing weights
at ambient temperature between 15◦ and 19◦. The two algorithms
Kajita et al. (2003a) and Naveau et al. (2017) were tested. The
robot was able to walk while carrying up to 14 kg with the two
algorithms. Note that, as expected, the effort to compensate for
the additional weight reflects in the cost of transport.

4.3.3. Pushes
We performed pushes in the lateral direction and in the frontal
direction while the robot was walking along a straight line. The
two algorithms Kajita et al. (2003a) and Naveau et al. (2017)
were again tested. In our case, the tested algorithm was not able
to modify its foot-steps according to the pushes contrary to the
impressive work by Takumi et al. (2017). For this specific set
of experiments with push from the back, the robot was able to
sustain forces from 31 N to 47 N. Pushes applied in the lateral
plane were varying between 23 N and 40 N. For Kajita et al.
(2003a), the cost of transport has a value of 3.31 similar to the
one obtained when walking on the beam. It is lower than the cost
of transport for climbing stairs. The cost of transport for Naveau
et al. (2017) is of 4.08. For both algorithms pushes are among the
most consuming behaviors. It is due to the stabilizer action to
compensate for the perturbation.

4.3.4. Slopes
The robot walked on a straight line while being on a
slope of various inclinations ([1◦ − 3.0◦]) -and with two
possible directions (upward or downward). The two algorithms
Kajita et al. (2003a) and Morisawa et al. (2007) were tested.
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FIGURE 13 | Straight walk with the walking pattern generator described in Naveau et al. (2017).

For Kajita et al. (2003a) the cost of transport is higher than for
standard straight walking but far less than during the pushes. For
Morisawa et al. (2007) the cost of transport is higher than when
performing the pushes with Kajita et al. (2003a) approach and is
at the same level than the beam test. It can be explained by the
fact that when the experiment has been realized the dynamical
filter was not used. Therefore the stabilizer had to compensate for
the discrepancy between the motion dynamics and the reference
given by the center of pressure. An algorithm able to estimate the
ground slope and adapt the walking pattern to it would probably
increase the efficiency of this motion.

4.3.5. Frictions
The robot walked on carpets with different textures including
different friction coefficients. In this case, we did not see any
consequences with the CDPG (Kajita et al., 2003a). This is
probably due to the particular coating of HRP2 soles used, they
might have avoided foot slippage. which is one way to affect the
friction coefficient. A possible extension of this work would be to
use more slippery ground. But a proper way to handle such case
is to implement a slip observer such as it was done (Kaneko et al.,
2005).

4.3.6. Uneven Terrain
The robot walked over gravels of calibrated size.We tested several
diameters with the CDPG (Kajita et al., 2003a). The robot was
able to walk on gravels of size up to 8 mm. Beyond this size, the
robot was falling. Note that in Figure 12 the cost of transport
is slightly more expensive than for classical straight walking at

nominal temperature, but not much than walking at 10◦C. It is
far less expensive than climbing a slope or counteracting pushes.
As expected it has no impact on the frequency of the footstep as
can be reflected by the Froude Number.

4.3.7. Walking Over an Obstacle
We have computed the same performance indicators to achieve
the task described in Koch et al. (2014) in the frame of the
Koroibot project. This strategy is quite different from the others
as it implements a MPWBC under the formulation of an Optimal
Control Problem given by Equation (1). The solution of this
problem was computed by the Muscod-II (Diehl et al., 2001)
solver. As the solver is trying to maximize a solution which is
not on a reduced space (the centroidal dynamics for the previous
algorithms), but on the whole robot, the solution found is close
to the limits of the robot in terms of joint position, velocity,
acceleration and torques. This is reflected in the cost of transport
which is very high, 10.15, almost as high as for climbing the stairs
of 15 cm (see Figure 11, Muscod).

4.4. Stabilizer
The stabilizer described in Kajita et al. (2007) and Kajita et al.
(2001) was extremely resilient during all the tests. A horizontal
testbed platform was used to generate oscillations along the
sagittal plane and the perpendicular plane at 1 and 2 Hz at
various amplitude [10, 20, 30, 40, 48] in mm. Along the sagittal
plane at 40 and 48 mm for both frequencies the feet of the
robot were raising up. In the perpendicular plane at 40 and 48
mm for both frequencies the overall robot rotated of about 15◦
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FIGURE 14 | Evaluation of the stabilization algorithm described in Kajita et al. (2007) and Kajita et al. (2001). The upper figure shows the results along the sagittal

plane, whereas the lower figure depicts the results along the perpendicular plane.

and 20◦. It was also tried to increase the frequency for a given
amplitude of 10 mm. In the sagittal plane, the robot was able
to reach 7 Hz without falling. In the perpendicular plane at 7
Hz the robot was making violent oscillations (without falling)
reaching mechanical resonance. The trial was subsequently

stopped. The results are depicted in Figure 14. We can clearly
see that for the oscillation in the perpendicular plane the increase
of total energy is following an exponential curve, compared to
the same experience in the sagittal plane. This clearly shows
that the resonance frequency of the system was reached as it
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can be seen in the video available at the following location
https://www.youtube.com/watch?v=djWGsb44JmY&feature=
youtu.be or as a Supplementary Material on the editor site of
this paper.

5. DISCUSSION

Human performance in locomotion tasks is still unmatched by
humanoid robots. Because of the lack of assessment methods
shared and accepted by the entire robotics community, it is even
difficult to estimate the level of maturity of existing technologies.
A response to these evaluation needs should induce significant
advances in robotics-research. Such an influence of evaluation on
the progression of technology performance has been observed in
the past, in particular for computer vision andNLP tasks (Martin,
2004).

The definition of evaluation protocols including testing
scenarios, testing environments and KPIs or metrics is crucial for
the definition of common standards for:

• certifying humanoid robots (i.e., to guarantee the conformity
of the product to fixed quality and performance requirements);

• allowing the user to make an informed choice when selecting
a specific robot among existing technologies;

• establishing a shared references on which developers and
buyers of these technologies can agree in order to define
specifications.

This study contributes to the definition of these performance
evaluation standards by proposing reproducible experiments
and evaluate repeatable performance measurements. These
evaluation methods are intended to be passed on to the robotics
research community and to standardization committees. In
addition we proposed one of the first thorough evaluation of such
performance indicators on a human size humanoid robot.

5.1. Summary and Major Outcomes
In this paper we presented a benchmarking for the control
architecture described in Figure 1 that was implemented on the
HRP-2 robot owned by LAAS-CNRS. The performance indicator
used in this paper are mostly based on Torricelli et al. (2015).
Based on this work we computed the following set of KPI:

• walked distance,
• success rate,
• maximum tracking error,
• duration of the experiment,
• mechanical joint energy,
• actuators energy,
• cost of transport,
• mechanical cost of transport,
• Froude number.

These KPI represent either the particular characteristics of the
experiments or the performances of the control architecture used.
The list of algorithms executed on the HRP-2 robot were:

• a flat ground CDPG from Kajita et al. (2003a),
• an analytical flat ground CDPG fromMorisawa et al. (2007),

• a nonlinear flat ground CDPG from Naveau et al. (2017),
• a multi-contact CDPG from Carpentier et al. (2016),
• a MPWBC from Koch et al. (2014),
• a WBC which is the stabilizer from Kajita et al. (2007) and
Kajita et al. (2001)

• a WBC that computes the joint position from the end-
effector plus center of mass trajectories from Mansard et al.
(2009)

• a WBC that computes the joint acceleration from the end-
effector plus center of mass trajectories used in Carpentier
et al. (2016).

The list of environmental conditions where the tests could
successfully be performed is:

• a temperature controlled room which provided from 10◦C
to 35◦C,

• a sloped ground of various inclinations ([1◦ − 3.0◦]),
• a controlled mobile platform that simulates a translating
ground,

• a set of calibrated weight from 5 to 15 kgs,
• a stick equipped with a force sensor at its tip to apply to
measure perturbation on the robot,

• different floors with different frictions.

The list of motion performed in the environmental conditions :

• climbing up 10 cm high stairs without handrail,
• climbing up 15 cm high stairs with handrail,
• walking over stepping stones,
• walking on a beam,
• walking on a flat ground,
• walking on a slope,
• walking over obstacles.

From all these results and experiments few major results come
out. First the temperature plays a role on the energy consumed
during a motion. We observed that the colder the room is, the
more mechanical and electrical energy is consumed. We also
noticed that the more the motion is at the limit of stability
the more the stabilizer has to inject energy into the system to
compensate for potential drift. This creates a noticeable increase
in energy consumption, e.g., when the robot walks on a beam,
steps over obstacle, walks on stepping stones. However the most
expensive motion is climbing stairs which is clearly a challenge
for future potential applications in which stairs are involved.
Finally, in terms of cost of transport, the algorithm proposed by
Carpentier et al. (2016) seems to be the most efficient and the
most versatile. Its main disadvantage during this campaign was
the lack of on-line implementation compared to Morisawa et al.
(2007) and Naveau et al. (2017).

5.2. Limits
The main limit in the approach proposed here is the difficulty
to make the experiments to be more statistically significant. In
its current form at least 3 people are needed to perform one
experiment, whichmakes them error-prone and time consuming.
Given the wide range of motions that a humanoid robot is able
to perform, wear testing needs humanoid robots to be able to
fall down and stand up again and restart their behavior. This is
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a current hot topic in humanoid robotics. The Atlas humanoid
robot built by Boston Dynamics has recently demonstrated its
capabilities to fall down without breaking and stand up. HRP-
2 is an electric-based humanoid robot which is mechanically
fragile due to its harmonic drive. Although several works
(Fujiwara et al., 2006; Samy and Kheddar, 2015) have developed
new approaches toward making such robot more resilient to
falling, it is still difficult to implement them in practice due
to the cost of failure. In the meantime, benchmarking will
help to understand the repeatability and the robustness of the
various algorithms implemented on humanoid robots. For very
unstructured environments more tests will probably be needed,
and a way to classify the environments necessary (using gravels,
stairs, size of stairs, different shapes of stairs, or database of
environments, forests). But so far such environments can be
handled only by a small number of humanoids and the approach
proposed in this paper is feasible for a large set of current
humanoid robots.

5.3. Future Work
We could not properly compute the KPI when trying to vary
the friction of the ground. A future work is then to implement a
proper slip observer like the one in Kaneko et al. (2005). based on
this observer, Based on this we should build a stabilizer that could
be used in multi-contact motions in order to compensate for
external perturbations and modeling assumption. Furthermore,
the LAAS-CNRS has acquired a new humanoid robot Talos
(Stasse et al., 2017). The future work consists in implementing
all the algorithms presented in this paper and perform the
benchmarking on this new robot.
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