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Prior odor experience has a profound effect on the coding of new odor inputs by animals.

The olfactory bulb, the first relay of the olfactory pathway, can substantially shape the

representations of odor inputs. How prior odor experience affects the representation of

new odor inputs in olfactory bulb and its underlying network mechanism are still unclear.

Here we carried out a series of simulations based on a large-scale realistic mitral-granule

network model and found that prior odor experience not only accelerated formation of the

network, but it also significantly strengthened sparse responses in the mitral cell network

while decreasing sparse responses in the granule cell network. This modulation of sparse

representations may be due to the increase of inhibitory synaptic weights. Correlations

among mitral cells within the network and correlations between mitral network responses

to different odors decreased gradually when the number of prior training odors was

increased, resulting in a greater decorrelation of the bulb representations of input odors.

Based on these findings, we conclude that the degree of prior odor experience facilitates

degrees of sparse representations of new odors by the mitral cell network through

experience-enhanced inhibition mechanism.

Keywords: odor representation, prior experience, sparse representation, olfactory bulb, large scale network

INTRODUCTION

Prior sensory experience is very important for animals in learning and processing novel incoming
signals. In olfaction, prior odor experience can significantly improve the ability of the animal to
discriminate new odor inputs (Mandairon et al., 2006a,b,c; Mandairon and Linster, 2009; Sinding
et al., 2011). The olfactory bulb is the first relay of the olfactory pathway, and encodes odor inputs as
the network responses of mitral cells (Kay and Sherman, 2007; Mandairon and Linster, 2009). The
olfactory bulb has been observed to encode signals in a spatiotemporally sparse and decorrelated
manner (Khan et al., 2010; Yu et al., 2014). Moreover, it has been observed that mitral cells become
less responsive after prior odor exposure (Buonviso et al., 1998; Buonviso and Chaput, 2000;
Fletcher and Wilson, 2003; Mandairon and Linster, 2009; Kato et al., 2012). On the other hand,
it has been shown that interneurons may become more (Mandairon et al., 2008) or less (Kato et al.,
2012) responsive with new odors.

In previous experimental and computational studies, the numbers of prior odor experiences
and new incoming odors are limited. How an animal’s prior experience with odorants affects the
representation by the olfactory bulb (i.e., the firing patterns of mitral and granule cells) in response
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to new odors is an open question. Considering the limitations of
current experimental techniques, it is nearly impossible to access
the synaptic dynamics or neuronal response to odor inputs in
the olfactory bulb network at a large scale. However, large-scale
supercomputer simulation of realistic olfactory bulb models has
been employed to carry out a series of simulations examining
these issues (Yu et al., 2013, 2014; Migliore et al., 2014, 2015).
Our previous reports have shown that a sparse spatial spiking
representation of specific odor signals can emerge naturally from
mitral-granule interactions and can be realistically implemented
by our model via balanced excitatory-inhibitory synapses (Yu
et al., 2013, 2014). Here, we examine how and to what extent
prior odor experience modulates the excitatory and inhibitory
interactions and how they shape odor representations.

To address these issues, we performed a series of simulations
based on a previously established large-scale olfactory bulbmodel
(Yu et al., 2013, 2014). The simulation results show that prior
odor experience can accelerate the formation of sparseness in
the mitral cell network in response to new odors. Furthermore,
the sparseness of the mitral cell network is increased but the
sparseness of the granule cell network is decreased with an
increasing number of prior training odors. Further analysis
demonstrated that this phenomenon is accompanied by a
nonlinear change in the excitatory and inhibitory synaptic
weighting of the network. Mitral cell network responses
demonstrated a gradual increase in their intrinsic decorrelation
property, suggesting an increased odor discrimination ability.

MATERIAL AND METHODS

Computational Simulations
All simulations were carried out with the NEURON simulation
program v7.3 (Hines and Carnevale, 1997, 2001) on a Cray
XC30 system (INCF, Sweden). All the present work was based
on a previously verified scaled-up olfactory bulb model (Yu
et al., 2013, 2014). Briefly, The network was composed of
multi-compartment canonical models of 500 mitral and 10,000
granule cells, implemented as described in our previous studies
(Migliore and Shepherd, 2008; Migliore et al., 2010).The model
uses a reduced number of MCs and granule cells (glom: MC:
GC = 1: 5: 100). As we have already explained in detail in
a previous paper (Yu et al., 2013), the reason for this choice
is that our main aim with this model is to understand the
basic processes underlying lateral and feedback inhibition in
a network. To this purpose the full number of cells is not
needed, especially in the presence of experimental data limited
to a very small subset of glomeruli; however, the relative ratio
between mitral and granule cells is consistent with experimental
estimations, validated against a number of experimental findings
(Willhite et al., 2006; Shusterman et al., 2011). The canonical
model for mitral cells was implemented with 312 compartments
representing an axon, the soma, the apical dendrite, and two
lateral dendrites each 1.5mm in length, in the range indicated
by anatomical measurements (Mori et al., 1981). Real mitral
cells have a number of lateral dendrites that cover a relatively
large, bidimensional surrounding area. From this point of view,

our simplifying choice of using only two lateral dendrites
per mitral cell has the obvious limitation that, since many
glomeruli are at variable distances from the single projection
tract, the interactions between mitral cells belonging to specific
neighboring glomeruli are not precisely represented. However,
our additional choice to project the glomeruli into a single tract,
results in the interactions of a given mitral cell with many nearby
mitral cells still holding in a generic sense, so that the model gives
a relatively accurate reflection of these population interactions
within the mitral-granule network. In this way we were able to
maintain the requirements for computational resources within a
reasonable limit. An indirect proof of the overall quality of this
model is its qualitative agreement with a number of experimental
findings (Yu et al., 2013). Uniform passive properties were used,
with Ra = 150 �·cm, τm = 20ms, and Rm and Cm adjusted to
obtain an input resistance of about 100 M�. Resting potential
was set at -65mV and temperature at 35◦C. Cells weremodeled as
regular firing cells (Migliore et al., 2005), with Na, KA, and KDR
conductances uniformly distributed over the entire dendritic tree
(Bischofberger and Jonas, 1997). Kinetics for the Na conductance
were from hippocampal pyramidal neurons (Migliore et al.,
1999), whereas those for KA and KDR were from mitral cell
data (Wang et al., 1996). Granule cells were modeled with a
soma and a 20 segment radial dendrite (250µm of total length)
representing the dendritic tree. Na+ and KA channels were
distributed throughout (Schoppa and Westbrook, 1999; Pinato
and Midtgaard, 2005; Zelles et al., 2006) whereas KDR was
present only in the soma (Schoppa and Westbrook, 1999).

Effective dendrodendritic coupling between granule cell
synapses and mitral cell secondary dendrites was implemented
by connecting a GC synapse, containing the same proportion of
AMPA and NMDA channels, with the appropriate compartment
of mitral cell GABA channel-containing secondary dendrites.
The details of the synaptic mechanisms have been described
in our previous work (Yu et al., 2013, 2014). It should
be noted that we applied a generic use-dependent plasticity
rule to the dendrodendritic connection. Briefly, all synaptic
weights started at zero and, in response to an odor input, the
components (inhibitory or excitatory) of each dendrodendritic
synapse were independently modified according to local spiking
activity in the lateral dendrite of the mitral cell or the granule
cell synapse. After each spike, the peak conductance (w) and
the state (p) of any given synapse were updated from their
current value w{exc,inh},p = gmax,{exc,inh}·S(p) to a new value.
The new values were calculated according to the instantaneous
presynaptic interspike interval (ISI) (see Migliore et al., 2007) as
w{exc,inh},p+1 = gmax,{exc,inh}·S(p+1). The value of p was limited
to the range 0–50, and is subjected to the classical scheme 1

= {0,+1,−1} (Stanton, 1996) in which1 = 0 for an ISI≥ 250ms
(i.e., no changes for spike rates ≤ 4Hz), 1 = −1 for 33 < ISI <

250ms (LTD in the range of 4–30Hz), and 1 = 1 for ISI≤ 33ms
(LTP for a spike rate≥ 30Hz). The sigmoidal activation function
S(p) was defined as S (p) = 1/{1+exp[(25-p)/3]} (Haykin, 1994).
In this way, the weight (i.e., the peak synaptic conductance) of
any given synapse could transition from a fully depressed (w≈ 0,
for p = 0) to a fully potentiated state (w ≈ gmax, for p = 50), or
vice-versa, over a span of 50 consecutive spikes of the appropriate
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frequency. At the beginning of a simulation p = 0, the spikes
resulting in values of p < 0 or > 50 were ignored.

It should be stressed that synaptic plasticity is fundamental
to any dynamic network. Although in the mitral-granule circuit
it has not been observed directly, we consider this lack of
information as a shortcoming of the experimental techniques
rather than a demonstration that there is no plasticity in the
olfactory bulb. Indeed, recent studies have shown more or less
direct evidence for long term plasticity of olfactory input in
mitral cells (Ennis et al., 1998; Ma et al., 2012), and in granule
cells (Patneau and Stripling, 1992; Gao and Strowbridge, 2009;
Arenkiel et al., 2011). Also note that the plasticity rule used in
this model has already been shown (Yu et al., 2013) to generate
synaptic clusters and firing patterns in qualitative agreement
with experimental findings. As discussed in detail elsewhere
(Xiong and Chen, 2002; Migliore and Shepherd, 2008), the
formation of synaptic clusters consistent with those observed
experimentally is an extremely robust process that can be
understood by considering the follow dynamics: (a) a strong odor
input causes mitral cells to fire at high-frequency; (b) somatic
APs backpropagate along the lateral dendrites and potentiate
excitatory mitral–granule synapses along their way, activating
granule cells; (c) granule cells begin to fire at high-frequency,
potentiating inhibitory synapses on the lateral dendrites of
mitral cells, (d) inhibition from granule cells hinders AP back-
propagation as it travels far from the soma, thus reducing, locally,
the firing frequency of mitral and granule cells, and (e) this finally
results in the selective depression of synapses far from the soma
of the active mitral cell. Therefore, as long as: (1) action potentials
backpropagate along the mitral cell lateral dendrites, (2) granule
cells form dendrodendritic connections, and (3) LTD and LTP are
induced by different levels of synaptic activity, a columnwill form
independently from the specific learning rule. This mechanism is
robust and independent of the plasticity rule used to update the
synaptic weights during a simulation (Migliore et al., 2007, 2010);
we have tested it with hebbian, non-hebbian, and spike-time-
dependent plasticity, obtaining in all cases the same qualitative
result (i.e., the formation of a column).

It should be noted that in this paper we were interested in the
results obtained for a relatively high odor concentration, which is
needed to form glomerular units as observed in the experiments.
The overall amount of LTP or LTD obtained in a real system,
and its overall effect on the I/O properties, will of course depend
from the actual plasticity rules in effect for mitral and granule
cells. There are no sufficient experimental indications on these
processes. However, we stress that the plasticity rule used in
this model has already been shown (Yu et al., 2013) to generate
synaptic clusters and firing patterns in qualitative agreement with
experimental findings.

Other details of the model were identical to those described
previously (Yu et al., 2013, 2014). The simulation codes used to
run the simulations described in the present work are available in
the ModelDB database (http://senselab.med.yale.edu/modeldb,
accession number 144570), with the exception of run control
files. Kinetic equations and implementation details for all ionic
currents are described in these model files.

Odor Input Paradigm
In our model, the network contains 100 glomeruli, 500 mitral
cells, and 10,000 granule cells. The 100 glomeruli spatially
distributed within which 74 glomeruli are chosen to have active
responses to represent the spatial responses to 72 different odor
stimuli. Each glomerulus makes synaptic connections with five
mitral cells. For those 74 glomeruli, there are 370 spatially
distributed mitral cells connected to them. The other 130 mitral
cells are connected to other 26 glomeruli (which could be
stimulated by new odors, other than the present 72 odors). We
distributed them in such a way to have a roughly uniform overall
spatial distribution of glomeruli. Note that although there is
no odor input feeding to those 130 mitral cells, their firing is
modulated by the random background activity and by the lateral
inhibition received from granule cells that are connected with
odor-activated mitral cells. As described in our previous work,
72 odor inputs were used for simulations (Yu et al., 2013, 2014).
The basic activation strength (0–4) for each glomerulus and
each odor is taken directly from the experimental values kindly
provided by Mori et al. (2006). To simulate an odor presentation,
these values are multiplied by a coefficient representing the odor
concentration, and that resulted in an aggregate synaptic input
up to 10 nS, as explained in details in the Methods section of Yu
et al. (2013).

A new model of the olfactory bulb, representing the actual
3D layout of the mitral-granule cell network, has been recently
developed (e.g., Migliore et al., 2015). This model represents in
a very realistic way the possible interactions between glomeruli
located within the dendritic field of mitral cells, and it would be
especially useful to study natural odors, which exhibit a rather
broad and dense input. However, it requires large computational
resources. With the particular set of inputs we are considering in
this paper, i.e., single monomolecular odors with rather sparse
and segregated inputs, such a model would not give results
qualitatively different from those obtained with the 1D model.

To represent the range of intensities with adequate sensitivity
(i.e., including the weakest concentration without saturating
the network at the highest concentration), we set the peak
conductance sensitivity to give suprathreshold responses to levels
3 and 4. Then, we defined strong inputs as strengths of 3 or 4
and weak inputs as strengths of 0, 1, or 2 (Figure 1A). All odor
inputs were presented over 4–10Hz. To address how prior odor
experience interferes with the subsequent sparse representation
of new odors, a series of odor inputs was used to train the
network in sequence. In one odor experience condition, the first
odors were presented within the first 5 s, and after a 5 s rest,
another odor input was presented for the next 5 s (Figure 1C). In
other experience conditions (for instance, five odors experience),
more odor series were presented similarly to the single odor
experience condition: each odor input was presented for 5 s, with
a 5 s resting state between each presentation. The last odor input
was denoted as the new odor input, and all prior odor inputs
were defined as experienced odors, implying that in the five
odors experience condition, a total of six odor inputs were used.
For the control condition, only the new odor inputs were given
at the time when the new odors were given in the experience
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FIGURE 1 | Mitral cell network responses in naïve and prior odor

experiences conditions. (A) Two example odor input strengths to each

mitral cell. k7-1, heptyl methyl ketone; 8OH, octanol. (B) A raster plot shows

the mitral cell network response in the naïve condition. k7-1 was delivered at

the 10th second after a resting state (each mitral cell fires spontaneously and

randomly at a low frequency) of 5 s. (C) A raster plot shows the mitral cell

network response to the new odor input k7-1 in the single odor input (8OH)

experience condition. Red rectangles represent the time elapsed to reach a

stable sparseness level for the network response in different conditions.

conditions (Figure 1B). Unless otherwise noted, all experienced
odors during training were presented in order from low level to
high level of input strength.

Sparseness Calculation
The method for the sparseness calculation of network response
was identical to our previous work (Yu et al., 2014). Briefly, based
on previous work (Vinje and Gallant, 2000; Franco et al., 2007),
the sparseness of response to a given stimulus can be calculated
as follows:

S =











1−

[

∑N
i=1

( ri
N

)

]2

∑N
i=1

r2i
N











/

(

1−
1

N

)
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where S is the sparseness of the network in one period of odor
input (from the beginning of one input to the beginning of the
next odor input); ri is the mean firing rate of mitral cell i in
that period; N is the total number of mitral cell (500). A high
sparseness value in our present work indicates only a few neurons
with high firing rates.

Correlation between Mitral Cell Firing in a
Network
To calculate the correlation between mitral cell firing in a
network, we used a coherence measure based on the normalized
cross-correlation of neuronal pairs in the network. The coherence
between two mitral cell i and j was measured by their cross-
correlation of spike trains at zero time lag within a time bin of
τ . Precisely, supposing that a long time interval T (one period of
odor input) was divided into small bins of τ , and that two spike

trains (value of 0 or 1) were given by X(l), Y(l), with l = 1, 2, . . .K
(here T/K = τ ), respectively, a coherence for the pair (Kij) was
calculated as follows (Wang and Buzsaki, 1996; Yu et al., 2014):

Kij(τ ) =

∑K
l=1 X(l)Y(l)

√

∑K
l=1 X(l)

√

∑K
l=1 Y(l)

.

And then, the correlation between mitral cells across the whole
network K was defined by the average of Ki,j(τ ) over all pairs of
mitral cells in the network. That is

K =
1

N(N − 1)

N
∑

i=1

N
∑

j=1,j 6=i

Kij(τ ),

where N is the total number of the mitral cells in the network.
And in our present work, τ was taken as 20ms through the whole
analysis.

Correlation between Mitral Cell Network
Responses
To compare the similarity between mitral cell network response
to odor inputs x and y during an odor input period, we defined
and calculated it as the correlation coefficient (Cxy) as follows:

Cxy =
1

N

N
∑

i=1

Corrcoef
{

MCi

[

x(t)
]

,MCi

[

y(t)
]}

,

where MCi is the i’th mitral cell; MCi[x(t)] and MCi[y(t)] are
the mitral cell network response in an odor input period to
odor input x(t) and y(t) respectively; Corrcoef is to calculate
the classic correlation coefficient. To investigate how prior odor
experience affects the network response to the news odor inputs,
we calculated the average of Cxy between one new odor input in
the experience conditions and the other tested new odor inputs
in the naïve condition.

1/2 Time of Sparseness
To test the dynamic evolution of the sparseness of the mitral
cell network response, sparseness values were calculated at series
time points when the odor inputs were presented. This sparseness
time series could be fitted by the classic logarithmic function as
follows:

S = A2 + (A1 − A2)/

(

1+

(

x

x0

)S1/2
)

,

where S is the sparseness, and S1/2 is the time at which S reaches
the half of the maximum S (A1).

Correlation of Input Strengths between
Different Odors
In some simulations, we quantified the similarity of two odor
inputs by calculating the Pearson correlation coefficient based
on their strength values for 500 mitral cells (i.e., 500 values for
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each odor). A higher correlation coefficient indicates that a pair
of odors is more similar.

Data were presented as mean ± SEM. Statistical significance
was assessed by paired Student’s t-test or ANOVA analysis with
Tukey’s multiple comparison test, and p < 0.05 was considered
significant. Data analyses were performed using Graphpad Prism
software Version 6.0 (San Diego, USA).

RESULTS

To systematically address how prior odor experience affects the
representation of new odor inputs by the olfactory bulb network,
we used a previously verified olfactory bulb network model that
includes 500 mitral cells and 10,000 granule cells connected
through dendrodendritic synapses (Yu et al., 2013, 2014). In
this model, we simulated different odor inputs to mitral cells
with varied strength intensities ranging from 0 to 4 based on
previous experimental results (Mori et al., 2006; Figure 1A). As
shown in Figure 1B, in the naïve condition (i.e., no prior odor
input experience, without odor inputs during the first 10 s), a
sparse spatial spiking representation of specific odor input (k7-
1 in this example) emerged naturally within several seconds of
the training period from the mitral-granule cell interactions, as
verified by our previous work (Yu et al., 2013, 2014). In one
training paradigm, after delivery of a prior odor input (8OH)
for 5 s and a 5 s resting state (no odor input), a new odor
input (K7-1or other, see below) induced a different response of
mitral cell network compared with that observed in the naïve
condition (Figure 1C, compare with the mitral cell network
response during the period of 10th–15th second in Figure 1B).
From the raster plot, we observed that the response of the mitral
cell network reached a stable sparseness state much faster than
the naïve condition (Figures 1B,C, note that the red rectangle
denotes the course to reach stable sparseness in Figure 1C that
is much narrower than in Figure 1B). Since the sparseness of
the mitral cell network reaches steady state after about 2 s of
odor stimulus, we trained the network with specific odor input
for 5 s in the following results. We also extended the simulation
time to 10 s, and no significantly different results were found
(Supplementary Figure 1). We will now present additional details
describing our results.

Prior Odor Input Experience Facilitates the
Evolution of the Sparseness of the Mitral
Cell Network Response
Experimental and computational studies have shown that the
response of the mitral cell network to odor inputs tends to
be heterogeneous and spatiotemporally sparse (Yu et al., 2013,
2014). Our previous reports have shown that a sparse spatial
spiking representation of specific odor signals can emerge
naturally within several seconds of the training period from
mitral-granule cell interactions and that the network response
reaches a stable level of sparseness (Yu et al., 2013, 2014).
To address how prior odor experience affects the evolution of
sparseness in the mitral cell network and the final sparseness level
in response to new odor inputs, we fixed the prior odor inputs to

8OH or o-Eph and then varied the new odor inputs or trained the
network only with the new odor inputs (Figures 1B,C). Same as
in our previous reports, the sparseness of the mitral cell network
response gradually evolved from a relatively low sparseness level
to a high sparseness level (Figures 1, 2A). We found that the
sparseness of the mitral cell network response to new odor inputs
in the single odor experience (8OH or o-Eph) condition was
larger than that in the naïve condition at all sniff points the
input were given (Figure 2A, n = 14 for the number of second
odors). Figure 2B shows that the stable sparseness levels of the
mitral cell network (represented by the last sniff point of 14.8 s) in
both 8OH and o-Eph experience conditions are statistically larger
than those in the naïve condition (one way ANOVA analysis,
p < 0.01, Figure 2B). To demonstrate this phenomenon in a
more systematic way, we trained the network with additional
prior odor series in amanner similar to the single odor experience
condition. As shown in Figure 2C, the stable sparseness level
(represented by the last sniff point) of the mitral cell network
increases with the number of prior odors experienced (one
way ANOVA, p < 0.01). This scenario was more significant,
as shown by the sparseness at the first sniff (Figure 2C). As
shown in Supplementary Figure 2, the prior odors were delivered
from low input strength level to high strength level in the 72
odor experience condition [72 Odors (lh)]. We also reversed
the training sequence [i.e., prior odors were delivered from
high input strength level to low strength level, 72 Odors (hl)].
Interestingly, the final sparseness of the mitral cell network is
significantly lower in the 72 odor (hl) condition than that in the
72 odor (lh) condition (paired t-test, p < 0.001, Supplementary
Figure 2). We plan to address this phenomenon extensively in
future work, but the present work will mainly focus on the former
training sequence (i.e., all prior odors were delivered from low
input strength level to high strength level). Moreover, we fixed
the new odor to 8OH and varied the experienced odor inputs.
We found that the final sparseness level of the mitral cell network
to 8OH was negatively correlated to the correlation coefficients
of input strength of experienced odors and 8OH (Figure 2D).
Similar results were found in the cases of k7-1 and o-Eph as the
second odors (Supplementary Figure 3A).

It is worthwhile to note that, the new odors we used in our
model were different from the experienced odors. We also tested
the case that the second odor was the same as the first odor
(experienced odor) in the single experienced odor condition and
found no significant difference (Supplementary Figure 4).

A previous experimental study showed that prior odor
experience could increase the tuning specificity of mitral cell to
a variety of odors (Fletcher and Wilson, 2003). In our model,
prior odor training could decrease the response of mitral cell
to weak odor input leading to a slight increase of the tuning
specificity of the mitral cell (Supplementary Figure 5A). To test
whether the network sparseness change observed above was due
to the increase of tuning specificity of mitral cells, we arbitrarily
set the responses of mitral cell receiving no input from a given
new odor the same as that in the naïve condition and left the
rest responses of mitral cells (receiving at least one intensity from
new odor) unchanged as in Figure 2C; we found that the stable
sparseness levels hardly changed under different conditions (one
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FIGURE 2 | Sparseness of the mitral cell network in different odor input conditions. (A) A time course plot shows the sparseness of the mitral cell network in

response to 14 new odor inputs in the single odor input (8OH or o-Eph) experience or naive condition. (B) A dot aligned plot shows the sparseness of the mitral cell

network response at the last sniff shown in (A). ***p < 0.001, *p < 0.05; one-way ANOVA with Tukey’s post-hoc comparison test. (C) Sparseness measured in the first

and last sniff period of the mitral cell network response to 17 new odor inputs in additional odor inputs experience conditions. The experienced odor inputs were

delivered in sequence in ascending order of input strength. (D) The correlation between sparseness to 8OH under 14 different single odor input experience conditions

vs. the correlation coefficients of input strength of these 14 experienced odor inputs and 8OH. The solid line represents the linear fitting curve.

way ANOVA, Supplementary Figure 5B). Such results suggest
that the observed sparseness change of mitral cell network under
prior odor experience condition is mainly due to the increase
of the sparseness of mitral cells with no input from the new
odors. And the experimentally observed tuning specificity of
MCs after the odor exposure (e.g., Fletcher and Wilson, 2003)
may have additional mechanisms that are beyond the present
model simulation study.

To quantify how prior odor experience affects the evolution
of the sparseness of the mitral cell network response to new
odors, we fitted the time course of sparseness using a classical
logarithmic function (Figure 3A). Then, based on the fitting
curve, we determined the time at which the sparseness reaches
half of the maximum value (denoted S1/2). We found that S1/2 of
the network response to new odor inputs in both the 8OH and
o-Eph experience conditions is less than in the naïve condition
(one way ANOVA, p < 0.001, Figure 3B), implying that prior
odor experience could accelerate the formation of sparse state sin
themitral cell network in response to new odor inputs. Moreover,
to determine how the correlation of experience and new odor
input strength affects the evolution of sparseness induced by
new odor inputs, we fixed the new odor as 8OH and varied the
experienced odor inputs, then measured the S1/2 of the network
response to 8OH. Interestingly, we found that S1/2 was negatively

proportional to the correlation coefficient of the input strength
of the experienced odors and 8OH (r = 0.89, Figure 3C).
Similar results were found in the cases of k7-1 and o-Eph as
the second odors (Supplementary Figure 3B). This may imply
that the network response to new odor input requires less time
to evolve to a stable sparseness state following experienced odor
input more similar to the new odor.

In summary, prior odor experience could accelerate the
evolution of sparseness in themitral cell network response to new
odor inputs and increases the sparseness level.

Prior Odor Input Experience Increases the
Response of the Granule Cell Network
Previous experiments have shown that prior odor experience has
a profound effect on the activity of the granule cell network in
response to new odor inputs (Mandairon et al., 2008; Kato et al.,
2012). We next tested the activity of the granule cell network in
our model system. We also applied the sparseness measurement
for mitral cells to quantify the activity in the granule cell network.
Contrary to the sparseness in mitral cell network, the sparseness
of the granule cell network decreased with the number of prior
odors, implying that more prior odors leads to a larger increase
of the response of the granule cell network to new odor inputs
(Figure 4, one way ANOVA, p < 0.01).
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FIGURE 3 | Evolution of sparseness of mitral cell network responses in naïve and experienced odor input conditions. (A) A time course plot shows the

sparseness of the mitral cell network response to odor input K7-1 in the single odor input (8OH or o-Eph) experience or naive condition. The solid line represents the

fitting curve described by the classical logarithmic function (see Materials and Methods). (B) 1/2 time of sparseness (S1/2) of the mitral cell network response to 17

new odor inputs in the single odor input (8OH or o-Eph) experience or naive conditions. S1/2 is the time elapsed from the first presentation of new odor inputs to the

time when the sparseness reaches half of the maximum value. ***p < 0.001, one-way ANOVA with Tukey’s post-hoc comparison test. (C) S1/2 of mitral cell network

responses to 8OH in nine different single odor input experience conditions vs. the correlation coefficients of input strength of these nine experienced odor inputs and

8OH. The solid line represents the linear fitting curve.

FIGURE 4 | Sparseness of the granule cell network in different odor input conditions. (A) A raster plot shows the firing of the granule cell network in response

to 5CHO in the 3 (middle) or 10 (right) odors experience or naïve conditions (left) in the stable state. 5CHO: pentanal. Red arrows show the sniff points. (B) The

sparseness measured after the first and last sniff of the granule cell network response to 17 new odor inputs in a series of prior odor inputs conditions. The series of

experienced odor inputs were delivered in sequence according to ascending order of input strength.

Effects of Prior Odor Experience on
Synaptic Weight in the Mitral Cell Network
Because synaptic plasticity exists in ourmodel, the different stable
sparseness of mitral or granule cell networks under different
conditions may be due to the final synaptic weights in the bulb
network. We tested the excitatory and inhibitory synaptic weight
under different conditions in response to specific new odors. We
divided the input strength into a strong group with strengths
of 3 or 4 and a weak group with strengths of 0, 1, or 2. As
shown in Figure 5A, the average excitatory synaptic weights for
a mitral cell receiving weak or all inputs significantly increased
with prior odor number, but decreased for mitral cells receiving
strong inputs (two way ANOVA, p < 0.01). The same scenario
applied to the average inhibitory synaptic weight (Figure 5B, two
way ANOVA, p < 0.01).

Our previous studies reported that the change of sparseness
of the mitral cell network resulted from the evolved dynamic
changes in the synaptic weight of both excitatory and inhibitory
dendrodendritic synapses (Yu et al., 2013, 2014). Such a
developed dynamic change of synaptic weights has been

suggested to affect the changes in the time course of mitral
cell network sparseness (Yu et al., 2013, 2014). Now we would
like to examine how the synaptic weights will further evolve
with the continuous training of prior odor experience, and then
examine how this prior experience could modulate the response
sparseness of themitral network to new odor inputs.We analyzed
the time course of average excitatory weight (Gex) and inhibitory
weight (Gin) for mitral cells receiving strong inputs and weak
inputs. Similar to our previous results (Yu et al., 2013, 2014), the
time courses of response sparseness are tightly correlated with the
changes of synaptic weight (especially excitatory synaptic weight)
during the response to 8OH, both for naïve (Supplementary
Figure 6) and single odor input experience (k7-1, Supplementary
Figure 6). In the naïve condition, strong excitatory synaptic
inputs gradually increased from 0.06 nS to a steady state of
∼0.47 nS after 2 s of 8OH input (Supplementary Figures 6A,B).
However, in the k7-1 odor experience condition, the sparseness
of the mitral cell network reached a maximum level immediately
in response to new 8OH input, and the strong excitatory and
inhibitory synaptic inputs also reached a maximum value at
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FIGURE 5 | Effects of prior odor experience on synapticweightin the mitral cell network. (A) The average excitatory synaptic weight for mitral cells receiving

strong (strength 3 or 4), weak (strength 0, 1, or 3), or all inputs in a variety of prior odor experience or naïve conditions. (B) Same as in (A), but for the inhibitory

synaptic weight.

the beginning of the 8OH input period (Supplementary Figures
6A,B). Therefore, these results imply that prior odor experience
accelerates the evolution of synaptic weight in the mitral cell
network to the steady state, which in turn accelerates the
evolution of sparseness in the mitral cell network in response to
new odor inputs.

Prior Odor Input Experience Decreased the
Correlation of the Mitral Cell Firing Pattern
Sparse coding is an efficient scheme by which an individual
neuron independently encodes different properties of the input
(Olshausen and Field, 1996; Vinje and Gallant, 2000). This
naturally leads us to predict that when the mitral cell network
reaches a high sparseness level, the correlation level among
responses of mitral cells in the network should reach a low
level. In fact, we have verified this prediction in our previous
work (Yu et al., 2014). We therefore tried to determine whether
prior odor experience would also affect the evolution of the
decorrelated state among mitral cells in the network to new
coming odor inputs. We quantified this correlation by averaging
the correlation coefficients of all possible pairs of 500 mitral
cell responses at each sniff point during new odor delivery.
Similar to the evolution of sparseness in the mitral cell network,
the correlation among mitral cells gradually evolved from a
relatively high level to a low level (Figure 6A). We found that the
correlation of mitral cell firing in the network in response to new
odor inputs in one odor experience (8OH or o-Eph) condition
was lower than that in the naïve condition at all the sniff points
tested (Figure 6A). Figure 6B shows the stable correlation level
of mitral cell firing in the network (represented by the last sniff
point) for both 8OH and o-Eph experience conditions were
statistically lower than that in the naïve condition (paired t-
test, p < 0.05, Figure 6B). We then tested the correlation in
conditions with more prior odor inputs. As shown in Figure 6C,
the correlations of mitral cell firing in the network in response
to new odor inputs at first and last sniff following prior odor
experience both decreased as the number of prior odors increased
(one way ANOVA, p < 0.01). Moreover, we fixed the new odor
to 8OH and varied the experienced odor inputs; we found that
the correlation of mitral cell firing in network in response to the

new odor 8OH at last sniff was weakly linearly correlated to the
correlation coefficients of the input strength of experienced odors
and 8OH (Figure 6D). Similar results were found in the cases of
k7-1 and o-Eph as the second odors (Supplementary Figure 3C).
This result implies that the mitral cell firing response tends to
be more decorrelated if the input strength of new coming odor
differs more greatly from that of the prior experienced odor.

Prior Odor Input Experience Decrease
Correlation of Mitral Cell Network
Response
We already tested the effects of prior odor experience on mitral
cell firing pattern in response to the corresponding new odor
inputs. A more direct way to measure the coding efficiency of
the mitral cell network in response to different odor inputs is
to calculate the similarity of the network response to different
odor inputs, especially to similar odor inputs (Yu et al., 2014).
We therefore investigated how prior odor experience affects the
mitral cell network response to different new odor inputs. Odors
7OH and 6OH are two very similar odor inputs (Figure 7A).
The response of the mitral cell network to 6OH in one odor
input (8OH) experience condition was more different than that
in the naïve condition to the network response to 7OH in
naïve condition after the training process (Figures 7B,C). For
instance, the firing rates of mitral cells 1–100 to 6OH in the 8OH
experience condition (Figure 7C, right) were more different than
that in naïve condition (Figure 6B, right) from that to 7OH in
naïve condition (Figure 7B, left). A similar result was also found
when we compared the response of the mitral cell network to
7OH in the 8OH experience condition or the naïve condition
with that to 6OH in the naïve condition (Figures 7B,C).

To quantify the similarity of the mitral cell network response
to different odor inputs in different conditions, we measured
the network response correlation as described in the Materials
and Methods section. The correlations of mitral cell network
responses evolved gradually from relatively high to low level
(Figure 8A). Furthermore, the correlations between mitral cell
network responses to new coming odor inputs in the one
odor experience (8OH or o-Eph) condition were lower than
in the naïve condition at all sniff points tested (Figure 8A).
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FIGURE 6 | Correlation between mitral cell firing patterns. (A) A time course of the correlations between mitral cell firing patterns in response to 14 new odor

inputs in the single odor input (8OH or o-Eph) experience or naïve condition. (B) A dot aligned plot shows the correlation between mitral cell firing pattern in response

to 14 new odor inputs at the last sniff shown in (A).***p < 0.001, *p < 0.05; one-way ANOVA with Tukey’s post-hoc comparison test. (C) The correlation between

mitral cell firing patterns in response to 17 new odor inputs in networks measured after the first and last sniff with increased number of prior experienced odors. The

odor inputs were delivered sequentially in order of ascending input strength. (D) The correlation between mitral cell firing patterns in response to 8OH under 14

different single odor input experience conditions vs. the correlation coefficients of input strength of these 14 experienced odor inputs and 8OH. The solid line

represents the linear fitting curve.

Figure 8B shows the stable correlation level of the mitral cell
network response (represented by the last sniff point) in both
8OH and o-Eph experience conditions were statistically lower
than in the naïve condition (one way ANOVA, p < 0.05,
Figure 8B). We then tested the correlation in conditions with
more series of prior odor inputs. As shown in Figure 8C, the
correlations of mitral cell network response to new coming
odor inputs in prior odor experience at the first and last sniff
point decreased while the number of prior odors increased (one
way ANOVA, p < 0.01). Similar to Figure 6D, we fixed the
new odor to 8OH, and varied the experienced odor inputs and
we found that the correlation of mitral cell network response
to new coming odor 8OH was weakly linearly correlated to
correlation coefficients of the input strength of experienced odors
and 8OH (Figure 8D). Similar results were also found in the
cases of k7-1 and o-Eph as the second odors (Supplementary
Figure 3D).

DISCUSSION

Using a scaled up mitral-granule cell network model and a set
of odors with relatively strong input strength, we systematically

investigated how prior odor input affects the coding paradigm of
mitral cells to new incoming odor inputs. The following findings
were observed: (1) when increasing the number of prior odors,
the activity of the mitral cell network decreased and the granule
cell network increased, gradually reaching an equilibrium level.
(2) prior odor experience accelerated the formation of a stable
sparseness level of the mitral cell network to new odors; (3)
increasing prior odor experience also facilitated the mitral cell
network to evolve to a more decorrelated state; (4) prior odor
experience decreased the correlation of the mitral cell network
response to new odors and this effect is more obvious after
training the network with a larger number of prior odors. Note
that all the changes gradually reach an equilibrium level that
does not change with additional odor experience. All changes
may be attributed to two key factors: (1) the continuous LTP
effect for those mitral cells receiving a sustained strong input; (2)
more and more mitral cells are activated when more odors are
presented to the network, inducing more dynamic changes in the
excitatory and inhibitory synaptic weights of the dendrodendritic
synapses. An equilibrium is reached when most of the
relevant mitral cells have been activated during the past odor
experiences.
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FIGURE 7 | Spatial firing rate patterns of 500 mitral cells. (A) The strength of odor inputs 7OH (left) and 6OH (right) to each mitral cell. (B) The spatial firing

pattern of 500 mitral cells during the 4th second after training in response to 7OH (left) or 6OH (right) in the naïve condition. (C) The spatial firing pattern of 500 mitral

cells during the 4th second after training in response to 7OH (left) or 6OH (right) in the 8OH experience condition. The red arrow (right) indicates that the firing pattern

of the network in response to 7OH in the 8OH experience condition (C, left) differs more than that of the naive condition (B, left) from the firing pattern of the network

to 6OH in the naïve condition (B, right). Similarly, the red arrow (left) indicates that the firing pattern of the network in response to 6OH in the 8OH experience condition

(C, right) differs more than that of the naive condition (B, right) from the firing pattern of the network to 7OH in the naïve conditions (B, left).

Sparseness of Mitral and Granule Cell in
Prior Odor Experience Conditions
Sparse coding has been suggested as an efficient way to code
the sensory inputs (Olshausen and Field, 1996; Rinberg et al.,
2006; Davison and Katz, 2007; Koulakov and Rinberg, 2011).
Previous studies have found that the response of mitral cell
network to new coming odor inputs decreases after prior odor
experience (Buonviso et al., 1998; Buonviso and Chaput, 2000;
Fletcher and Wilson, 2003; Kato et al., 2012). We systematically
tested several prior odors inputs in our large scale olfactory bulb
model, and we found the sparseness of the mitral cell network
to new coming odors increases with the number of prior odors
(Figure 2C). Moreover, we found the sparseness of the granule
cell network to new coming odors decrease with the number of
prior odors (Figure 4B). In fact, previous experimental results
also found that prior odor experience could increase the activity
of interneuron (Mandairon et al., 2008). We further found the
average of excitatory and inhibitory synaptic weight both increase
along with the number of prior odor inputs (Figure 5). As the
mitral cell is the main target of granule cell and granule cell is
also the main target of mitral cell, we can infer that the increase
of excitatory synaptic weight leads to the increase of granule cell
activity, and the increase of inhibitory synaptic weight combined
with the increase of granule cell activity leads to the decrease of
the mitral cell activity.

Previous experimental study also showed that prior odor
experience could decrease the granule cell activity (Kato et al.,
2012). In our simulations, prior odor experience decreases the
response of mitral cell network, which tends to decrease the
activity of granule cells. By contrast, prior odor experience
increases the average excitatory synaptic weight to granule cell,
which tends to increase the activity of granule cells. These two
contrary effects of prior odor experience on granule cell activity
might be the cause for the varied results of granule cell activity
change to prior odor experience observed in experiments.

It should be noted that an experimental study shows that
mitral cell responses decreases more after the same prior odor
exposure than with different odor experience (Kato et al., 2012).
In our work, the response of mitral cells hardly changed when
it was in the same prior odor conditions. This suggests the
phenomenon observed by Kato et al. (2012) might be attributed
to a differentmechanism that is not involved in the currentmodel
network.

Previous experimental results have also shown that the first
sniff after odor input is very important for odor discrimination
behavior (Uchida and Mainen, 2003; Cury and Uchida, 2010).
In addition to analyzing olfactory bulb responses at equilibrium,
we also analyzed the response properties right after the first
sniff in all conditions. We found the sparseness change (or
correlation of mitral cell network response change) induced by
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FIGURE 8 | Correlation between mitral cell network responses. (A) Time

courses of the correlations between mitral cell network responses to 14 new

odor inputs after one odor input experience (8OH or o-Eph) or under naive

conditions. (B) A dot aligned plot shows the correlation between mitral cell

network responses to 17 new odor inputs at the last sniff shown in (A).
***p < 0.001; one-way ANOVA with Tukey’s post-hoc comparison test. (C)

Correlation between mitral cell network responses to 17 new odor inputs

measured after the first and last sniff after experiencing additional odor inputs.

The odor inputs were delivered in order of ascending input strength. (D)

Correlation between mitral cell network responses to 8OH in 14 different single

odor input experience conditions vs. the correlation coefficients of input

strength of these 14 experienced odor inputs and 8OH. The solid line

represents the linear fitting curve.

prior odor experience is more significant for first sniff cycle than
that for the last sniff cycle. The more experienced odors result
in less response difference in the sparseness level (or response
correlation) between the first and last sniff cycles. This may
suggest that the response in the first sniff may contain important
information for odor discrimination that can be enhanced by the
experienced odors.

It is worthwhile to note that the increasing rate of sparseness
of mitral cell network tend to decrease when the number of
prior odors increases (Figure 2C). For instance, the increase of
sparseness between three and five odors conditions (increase
of only two odors) is larger than that between 15 and 72
odors conditions (increase of 57 odors). We may infer that the
sparseness level of the mitral network would saturate after a
certain number of prior odor experience. Another interesting
phenomenon needed to further test is that the different training
sequence of series of prior odors would have significantly
different effect on the response of mitral cell network to new
coming odors.

Sparseness Evolution in Mitral Cell
Network
Previous studies have shown a sparse spiking representation
of specific odor can emerge naturally after several seconds
of a learning period (with certain odor input frequency)

from the mitral-granule cell synaptic connections (Yu et al.,
2013, 2014). And this phenomenon may be corresponding
to the learning process of animal to a new odor inputs. In
the one odor experience condition, we found the prior odor
experience accelerates the process to reach the stable sparse
state (Figure 3). Furthermore, we found that such acceleration
of the sparseness to reach stable sparse state was well correlated
to the acceleration of the excitatory and inhibitory synaptic
weight to reach the maximum value (Supplementary Figure
6). And further experiments are needed to confirm such
findings.

We also found that the more similar the new odor was to
the experienced odor, the faster the mitral cell network reached
a stable sparseness level, which may be due to less time needed
to train more overlapping synaptic interactions to reach steady
state. On the other hand, more disparate prior experienced odors
lead to a higher stable sparseness level of mitral cell to the new
odor, which may be due to the increase of the overall inhibitory
synaptic weight resulting from the activation of more mitral and
granule cells by more experienced odors. We may infer that the
rate of formation of stable sparseness and the sparseness level
itself are two different aspects of the odor representation of the
mitral cell network.

Decorrelation of the Mitral Cell Network
Response
Our previous study has shown that the response of the mitral cell
network tends to be decorrelated and accompanied by sparseness
(Yu et al., 2014). Our current work shows correlations within
the mitral cell network to new odors decrease with the number
of prior odors (Figure 6C). A similar correlation exists for
mitral cell network responses to different odor inputs—a direct
way to quantify coding efficiency under different conditions
(Figure 8C). This may partially give an explanation to why
enrichment could increase the ability of an animal to discriminate
different odors (Mandairon et al., 2006a,b,c; Sinding et al.,
2011).

Previous experimental and computational results have
extensively shown the importance of granule cell activity and
inhibitory synaptic weight for representation of odor inputs in
olfactory bulb network (Mandairon et al., 2006a, 2008; Koulakov
and Rinberg, 2011; Kato et al., 2012). We infer that such a
decorrelated state between mitral cell firing in a specific network
and the network response to different odor inputs is due to an
increase in granule cell activity and inhibitory synaptic weight
after odor experience.

In summary, using a scaled up olfactory bulb model, we
systematically investigated how prior odor experience affects the
sparse representation of new odor inputs by the olfactory bulb
network. In conclusion, the gradual increased inhibitory weight
of granule cells together with the slightly increased firing rates
of gradual cell populations promote the response sparseness and
decorrelated state of mitral populations to new odor inputs.
These results may help to better explain how prior sensory
experience affects the behavior of animals in response to new
odor inputs.
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