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Abstract: High-throughput sequencing technologies have rapidly developed during the past years
and have become an essential tool in plant sciences. However, the analysis of genomic data remains
challenging and relies mostly on the performance of automatic pipelines. Frequently applied
pipelines involve the alignment of sequence reads against a reference sequence and the identification
of sequence variants. Since most benchmarking studies of bioinformatics tools for this purpose have
been conducted on human datasets, there is a lack of benchmarking studies in plant sciences. In this
study, we evaluated the performance of 50 different variant calling pipelines, including five read
mappers and ten variant callers, on six real plant datasets of the model organism Arabidopsis thaliana.
Sets of variants were evaluated based on various parameters including sensitivity and specificity.
We found that all investigated tools are suitable for analysis of NGS data in plant research. When
looking at different performance metrics, BWA-MEM and Novoalign were the best mappers and
GATK returned the best results in the variant calling step.

Keywords: Single Nucleotide Variants (SNVs); Single Nucleotide Polymorphisms (SNPs);
Insertions/Deletions (InDels); population genomics; re-sequencing; mapper; benchmarking; Next
Generation Sequencing (NGS); bioinformatics; plant genomics

1. Introduction

As the basis of biological properties and heredity, the genome of a species is a valuable resource
for numerous studies. However, there are subtle differences between individuals of the same species,
which are of academic and economic interest as these determine phenotypic differences. Dropping
sequencing costs boosted high-throughput sequencing projects, thus facilitating the analysis of this
genetic diversity. Variations within the A. thaliana population were studied in the 1001 genomes
project [1]. As the number of high-quality reference genome sequences rises continuously, the number of
re-sequencing projects increases as well [2]. There are pangenome projects for various species focusing
on the genome evolution [3–5] and mapping-by-sequencing projects which focus on agronomically
important traits of crops [6–9].

An accurate and comprehensive identification of sequence variants between a sample and the
reference sequence is the major challenge in many re-sequencing projects [10]. The large amount and
diverse nature of NGS-data types (as reviewed in [11]), the diversity of bioinformatics algorithms, and
the quality of the reference genome sequence render the choice of the best approach challenging.
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Variant calling pipelines often start with (I) the preprocessing of sequence reads, followed by (II)
the alignment (mapping) of these reads to a reference sequence. Finally, the (III) identification (calling)
of sequence variants is performed based on alignments. Each of these three steps can be carried out by
various alternative programs using different algorithms, which influence the accuracy and sensitivity
of the resulting variant set.

First, read processing can be required if the read quality is at least partially low. Some downstream
tools require that sequence reads come with quality scores in a certain system, namely Phred33
or Phred64. The conversion between different systems is allowed by some read processing tools.
Popular read processing tools are FastQC [12], htSeqTools [13], NGSQC [14], SAMStat [15], and
Trimmomatic [16].

As the read mapping determines the quality of the alignment, it is arguably the most important
step [10]. Sequence reads are aligned to a suitable, but not necessarily the correct place in the
genome sequence. Often, there is a trade-off between mapping speed and the quality of the resulting
alignment [17]. Numerous mappers are available, which utilize different algorithms and criteria to
generate alignments [10,18]. Consequently, the choice of tool and parameters can have a large influence
on the outcome of the mapping [19,20]. Reads originating from PCR duplicates should be removed
from the mapping prior to the variant calling to improve the reliability of the results [20]. Moreover,
the quality of the reference genome sequence plays an important role for the performance of the
mapper. The particular challenges are low-complexity sequences, repetitive regions, collapsed copies
of sequences, contaminations, or gaps in the reference genome sequence [10]. Frequently applied
read mappers are Bowtie2 [21], BWA-MEM [22], CLC Genomics Workbench (Qiagen), GEM3 [23],
Novoalign [24], and SOAP2 [25]. While most of these tools are freely available for academic use as
command line versions, CLC Genomics Workbench is a proprietary software suite for genomics with a
graphical user interface. Detailed characteristics and algorithms of each mapper have been described
elsewhere [18,20,26,27].

Finally, genomic variants like single nucleotide variants (SNVs) or small insertions/deletions
(InDels) can be inferred by variant callers based on sequence read alignment. Popular variant callers
like SAMtools/BCFtools [28], CLC Genomics Workbench (Qiagen), FreeBayes [29], GATK [30–33],
LoFreq [34], SNVer [35], VarDict [36], and VarScan [37] use a variety of different approaches to
call variants. Consequently, resulting variant sets differ depending on the employed methods (e.g.,
Bayesian), which come with strengths and weaknesses concerning the identification of specific variant
types [10,38]. Several factors that contribute to the high accuracy of variant callings are: (I) a high read
coverage at the variant position resulting in support for SNVs by several overlapping reads [39], (II) a
careful study design [20], and (III) joint variant calling for multiple samples to allow mutual support of
genotypes [40].

The initial set of putative sequence variants is usually filtered to remove unreliable variant calls.
Possible reasons for the identification of these variants in the first place are incorrect alignments,
sequencing errors, or low-quality scores [10]. Read depth, mapping quality, and bias in the alignment
to both strands are central criteria used in the filtering step. While this filter step aims to reduce the
number of false positives, it simultaneously increases the number of false negatives. The best trade-off

between sensitivity and specificity depends on the purpose of the respective study.
Many underlying algorithms of variant calling pipelines were developed for the analysis of variants

in the human genome, e.g., to investigate genetic disorders or to study tumor samples [20,41–44].
Although the applications in biomedical research and plant sciences differ substantially, plant scientists
have largely followed benchmarking studies derived from research on human samples assuming
similar performances. Moreover, many plant genomes possess unique challenges for variant calling,
namely high amounts of repetitive sequences [45], large structural variations [46], and a broad range of
heterozygosity and polyploidy [47]. Therefore, the diversity of plant genomes reveals the necessity of
a benchmarking study using plant datasets. However, no comprehensive benchmarking study of read
mapping and variant calling tools for plant genome sequences is described in the literature. Due to
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substantial differences in the nucleotide composition, a dedicated benchmarking on plant genome
sequences is advised. A recent study compared the performance of BWA-MEM [22], SOAP2 [25], and
Bowtie2 [21] with the two variant callers GATK [30–33] and SAMtools/BCFtools [28] on simulated
and real tomato datasets [48]. To expand the sparse knowledge about the performance of other read
mapping and variant calling tools on plant data, we set out to perform a systematic comparison. Due to
the availability of excellent genomic resources, we selected the well-established plant model organism
Arabidopsis thaliana for our study. While A. thaliana is not a perfect representative of all plants, the
genome shows the characteristically high proportion of AT. Despite limitations in heterochromatic and
centromeric regions [49], many plant repeats are resolved in the high-quality genome sequence of A.
thaliana. Our study evaluated the performance of 50 variant calling pipelines including combinations of
five read mappers (Bowtie2, BWA-MEM, CLC-mapper, GEM3, Novoalign) and eight different variant
callers (SAMtools/BCFtools, CLC-caller, FreeBayes, GATK v3.8/v4.0/v4.1, LoFreq, SNVer, VarDict,
VarScan) that are frequently applied in re-sequencing studies. Many combinations perform almost
equally well on numerous datasets of the plant model organism A. thaliana. Illumina sequence reads
were used for the detection of variants and provide the foundation for the comparison of these pipelines.
Independent PacBio long reads were harnessed for the validation of identified variants based on an
orthogonal sequencing technology.

2. Results

2.1. General Stats about Mapping of Reads

Six Illumina paired-end sequence read datasets [50,51] from A. thaliana Nd-1 and one control
sample of Col-0 [50] were processed using all combinations of five read mapping and eight different
variant calling tools (including three different versions of one tool) to evaluate the mapping percentage as
well as precision, sensitivity, and specificity of each variant calling pipeline. Due to these combinations
(7 × 5 × 10), 350 variant calling sets were generated in this study. Overall, the sequence read quality of
the processed datasets was high ranging from an average Phred score of 35 to 38 (Table S1).

We observed only minor differences between the different sequence read datasets with respect
to the percentage of properly aligned read pairs (Figure S1). In general, a higher proportion of the
2 × 300 nt paired-end reads was mapped, ranging from 94.8% to 99.5%, while the 2 × 250 nt and the
2 × 100 nt paired-end reads resulted in mapping proportions ranging from 92.7% to 99.6% and 90.0%
to 99.1%, respectively.

The comparison of mapping performance revealed that GEM3 had the highest average percentage
of aligned read pairs (99.4%), followed by Novoalign (98.8%), Bowtie2 (98.5%), BWA-MEM (98.1%),
and the read mapping function within CLC Genomics Workbench (CLC-mapper) (92.9%) (Figure 1).
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Figure 1. Ratio of mapped sequence read pairs per mapper. Sequence reads of six A. thaliana Nd-1 
datasets were mapped to the Col-0 reference genome sequence TAIR10. The average ratio of aligned 
read pairs was calculated for Bowtie2, BWA-MEM, the mapping function in CLC Genomics 
Workbench (CLC), GEM3, and Novoalign based on all six datasets through the flagstats function of 
SAMtools. The width of the violin plots is proportional to the density of the data points. The boxplots 
inside the violin plots indicate quantiles and the white dot indicates the median. 

2.2. Initial Variant Calling Results & Validation Results 

The initial variant calling revealed between 32,939 (Bowtie2 / CLC-caller) and 1,009,163 (BWA-
MEM / VarDict) unfiltered SNVs, while the number of unfiltered InDels ranged from 2,559 (BWA-
MEM / VarScan) to 240,879 (GEM3 / VarDict) (Table S2). Based on the three variant callers, which 
were able to call and classify MNVs (CLC-caller, VarDict, and FreeBayes), MNVs ranged from 1,394 
(Bowtie2 / CLC-caller) to 168,100 (CLC-mapper / FreeBayes) (Table S2). 

The quality of a variant call set is determined by the transition/transversion ratio, as a worse 
variant call set tends to have a lower transition/transversion ratio [52]. While most variant callers 
showed a similar transition/transversion ratio with a median ranging from 1.256 (LoFreq) to 1.288 
(VarDict), SNVer revealed a lower median of 1.2 and especially FreeBayes performed worst, showing 
a median of 1.15 (Figure 2). In addition, FreeBayes revealed the highest variation ranging from 0.92 
to 1.31. 

Figure 1. Ratio of mapped sequence read pairs per mapper. Sequence reads of six A. thaliana Nd-1
datasets were mapped to the Col-0 reference genome sequence TAIR10. The average ratio of aligned
read pairs was calculated for Bowtie2, BWA-MEM, the mapping function in CLC Genomics Workbench
(CLC), GEM3, and Novoalign based on all six datasets through the flagstats function of SAMtools. The
width of the violin plots is proportional to the density of the data points. The boxplots inside the violin
plots indicate quantiles and the white dot indicates the median.

2.2. Initial Variant Calling Results & Validation Results

The initial variant calling revealed between 32,939 (Bowtie2/CLC-caller) and 1,009,163
(BWA-MEM/VarDict) unfiltered SNVs, while the number of unfiltered InDels ranged from 2,559
(BWA-MEM/VarScan) to 240,879 (GEM3/VarDict) (Table S2). Based on the three variant callers, which
were able to call and classify MNVs (CLC-caller, VarDict, and FreeBayes), MNVs ranged from 1,394
(Bowtie2/CLC-caller) to 168,100 (CLC-mapper/FreeBayes) (Table S2).

The quality of a variant call set is determined by the transition/transversion ratio, as a worse
variant call set tends to have a lower transition/transversion ratio [52]. While most variant callers
showed a similar transition/transversion ratio with a median ranging from 1.256 (LoFreq) to 1.288
(VarDict), SNVer revealed a lower median of 1.2 and especially FreeBayes performed worst, showing
a median of 1.15 (Figure 2). In addition, FreeBayes revealed the highest variation ranging from
0.92 to 1.31.

In order to analyze whether a variant caller identifies relatively more SNVs than InDels, the ratio
of SNVs to SNVs and InDels was calculated per variant caller (Figure 3). BCFtools identified the
highest proportion of SNVs (median = 0.90), while VarDict and GATK 4.1 called the lowest proportion
of SNVs (median = 0.824). Moreover, all GATK versions performed similar and revealed low variance
when compared to the other variant callers. Interestingly, BWA-MEM/VarScan using the SRR3340910
dataset yielded the highest SNVs/InDels ratio with almost 1 (0.996).
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Figure 3. Ratio of SNVs to SNVs and InDels per variant caller. Performance of each variant caller was
assessed based on 30 mappings of A. thaliana Nd-1 reads against the Col-0 reference genome sequence
TAIR10. The proportion of SNVs in the results of each applied variant caller was analyzed. MNPs were
excluded because not all variant callers identified MNPs. The orange line represents the median, the
green triangle the mean.
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To infer whether a variant caller is more prone to call small or large InDels, the distribution
of InDel lengths was inspected (Figure 4). Especially VarDict called very large insertions (up to
981 bp) and very large deletions (up to 998 bp), which are likely to be artifacts since they are filtered
out in the corresponding validated call set (Figure S2). VarScan (134 to −93), SNVer (134 to −95),
CLC-caller (156 to −95), LoFreq (168 to −109), and BCFtools (216 to −108) showed a narrower range of
InDel lengths.Plants 2020, 9, x FOR PEER REVIEW 7 of 15 
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Figure 4. Distribution of InDel lengths per variant caller. Performance of variant callers was assessed
based on 30 mappings of A. thaliana Nd-1 reads against the Col-0 reference genome sequence TAIR10.
The length distribution of all InDels identified by each applied variant caller was analyzed. The orange
line represents the median, the green triangle represents the mean.

A gold standard, comprising variants which have been validated through orthogonal data, was
used for benchmarking (see methods for details). In order to compare the performance of different
variant calling pipelines, we calculated the sensitivity, specificity, accuracy, precision, and F1 score
(Table 1, Table S2). GATK revealed the highest accuracy in combination with most mappers. The
only exception is the combination of GEM3 and VarScan, which performed better than any GATK
version (Figure 5). GATK worked best on alignments produced by BWA-MEM and Novoalign. All
three evaluated GATK versions (v3.8, v4.0, and v4.1) showed an almost identical performance. In
general, Novoalign reached the best (median) results with respect to accuracy. The only exceptions
are CLC-caller and VarScan based on alignments produced by CLC-mapper and GEM3, respectively.
While Bowtie2 was identified to yield high specificity with most variant callers, it showed a low
accuracy with most variant callers except for FreeBayes and VarDict.

In general, the sensitivity of the variant calling pipelines ranged from 0.0219 (Bowtie2/CLC-caller)
to 0.6038 (BWA-MEM/VarDict) and the specificity from 0.99450 (CLC-mapper/FreeBayes) to 0.999961
(Bowtie2/CLC-caller) (Figures S3 and S4). Moreover, we observed a negative correlation of −0.8
between specificity and sensitivity, indicating that a pipeline with a high sensitivity showed a low
specificity and vice versa. Almost every variant caller, except for VarDict, showed the lowest specificity
when used in combination with CLC-mapper, while in parallel these combinations had one of the
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highest sensitivities. VarDict showed the highest specificity, but lowest sensitivity with Bowtie2
and performed inferior to GEM3 in terms of specificity, while BWA-MEM reached the best results
in sensitivity.Plants 2020, 9, x FOR PEER REVIEW 8 of 15 
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shown with mean (dashed line) and median (straight line) calculated based on the results of the six
analyzed datasets.

All tested GATK versions (v3.8, v4.0, and v4.1) showed a very high sensitivity and were only
outperformed by specific VarDict samples, namely the 2 × 100 nt paired-end dataset independent of
the choice of the mapper, which reached up to 0.6038 sensitivity (BWA-MEM/VarDict-SRR2919279).
However, the specificity of GATK was inferior to some other variant callers. Only minor differences
were observed between the three evaluated GATK versions regarding both sensitivity and specificity.
The use of different mappers had a substantially higher impact than the applied GATK version.

Followed by GATK, FreeBayes showed a good performance in terms of sensitivity and
robust results across all mappers, whereas the other variant callers showed a low performance
in combination with Bowtie2. CLC-caller, VarScan, and LoFreq revealed a great variation with
respect to sensitivity across all mappers, while GATK and especially VarDict displayed very low
variance in their results. When focusing on median sensitivity, the following combinations showed
the best results: CLC-mapper/CLC-caller, GEM3/VarScan, CLC-mapper/SNVer, CLC-mapper/LoFreq,
CLC-mapper/GATK v3.8, CLC-mapper/GATK v4.0, CLC-mapper/GATK v4.1, CLC-mapper/BCFtools,
GEM3/FreeBayes, and BWA-MEM/VarDict. However, in terms of median specificity, all variant callers
revealed the best results in combination with Bowtie2, except for FreeBayes, which worked best with
Novoalign. Moreover, FreeBayes showed the lowest performance and largest variation across all
mappers (Figure S3).

Finally, the harmonic mean of precision and sensitivity, namely the F1 score, was analyzed
(Figure S5). Novoalign in combination with GATK revealed the best mean performance with respect to
the F1 score. Again, different GATK versions showed almost identical performance (Table 1).
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Table 1. Performance statistics of variant calling pipelines. For each variant calling pipeline, the statistics to infer the performance are listed: sen = sensitivity,
spe = specificity, pre = precision, acc = accuracy, F1 = F1 score.

BCFtools CLC FreeBayes GATK v3.8 GATK v4.0 GATK v4.1 LoFreq SNVer VarDict VarScan

Bowtie2

26.701 sen 7.979 sen 43.729 sen 33.836 sen 33.819 sen 33.869 sen 12.282 sen 21.844 sen 37.343 sen 13.910 sen
99.928 spe 99.987 spe 99.566 spe 99.937 spe 99.937 spe 99.936 spe 99.985 spe 99.969 spe 99.884 spe 99.979 spe
81.800 pre 88.244 pre 53.735 pre 87.286 pre 87.342 pre 87.035 pre 91.607 pre 90.107 pre 79.803 pre 89.530 pre
99.030 acc 98.828 acc 98.939 acc 99.104 acc 99.104 acc 99.104 acc 98.878 acc 98.983 acc 99.120 acc 98.894 acc
0.403 F1 0.145 F1 0.47 F1 0.488 F1 0.488 F1 0.488 F1 0.214 F1 0.352 F1 0.512 F1 0.239 F1

BWA-MEM

43.186 sen 34.992 sen 43.053 sen 47.130 sen 47.099 sen 47.136 sen 38.874 sen 41.435 sen 40.302 sen 37.506 sen
99.806 spe 99.908 spe 99.548 spe 99.842 spe 99.842 spe 99.839 spe 99.892 spe 99.868 spe 99.852 spe 99.907 spe
73.182 pre 81.892 pre 51.289 pre 79.129 pre 79.083 pre 78.786 pre 81.122 pre 79.521 pre 76.686 pre 83.535 pre
99.120 acc 99.099 acc 98.916 acc 99.179 acc 99.179 acc 99.178 acc 99.122 acc 99.133 acc 99.124 acc 99.120 acc
0.543 F1 0.492 F1 0.459 F1 0.591 F1 0.59 F1 0.59 F1 0.528 F1 0.546 F1 0.531 F1 0.518 F1

CLC

47.682 sen 36.382 sen 41.564 sen 49.237 sen 49.357 sen 49.413 sen 41.730 sen 45.352 sen 39.508 sen 41.349 sen
99.695 spe 99.851 spe 99.517 spe 99.817 spe 99.815 spe 99.812 spe 99.821 spe 99.759 spe 99.857 spe 99.847 spe
65.903 pre 73.878 pre 48.854 pre 77.341 pre 77.183 pre 76.901 pre 73.611 pre 70.493 pre 76.995 pre 76.971 pre
99.064 acc 99.062 acc 98.882 acc 99.175 acc 99.175 acc 99.174 acc 99.066 acc 99.060 acc 99.112 acc 99.100 acc
0.549 F1 0.491 F1 0.441 F1 0.601 F1 0.602 F1 0.602 F1 0.536 F1 0.549 F1 0.525 F1 0.539 F1

GEM3

35.488 sen 32.826 sen 44.104 sen 40.895 sen 40.890 sen 40.963 sen 33.867 sen 34.710 sen 39.131 sen 41.502 sen
99.887 spe 99.932 spe 99.523 spe 99.902 spe 99.902 spe 99.900 spe 99.941 spe 99.925 spe 99.847 spe 99.904 spe
79.533 pre 85.457 pre 51.481 pre 84.189 pre 84.221 pre 83.863 pre 87.657 pre 85.573 pre 75.648 pre 84.315 pre
99.092 acc 99.095 acc 98.922 acc 99.157 acc 99.157 acc 99.156 acc 99.107 acc 99.097 acc 99.100 acc 99.169 acc

0.49 F1 0.475 F1 0.464 F1 0.55 F1 0.551 F1 0.55 F1 0.489 F1 0.494 F1 0.519 F1 0.557 F1

Novoalign

44.160 sen 33.858 sen 42.986 sen 48.599 sen 48.575 sen 48.620 sen 38.892 sen 41.436 sen 39.863 sen 38.170 sen
99.820 spe 99.922 spe 99.610 spe 99.846 spe 99.845 spe 99.842 spe 99.905 spe 99.885 spe 99.860 spe 99.922 spe
75.260 pre 84.222 pre 54.799 pre 80.019 pre 79.951 pre 79.643 pre 83.510 pre 81.968 pre 77.296 pre 85.862 pre
99.147 acc 99.097 acc 98.966 acc 99.202 acc 99.202 acc 99.200 acc 99.137 acc 99.149 acc 99.127 acc 99.144 acc
0.556 F1 0.483 F1 0.472 F1 0.605 F1 0.604 F1 0.604 F1 0.532 F1 0.551 F1 0.529 F1 0.529 F1
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3. Discussion

The major challenge in many pangenome and re-sequencing projects is the accurate and
comprehensive identification of sequence variants. Due to the high diversity and complexity of
plant genomes and their differences to animal (e.g., human) genomes, variant callings in plant research
differ substantially from those in human and biomedical research. Most human benchmarking studies
focus on calling SNVs of certain tumor cells in a highly diverse cell set [20,42,43]. In contrast, plant
studies usually use the whole cell set derived from one plant without genomic differences between
cells. However, the sequencing of pooled DNA from multiple plants aims at the identification of low
frequency SNVs. Large amounts and different NGS data types (as reviewed in [11]), the diversity of
bioinformatic algorithms, and the quality of the reference genome sequences render the choice of the
best approach challenging. Hence, we performed a benchmarking study to provide comparable data
showing the performance of combinations of frequently applied mappers and variant callers (variant
calling pipelines) on plant datasets. A previous report [48] is extended by providing data about the
performance of additional tools both for the mapping and variant calling step.

To allow for a consistent comparison of baseline performance, we used default parameters for all
tools as these parameters are frequently chosen in plant science applications [4,5,9]. Sequence read
datasets from different sequencing platforms, with different read lengths, and different sizes were
processed to ensure a realistic benchmarking of tools. Since all evaluated tools can process a real plant
dataset within a day, we refrained from assessing the computational costs of the analysis. There is
usually a trade-off between quality of the results and computational costs. In our experience, many
plant scientists select the workflow leading to the best results independent of computational costs [51].

The first step in a variant calling pipeline is the alignment (mapping) of reads to a reference
sequence. While the mapping of 2 × 250 nt paired-end reads resulted in a higher mapping percentage,
the performance difference to 2 × 100 nt reads is only about 10%. As different sequencing platforms
were used for the data generation, per base quality might contribute to this difference. It is expected
that longer reads are aligned with higher specificity and hence improve the following variant calling.

The quality of the variant calling sets was assessed by the transition/transversion (ti/tv) ratio
which was previously described as a quality indicator [52]. Overall, the quality of almost all analyzed
call sets was similar. A previous benchmarking study with SAMtools and GATK reported similar
ti/tv ratios for all pipelines [53]. A filtering step increased the ti/tv ratios, indicating that the filtering
increased the quality of the call sets [53]. This observation is in line with our findings, which revealed
an increased ti/tv for the filtered call sets reduced to variants present in the gold standard (Figure S6,
Table S3). As FreeBayes showed a substantial increase in the quality through filtering, we recommend
checking the ti/tv ratio when applying FreeBayes. This effect might be dataset specific.

The choice of the variant caller is crucial for the number of called SNVs, MNVs, and InDels. For
example, only CLC-caller, VarDict and FreeBayes were able to call MNVs, thus being more suitable for
the identification of structural differences. Furthermore, variant caller results differ with respect to
the ratio of SNVs to InDels, which should be considered depending on the specific requirements of
the respective sequencing project. BCFtools called relatively more SNVs than InDels, while GATK
revealed relatively more InDels. A unique property of VarDict was the detection of InDels up to almost
1 kb which exceeds the read length. Since the accurate identification of such large variants, which are
longer than the average read length, is still a challenging task [54], many of these variants are likely
false positives. Moreover, the reduced amount of large insertions in the validated call sets of VarDict
supports this assumption.

Depending on the application, a pipeline with a high sensitivity or high specificity is desired. In
terms of sensitivity, GATK in combination with CLC-mapper, Novoalign, and BWA-MEM yielded the
best and most consistent results across all evaluated datasets. These results are in line with a recent
study showing that GATK often outperformed SAMtools in terms of sensitivity, precision, and called
raw InDels [48]. Similar results had been shown in rice, tomato, and soybean [48], indicating that GATK
is also suitable for various crop species with complex genomes. A high sensitivity is essential when
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a high number of true positive variations accelerates the power of the analyses, e.g., when looking
for a detrimental variation between two samples. In this study, a pipeline comprising Bowtie2 and
LoFreq resulted in the highest specificity and can thus be recommended. In contrast, a high specificity
is desired in mapping-by-sequencing (MBS) projects, as a high proportion of true positives can keep
the signal to noise ratio high. Combining both performance metrics by analyzing the accuracy, the
best results were obtained with Novoalign and GATK. The same pipeline yielded the best results
regarding the harmonic mean of precision and sensitivity (F1 score). Differences observed between the
three evaluated GATK versions (v3.8, v4.0, and v4.1) were negligible. However, functionalities and
computational performance might differ between these versions.

In summary, this benchmarking study provides insights into the strengths and weaknesses of
different variant calling pipelines when applied on plant NGS datasets. Although the performance of
all evaluated tools will differ between samples depending on properties of the read datasets and the
genome sequence, we hope that our findings serve as a helpful guide.

4. Materials and Methods

4.1. Sequence Read Datasets

We used paired-end Illumina reads from two different A. thaliana accessions, namely Columbia-0
(Col-0) and Niederzenz-1 (Nd-1) (Table S1). The read quality was checked via FastQC [12] (Table S1).
Trimmomatic [16] was applied for light trimming and quality conversion to a Phred score of 33 if
applicable. These datasets cover different Illumina sequencing platforms including GAIIx, MiSeq,
and HiSeq 1500. While two datasets are the paired-end proportions of mate pair sequencing libraries
(SRR2919288 and SRR3340911), these samples are 2 × 250 nt paired-end libraries.

4.2. Sequence Read Mapping

We chose five popular read mappers, namely Bowtie2 v2.3.4.3 [21], BWA-MEM v0.7.17 [22], CLC
Genomics Workbench v11 (Qiagen), GEM3 v3.6 [23], and Novoalign v3.09.01 [24] for this analysis.
While most of these mappers are freely available for academic use, CLC is a proprietary software
suite for genomic analyses. Paired-end reads were mapped against the TAIR10 reference genome
sequence [55]. The executed commands for each tool can be found in Table S4. SAMtools v.1.8 [28]
was deployed for sorting of the BAM files. Reads originating from PCR duplicates where removed
via MarkDuplicates in Picard-bf40841 [56]. Read groups or InDel qualities were assigned as these are
required by some tools for downstream processing. While the plastome and chondrome sequences
were included during the mapping step, variant caller performance was only assessed for the five
chromosome sequences of the nucleome.

4.3. Variant Calling

All mapping results were subjected to variant calling via CLC Genomics Workbench v11 (Qiagen),
FreeBayes v1.2.0 [29], Genome Analysis Tool Kit v3.8/v4.0/v4.1 HaplotypeCaller (GATK-HC) [30–33],
LoFreq v2.1.3.1 [34], SAMtools v1.9 [28] in combination with BCFtools v1.9 (alias BCFtools in the
following), SNVer [35], VarDict [36], and VarScan [37]. We evaluated three different versions of GATK
in order to analyze whether the applied version has a high impact on the variant calling pipeline
performance. The executed commands for each tool can be found in Table S4.

4.4. Performance Measure of Variant Calling Pipelines

The overall workflow of our benchmarking study is presented in Figure 6. We applied a previously
described pipeline to validate sequence variants against the Nd-1 de novo assembly based on PacBio
reads [57], which is crucial in order to assess the performance of each variant calling pipeline. This
Nd-1 genome sequence assembly is of high quality due to a high PacBio read coverage of about
112-fold and additional polishing with about 120-fold coverage of accurate short reads [58]. A gold
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standard was generated from all validated variants by combining them into a single VCF file [59].
Afterwards, the numbers of true positives, true negatives, false positives, and false negatives were
calculated based on the gold standard and the initial VCF files for each variant calling pipeline and
dataset. Next, performance statistics including sensitivity, specificity, precision, accuracy, and F1 score
were calculated per combination of mapper, variant caller, and dataset (Table 1).Plants 2020, 9, x FOR PEER REVIEW 12 of 15 
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