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Abstract This paper proposes a new methodology for the

automated design of cell models for systems and synthetic

biology. Our modelling framework is based on P systems, a

discrete, stochastic and modular formal modelling lan-

guage. The automated design of biological models com-

prising the optimization of the model structure and its

stochastic kinetic constants is performed using an evolu-

tionary algorithm. The evolutionary algorithm evolves

model structures by combining different modules taken

from a predefined module library and then it fine-tunes the

associated stochastic kinetic constants. We investigate four

alternative objective functions for the fitness calculation

within the evolutionary algorithm: (1) equally weighted

sum method, (2) normalization method, (3) randomly

weighted sum method, and (4) equally weighted product

method. The effectiveness of the methodology is tested on

four case studies of increasing complexity including neg-

ative and positive autoregulation as well as two gene net-

works implementing a pulse generator and a bandwidth

detector. We provide a systematic analysis of the evolu-

tionary algorithm’s results as well as of the resulting

evolved cell models.

Keywords Systems biology � Synthetic biology �
P systems � Evolutionary algorithms �
Automated model design

Introduction

Living cells are complex systems that arise from a rich

array of interrelated biomolecular processes. In order to

understand, manipulate and even coerce a cellular system

into producing a target phenotype, the development of

good models is a critical steppingstone (Szallasi et al.

2006). Thus sibling disciplines systems (Alon 2006; Klipp

et al. 2005; Palsson 2006) and synthetic (Benner and

Sismour 2005; Anderianantoandro et al. 2006; Basu et al.

2005) biology depend crucially on the availability of

sophisticated and expressive modeling methodologies and

tools.

Mathematical and computational modelling of cellular

systems is a central methodology within systems biology

and synthetic biology and it covers a wide spectrum of

sophistication. At one end of the spectrum, modeling can

be a very useful tool for clarifying the knowledge that is

already available about a given biological entity because,

through the process of model building, inconsistencies are

detected and gaps in knowledge identified. If sufficient

information is available the model might then be more than

a formal description of available data and it can be tested

against experimental data. Thus the model become an

operational entity on its own right with which the biologist

can interact in order to further clarify biological under-

standing. Moreover, the model might be sufficiently

detailed as to allow the exploration of ‘‘what if’’ questions

beyond the scope of the experimental data upon which the

model was constructed. The ultimate goal, at the top end of

the sophistication spectrum, for a mathematical or com-

putational model will be to allow the in silico generation of

novel biological hypothesis, new experimental routes and,

ultimatly, optimised synthetic phenotypes. Klipp et al.

2005 identify the following key stages for model
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development. One starts with formulating a problem the

model is supposed to give answers to or insights about.

Once the problem has been formulated the verification of

available data ensues. All extant data about the biological

system to be studied must be collected and curated. Ideally,

data will be of a quantitative nature and will include

interactomes’ maps and details about the experimental data

supporting high level descriptions. The next two steps

involve the selection of the modeling formalism that will be

used (e.g. macroscopic vs. microscopic, deterministic vs.

stochastic, steady-state, temporal or spatio-temporal, etc.),

a selection of the key model descriptors and the prototyp-

ing of a draft model with which to refine in an iterative

manner the previous steps. Once a model candidate has

been proposed, a sensitivity analysis should be carried out

as to produce a control-map of the model and its (many)

parameters. The goal is to identify which parameters the

model is or is not robust to. The ultimate test for any model

is its fit to reality, thus experimental validation , whenever

possible, should be carried out. Unfortunately, this is not

always possible and indeed, it is common to use models as

‘‘surrogates’’ in precisely those situations where experi-

ments are infeasible (e.g. due to costs, lack of technology

or ethical considerations). On the other hand, if experi-

mental validation is indeed feasible, the step that follows is

to clearly state the agreements and disagreements between

model and reality and to iteratively refine the models thus

obtained (Harel 2005; Cronin et al. 2006).

However promising and appealing modelling is for

systems and synthetic biology, it is, indeed, a very difficult

endevour that encompasses a variety of activities. Nowa-

days, model building is supported by a range of tools (e.g.

Gilbert et al. 2006; Machne et al. 2006) and techniques.

Regardless of the underlying modeling methodology,

model building calls for the identification of the model’s

structure and the optimisation of its (many) parameters and

these are, indeed, very difficult computational tasks. On the

one hand, the space of all possible model topologies and

kinetic parameters is vast and, on the other hand, there is no

one-to-one mapping between physical reality and the space

of models. That is, several models might equally well

represent the knowledge that is available at any one time.

Mathematical modelling of cellular systems, in particular

by means of ordinary differential equations (ODEs), is one

of the most widely used techniques for modelling (Atkinson

et al. 2003; de Hoon et al. 2003). Examples of the optimi-

sation of ODEs’ parameters include the optimisation of

S-systems (Kikuchi et al. 2003; Morishita et al. 2003)

capable of capturing non-linear dynamics. When a large

number of parameters are involved within a system of

ODEs, simplifying assumptions are made and linear

weighted matrices models (Weaver et al. 1999; Yeung et al.

2002) are optimised instead. Most of the research in this area

has focused on fine-tuning either the model structure or its

parameters. For example, Mason et al. 2004, within the

context of an evolutionary algorithm, used random local

search as a mutation operator in order to evolve ODE

models of interactions in genetic networks. Chickarmane

et al. 2005 used a standard genetic algorithm (GA) to opti-

mize the kinetic parameters of a population of ODE-based

reaction networks in which the topology was fixed and the

task was to match the model’s behavior to a target pheno-

type such as switching, oscillation and chaotic dynamics.

Spieth et al. 2004 proposed a memetic algorithm (Krasno-

gor and Smith 2000, 2005; Krasnogor and Gustafson 2002)

to tackle the problem of finding gene regulatory networks

from experimental DNA microarray data. In their work the

structure of the network was optimized with a GA while, for

a given topology, its parameters were optimized with an

evolution strategy (Beyer and Schwefel2002). The two

deterministic models they used were based on linear weight

matrix and S-systems. Recent studies (Rodrigo et al. 2007a;

Rodrigo and Jaramillo 2007) have used ODEs as modeling

method and a Monte Carlo simulated annealing (SA)

approach to perform optimization. In particular, they auto-

matically design small transcriptional networks and kinetic

parameters including well-known gene promoters.

(O)DEs models rely on two key assumptions, namely,

continuity and determinism of cellular processes’ time

dynamics. These properties are difficult to justify in sys-

tems where low number of regulatory molecular species or

slow interactions between them take center stage (Kaern

et al. 2005). In such systems, the application of ODEs

models is questionable and mesoscopic, discrete and sto-

chastic approaches are more suitable (Gillespie 2007).

executable biology (Fisher and Henzinger 2007) and

(alternatively) algorithmic systems biology (Priami 2009)

are gaining momentum as alternative ways of modeling

large biological complex systems that overcome the above

assumptions and provide some additional benefits. In exe-

cutable biology, models are built not by specifying the so

called transfer functions as it is done in traditional mod-

eling with, e.g., differential equations, in which the rate of

change of quantities is phenomenologically modeled, but

rather mechanistically by defining algorithms (under a

variety of possible formalisms) whose execution mimics

the causal relation behind change and time/space dynamics

in biological systems. Existent executable biology meth-

odologies are rigorous and mathematically sound modeling

techniques. Their allure for biological modeling is multi-

faceted. On the one hand, these modeling techniques are

closer to the language of biology and thus they are not

perceived by the biologist as complicated black boxes.

That is, specifying a model (prototype) with, lets say, Petri

Nets or P system is a transparent activity for the biologist

and thus helps bridge the discipline gap inherent in any
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multidisciplinary team. Thus executable biology models

are deemed to be more expressive than other techniques.

Moreover, executable biology models can capture the

modularity behind many biological systems with reason-

able ease. In turn, this permits an incremental approach to

model specification, verification and testing. Furthermore,

executable biology permits the detailed analysis of single

simulation trajectories and of simulations ensembles. Both

are required for developing a better intuition and under-

standing of how the biological system under study is likely

to behave as the scientist is interested in both average

behavior and extreme or outliers events. Integrative models

based on the techniques mentioned above can not only be

analysed through their easy of use for capturing biological

knowledge or by simulations but, equally important, by a

rigorous testing through model checking. Model checking

allows one to introspectively analyse the various possible

paths that the biological system might go through and

obtain the likelihood of certain events taking place, thus

unlike simulations, model checking techniques give guar-

antees about the properties and features being tested.

Needless to say, these guarantees comes at a price in

computational expense and hence the combination of

simulations and model checking is the best compromise for

analysing large complex biological systems. Executable

biology models have been successfully used to model a

variety of biological systems. For example Petri Nets

(Heiner et al. 2008) where used to model the core of the

ERK/MAPK pathway that mediates information transfer

from the membrane to the nucleus in cell division and

differentiation processes. Beta-binders, autoreactive lym-

phocyte recruitment and other bioprocesses have also been

modeled with P�calculus and, more generally, process

algebras (Regev et al. 2001; Errampalli and Quaglia 2004).

Both signaling pathways and gene regulatory networks

were model checked with Prism in Calder et al. 2005;

Romero-Campero et al. 2009, Romero-Campero and

Krasnogor 2009 . P systems where the preferred modeling

tool for a wide variety of biological phenomena (Romero-

Campero et al. 2008a; Gheorghe et al. 2008). Live

sequence charts and state charts were used to produce a

multi-scaled model of C. elegans (Sadot et al. 2008).

Executable biologys features, namely, high expressive

power, the possibility to specify causal models in a biol-

ogy-friendly language, facility for modular and incremental

modeling, single/ensemble simulations and formal verifi-

cation through model checking endows these formalisms

with yet another important property: model structures and

parameters are more easily discoverable. The process of

integrative model building relies on a number of sources of

information for specifying the model structure and

parameters. In very many cases, one will not have all the

parameters of the models (e.g. kinetic constants, diffusion

constants, half-lives for molecules, affinity values, etc) and

hence the modeler will need to perform one or more

(iterative) stages of parameter fitting to experimental data.

In other cases, the model being specified is only partially

known and, for the current putative model structure, there

does not exist any set of parameters that could fit observed

experimental data and, at the same time, be general enough

to capture future experimental data. Thus, in this case,

discovery of model structure, rather than parameters, must

be pursued. In this paper we employ a P systems based

executable biology formalism that integrates stochastic and

discrete modelling into a computational framework. P

systems represent an unconventional computational para-

digm (Păun 2002) that abstracts from the structure and

functioning of the living cell. A P system consists of a cell-

like membrane structure, with compartments containing

multisets of objects representing molecules which evolve

according to given rules that mimic molecular interactions.

These rules are applied according to an adaptation of

Gillespie’s stochastic simulation algorithm (SSA; Gillespie

2007) to the multi-compartmental structure of P system

models (Romero-Campero et al. 2009; Pérez-Jiménez and

Romero-Campero 2006). We extend previous work

(Romero-Campero et al. 2008b) by systematically studying

several objective functions for guiding the search for cell

biology models’ structure and parameters. In this paper we

focus on evolving models that can match a predefined

target phenotype that is specified in terms of a collection of

time series that the evolved models must match. From a

systems biology perspective, these time series can be

interpreted as experimental data that the model must

explain, while from a synthetic biology viewpoint, these

time series represent the functional requirements for a

putative synthetic phenotype to be modeled. These time

series could represent measurements such as cell’s optical

density, gene expression levels, etc. Figure 1 gives an

example with two time series in which a number of issues

are highlighted. First, not all time series range over the

same scales, they could have vastly different functional

forms with peaks and valleys at different places. Secondly,

their asymptotic behavior (if it exists) can vary widely. In

the figure, the maxima M1 and M2 occur at different points

in time. Moreover, although the absolute error between

target molecule 1 and model 1 output is larger than that for

molecule 2 and its model, the relative error of the later is

larger than the one for the former. Hence, using the root

mean square deviation—as it is often done—as an objec-

tive function to compare target behavior versus model

behavior might not be the best route for successful evolu-

tion. In this paper we study four alternative fitness methods

to guide the search. In particular, we use an equally

weighted sum method, a normalization method, a randomly

weighted sum method and an equally weighted product
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method to measure the fitness of the models evolved. The

effectiveness of the methodology is tested on four case

studies of increasing complexity including negative and

positive autoregulation as well as two gene networks

implementing a pulse generator and a bandwidth detector.

We provide a systematic analysis of the evolutionary algo-

rithm’s results as well as of the resulting evolved cell models.

To sumarise, the key contributions of this paper are:

• The introduction of a ‘‘biologist-friendly’’ integrated

pipeline that, at its core, contains a modeling frame-

work based on P systems. We emphasize very recent

developments in terms of the expression power of the

framework as well as the facility for modular and

incremental model building. The proposed pipeline is

exemplified by drawing on some simple and well

known regulatory motifs, e.g. positive/negative regula-

tion, paradigmatic study cases such as the Lac operon

promoter, as well as more complex state-of-the-art

synthetic biology circuits such as a pulse generator and

bandwidth detector. The paper demonstrates how a

gradual increase in system complexity is accompanied,

under our modeling framework, by a parsimonious

increase in model complexity. This is so because the

proposed framework is inherently suitable to abstrac-

tion, encapsulation and data hiding.

• The provision of a systematic study on the optimisation

of systems and synthetic biology models’ structures and

parameters from a ‘‘white-box’’ perspective. Research-

ers unfamiliar with optimisation techniques are some-

times mislead to assume that off-the-shelf optimisation

methods run with their ‘‘standard’’ parameters and

objectives functions will magically output optimal

solutions. This study highlights the potential sources

of difficulties when applying optimisation methods to

systems and synthetic biology stochastic models. We

show how different target biological systems, which

must be modeled, might call for different objective

functions and we comment on the advantages and

disadvantages of the various alternatives. The results

indicate that care must be taken when automating the

synthesis and optimisation of (partial) models and that

the optimisation process cannot, in general, be done

without knowledge of both the biological system being

modeled and the details of the modeling formalism.

• We also show that as the proposed integrated pipeline

couples a modeling framework that is incremental and

modular with a sophisticated white-box optimisation

method, one can obtain several circuit designs match-

ing a required phenotype. The availability of alternative

designs matching the requirements of a target pheno-

type might, in turn, open the doors to alternative

experimental (i.e. wetlab) strategies. We further illus-

trate how other analysis techniques, namely model

selection and sensitivity analysis, can be used to further

refine the computational models thus obtained.

The remainder of the paper is structured as follows. In

the next section we describe our modelling methodology

which includes the P systems modelling framework, the

evolutionary algorithm used to evolve models an the four

fitness methods used in this work. In ‘‘Experiments’’ section

presents four case studies and the experimental design, with in

‘‘Results and discussions section’’. ‘‘Further experiments’’

section describes additional experiments and ‘‘Model selec-

tion’’ section analyses the evolved models. Finally, we end

with some ‘‘Concluding remarks and future work’’ section.

Methodology

P systems modelling framework

In this paper we use a computational, modular and discrete-

stochastic modelling approach based on P systems, an

emergent branch of Natural Computing introduced by

Gh. Păun (2002). More specifically, we use a variant

called stochastic P systems developed for the specification

and simulation of cellular systems (Pérez-Jiménez and

Romero-Campero 2006).

A stochastic P system is a construct

P ¼ ðO; L; l;Ml1 ;Ml2 ; . . .;Mln ;Rl1 ; . . .;RlnÞ

where:

• O is a finite alphabet of objects representing molecules.

• L ¼ fl1; . . .; lng is a finite set of labels identifying

compartment types.

• l is a membrane structure containing n C 1 membranes

defining compartments arranged in a hierarchical

manner. Each membrane is identified in a one to one

manner with labels in L which determines its type.
Fig. 1 An example of two target time series each with very specific

profiles that must be matched by an evolved model’s dynamics
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• Mli for each 1 B i B n, is the initial configuration of

membrane i consisting of a multiset of objects over O

initially placed inside the compartment defined by

membrane with label li.

• Rli ¼ frli
1 ; . . .; rli

kli
g; for each 1 B i B n, is a finite set of

rewriting rules associated with the compartment with

label li [ L and of the following general form:

o1½o2�l�!
c

o01½o02�l ð1Þ

with o1, o2, o1
0, o2

0 multisets of objects over O (potentially

empty) and l [ L a label. These multiset rewriting rules

affect both the inside and outside of membranes. An

application of a rule of this form replaces simultaneously a

multiset o1 outside membrane l and a multiset o2 inside

membrane l by multisets o1
0 and o2

0, respectively. A sto-

chastic constant c is associated specifically with each rule

in order to compute its propensity according to Gillespie’s

theory of stochastic kinetics (Gillespie 2007). More spe-

cifically, rewriting rules are selected according to an

extension of Gillespie’s well known SSA (Gillespie 2007)

to the multicompartmental structure of P system models

(Pérez-Jiménez and Romero-Campero 2006).

Stochastic P systems have been successfully used in the

specification and simulation of cellular systems, for

instance signal transduction (Pérez-Jiménez and Romero-

Campero 2006), prokaryotic gene regulation (Romero-

Campero and Pérez-Jiménez 2008a) and bacterial colonies

(Romero-Campero and Pérez-Jiménez 2008b).

Modular modelling approach

Cellular functions are rarely performed by individual

molecular interactions, instead cellular functions are the

product of the orchestration of modules made up of many

molecular species for which their interaction modality

follows very specific patterns (Alon 2006). Biological

modularity is thus one of the cornerstones of synthetic

biology (Andreianantoandro et al. 2006). Modularity is a

widely used approach in the design of complex systems. It

was first applied to biological modelling in the PROMOT

tool (Ginkel et al. 2003). Rodrigo et al. 2007a developed a

new computational tool to produce model of biological

systems by assembling models from biological parts.

Recently Marbach et al. 2009 proposed a module extrac-

tion method to generate network structure where the

extracted modules are biologically plausible as they pre-

serve functional and structural properties of the original

network. The importance of modularity has been recently

emphasized by Mallavarapu et al. 2009. In this work we

follow a modular modelling approach whereby models

are incrementally and hierarchically built by combining

modules stored in a predefined module library. This library

comprises a set of elementary modules that specify basic

gene regulatory mechanism as well as modules describing

the regulation of specific gene promoters widely used in

synthetic biology and systems biology (see below).

A module is defined as a separable discrete entity that

performs a specific biological (Hartwell et al. 1999) func-

tion. Recently, modularity in gene regulatory networks has

been associated with the existence of non-random clusters

of transcriptional regulatory factor binding sites in pro-

moters that regulate the same gene or genes’ operons

(Davidson 2006). A P system module is defined as a set of

rewriting rules, each of the form in (1), for which some of

the objects, stochastic constants or the labels of the com-

partments involved might be variables. This facilitates

reusability as large models can be built by integrating

commonly found modules that are then further instantiated

with experimentally specific values. In turn, this results on

a particular set of rules representing a concrete cellular

model. Formally, a P system module M is specified as

M(V, C, L) where V represents object variables, which can

be instantiated using specific objects describing different

molecular species, C are variables for the stochastic con-

stants associated to the transformation rules, and L are

variables for the labels of the compartments involved in the

rules. For example, V might represent specific genes, pro-

teins and other metabolites’ names, C the kinetic constants

pertinent to the rules defined for those genes, proteins and

metabolites while L might represent different cell compart-

ments, e.g., cytoplasm, lysosome, cellular membrane, etc.,

or –for multicellular systems– different cells altogether.

In what follows we present the P system modules in the

library used in this work in order to illustrate the above

definition.

1. Constitutive or unregulated expression: This module

describes the case of a gene, gX, which is transcribed

constitutively into its corresponding mRNA, rX, with-

out the aid of any transcriptional regulatory factor.

Translation of the mRNA, rX, into the corresponding

protein pX is also specified. The mRNA and protein can

be degraded by the cell machinery. These processes

occur within compartment l and take place at rates

determined by the stochastic constants c1; . . .; c4:

UnRegðfXg; fc1; c2; c3; c4g; flgÞ

¼

r1 : ½ gX �l�!
c1 ½ gX þ rX �l

r2 : ½ rX �l�!
c2 ½ rX þ pX �l

r3 : ½ rX �l�!
c3 ½ �l

r4 : ½ pX �l�!
c4 ½ �l

8
>>>>>>>><

>>>>>>>>:

9
>>>>>>>>=

>>>>>>>>;
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Note that X is a variable of this module that can be

instantiated with a specific gene name to represent that

such a gene is expressed constitutively. The variables for

the stochastic constants can also be instantiated with par-

ticular values to represent different transcription, transla-

tion and degradation rates. In what follows we will refer to

this circuit either as unregulated expression or constitutive

expression.

2. Positive regulated expression: The positive regulation

of a gene gX over another gene gY is represented in

this module. In this case the corresponding protein pX

acts as an activator binding reversibly to the gene gY

yielding the complex pX.gY. This event turns on the

production of the mRNA rY. Ultimately, the protein

product pY is produced from the mRNA. The mRNA

and the protein are also degraded in this case. These

processes take place at rates determined by some

stochastic constants c1; . . .; c6:

PosRegðfX; Yg; fc1; c2; c3; c4; c5; c6g; flgÞ

¼

r1 : ½pX þ gY�l�!
c1 ½pX:gY �l

r2 : ½pX:gY�l�!
c2 ½pX þ gY �l

r3 : ½pX:gY�l�!
c3 ½pX:gY þ rY �l

r4 : ½rY �l�!
c4 ½rY þ pY �l

r5 : ½rY �l�!
c5 ½ �l

r6 : ½pY�l�!
c6 ½ �l

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>;

By instantiating X and Y with specific gene names and

c1; . . .; c6 with particular values the positive regulation

of a gene over another one with characteristic affinities

and transcription, translation and degradation rates can

be obtained.

3. Negative regulated expression: In contrast to the

previous case the negative regulation of a gene gY

by another gene gX is represented in the module by

specifying pX as a repressor binding reversibly to the

gene gY to produce the complex pX.gY. Under this

situation transcription is completely inhibited. The

binding and debinding of the repressor to the gene take

place at rates determined by two stochastic constants

c1 and c2.

NegRegðfX; Yg; fc1; c2g; flgÞ

¼
r1 : ½ pX þ gY �l�!

c1 ½ pX:gY �l

r2 : ½ pX:gY �l�!
c2 ½ pX þ gY �l

8
<

:

9
=

;

The particular repression of a specific gene over

another one with a characteristic affinity can be

obtained from the previous module by instantiating

X, Y, c1 and c2 accordingly.

Besides the above introduced modules, the library

includes modules describing the regulation of some of

the most widely used gene promoters in synthetic

biology, namely, the lac operon promoter from

Escherichia coli, the cro promoter from Phage

lambda and the lux box site from Vibrio fischeri. In

these modules the instantiation of a variable specifying

an object with the name of a specific gene represents a

construct where the corresponding gene is fused to the

promoter modelled by the module.

4. Lac operon promoter from E:coli : The lactose operon

was one of the first gene regulatory systems to be

studied (Jacob and Monod 1961). It is negatively

regulated by a repressor protein LacI (rules r7 and r8).

In the absence of the repressor the genes regulated by

the promoter are basally expressed according to rules

r1; . . .; r4: The repression can be removed by adding

IPTG, a signal that binds to the repressor inactivating it

ðrulesr5; . . .; r8Þ:
PlacðfXg;fc1;c2;c3;c4;c5;c6;c7;c8g;flgÞ

¼

r1 : ½ Plac :: gX �l �!
c1 ½ Plac :: gXþ rX �l

r2 : ½ rX �l �!
c2 ½ �l

r3 : ½ rX �l �!
c3 ½ rXþ pX �l

r4 : ½ pX �l �!
c4 ½ �l

r5 : ½ pLacIþ IPTG �l �!
c5 ½ pLacI:IPTG �l

r6 : ½ pLacI:IPTG �l �!
c6 ½ pLacIþ IPTG �l

r7 : ½ pLacIþPlac :: gX �l �!
c7 ½ pLacI:Plac :: gX �l

r8 : ½ pLacI:Plac :: gX �l �!
c8 ½ pLacIþPlac :: gX �l

8
>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>;

5. The cro promoter from PhageLambda : The genetic

switch in the Phage lambda is another of the best

studied gene regulatory systems (Ptashne 2004). This

module describes in particular the regulation of the PR

promoter of the Cro protein. This promoter is

repressed by the direct and cooperative binding of a

dimerised form of the CI protein ðrulesr5; . . .; r10Þ: The

genes under the control of this promoter are constitu-

tively expressed when the CI protein is not present

ðrulesr1; . . .; r4Þ:
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PRðfXg; fc1; c2; c3; c4; c5; c6; c7; c8; c9; c10g; flgÞ

¼

r1 : ½PR :: gX �l�!
c1 ½PR :: gX þ rX �l

r2 : ½ rX �l�!
c2 ½ �l

r3 : ½ rX �l�!
c3 ½ rX þ pX �l

r4 : ½ pX �l�!
c4 ½ �l

r5 : ½ pCI þ pCI �l�!
c5 ½ pCI2 �l

r6 : ½ pCI2 �l�!
c6 ½ pCI þ pCI �l

r7 : ½ pCI2 þ PR :: gX �l�!
c7 ½ pCI2:PR :: gX �l

r8 : ½ pCI2:PR :: gX �l�!
c8 ½ pCI2 þ PR :: gX �l

r9 : ½ pCI2 þ pCI2:PR :: gX �l�!
c9 ½ pCI4:PR :: gX �l

r10 : ½ pCI4:PR :: gX �l�!
c10 ½ pCI2 þ pCI2:PR :: gX �l

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

6. The lux box from Vibrio fischeri : The control of the lux

genes by the Plux promoter in Vibrio fischeri consti-

tutes the canonical example of the cell-cell communi-

cation system called quorum sensing (Diggle et al.

2007). This system relies in the sensing of a small

diffusible signal s3OC6 (rules r1 and r2) by a protein

LuxR. After sensing of s3OC6 the receptor protein

dimerises ðrulesr3; . . .; r7Þ and acts as an activator

binding reversibly to a specific site called lux box. This

event produces the expression of the genes under the

control of the Plux promoter ðrulesr8; . . .; r13Þ: P

systems were used in Bernardini et al. 2007 to capture

a simplified form of quorum sensing.

PluxRðfXg;fc1; c2; c3; c4; c5; c6; c7; c8; c9; c10; c11; c12; c13g;flgÞ

¼

r1 : ½ s3OC6ext �l�!
c1 ½s3OC6extþ s3OC6 �l

r2 : ½ s3OC6 �l�!
c2 ½ �l

r3 : ½ s3OC6þ pLuxR �l�!
c3 ½pLuxR:s3OC6 �l

r4 : ½pLuxR:s3OC6 �l�!
c4 ½ s3OC6þ pLuxR �l

r5 : ½pLuxR:s3OC6þ pLuxR:s3OC6 �l�!
c5 ½pLuxR2 �l

r6 : ½pLuxR2 �l�!
c6 ½pLuxR:s3OC6þ pLuxR:s3OC6 �l

r7 : ½pLuxR2 �l�!
c7 ½ �l

r8 : ½pLuxR2 þ Plux :: gX �l�!
c8 ½pLuxR2:Plux :: gX �l

r9 : ½pLuxR2:Plux :: gX �l�!
c9 ½pLuxR2 þ Plux :: gX �l

r10 : ½pLuxR2:Plux :: gX �l�!
c10 ½pLuxR2:Plux :: gX þ rX �l

r11 : ½ rX �l�!
c11 ½ �l

r12 : ½ rX �l�!
c12 ½ rXþ pX �l

r13 : ½pX �l�!
c13 ½ �l

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

Extensive experimental studies have helped determine

the values for the different kinetic constants for the above

model systems. However, in the modules library they

appear as variables in order to allow, depending on the

biological system to be modeled, either their instantiation

with values derived from the literature or with new values

capable of representing mutations on the underlying

nucleotides sequences. In this way enhance or weakened

interactions can be easily captured. The modules’ library is

encoded in XML files for easier electronic reuse by the

evolutionary algorithm (see ‘‘Experiments’’).

Modularity affords two major advantages to the design

of biological cellular models. Firstly, the use of modules

assures model validity and plausibility. Modules are pre-

defined as building blocks whose validity and plausibility

are fundamented in specific biological knowledge, where

each module can—and usually is—validated on its own

terms. Secondly, the use of modules increases model

diversity. Although the number of elementary modules in

the library is limited, each of them can produce many

instantiated modules depending on the specific values

chosen for their different variables. These instantiated

modules can then be combinatorially combined in many

different ways thus producing a vast space of candidate

models.

A nested evolutionary algorithm for evolving

P system models

We propose a nested evolutionary algorithm (EA) to

evolve P system models that could match a biological

phenotype that is specified through a collection of time

series representing molecular concentrations of various

species. The EA’s first layer searches for model structures

using a GA; while the inner layer, also implemented as a

GA, acts as a local search for the continuous parameters of

the model. The pseudo code of both GAs are shown in

Figs. 2 and 3 respectively. The details of the two GAs are

described in what follows:

1. Structure optimization of P system models: In what

follows we describe in details the problem represen-

tation, the fitness functions used and the genetic

operators employed by the search algorithm.

a. Problem representation: The modeling framework

we employ as well as the evolutionary algorithm

proposed, are prepared to deal with multi-com-

partment P systems. Multi-compartment models

are needed when modeling, e.g., a cell’s internal

structures and organelles or when dealing with

multi-cellular systems such as, e.g., bacteria

biofilms, tissues such as plant root development
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(Twycross et al. 2009), etc. In this work, however,

we aim at evolving models of bacterial systems,

consequently, the membrane structure of all our

models consists of a single membrane (alterna-

tively called compartment). For a P system P ¼
ðO; flg; ½ �;Ml;RlÞ with a single compartment, it is

sufficient to specify only a vector whose compo-

nents are the modules used to construct the rule set

Rl;P ¼ ðm1; . . .;mnÞ:
As shown in Fig. 4, there are three levels in the

data structure of a model representation. First,

each rule is encoded using a structure which

specifies the rule name, a flag indicating if the

objects in the rule are all fixed (1) or some are

variables (0), the list of objects on the left hand

side (reactants) and on the right hand side

(products) of the rule, a flag indicating if the

associated stochastic constant is fixed (1) or is a

variable (0), and the value of the stochastic

constant. If the constant is variable, a lower

bound, an upper bound and a precision must be

specified as well. A P system module is then

encoded using a structure which specifies the

module name, a flag indicating if the module is

fully instantiated (1) or not (0), the list of

variables, the module size (the number of rules)

and the set of rules included in the module.

Finally, a P system model is encoded using a

structure which specifies the membrane type or

label, the model size, i.e. the number of modules,

and the set of modules that it contains. When a

model is constructed, the variables and the

constants in each module must be instantiated

with specific objects and constant values.

Figure 5 illustrates our encoding by using a stochastic

P system model which consists of two modules

UnReg({X = A}, {c2 = 0.6, c3 = 0.01, c4 = 0.04},

{l = b}) and NegReg({X = A, Y = A}, {c6 =

0.015}, {l = b}) (c1 and c5 are non-fixed).

b. Fitness evaluation: Figure 6 shows the flowchart

for the procedure used to evaluate a candidate

model P: Given the target time series, P is

run MAXRUN times using Gillespie’s SSA

Fig. 2 GA for P system model structure optimization

Fig. 3 GA for P system model parameter optimization

(a)

(b)

(c)

Fig. 4 A P system based model is represented through a three-level

data structure
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(Gillespie2007) and the output from these simula-

tions compared against the target time series. The

specific manner in which this comparison is done is

at the core of this paper. We investigate four

alternative fitness methods, namely, equally

weighted sum method (F1), normalization method

(F2), randomly weighted sum method (F3), and

equally weighted product method (F4). The details

of these four fitness methods are described in detail

in ‘‘Four fitness method’’.

c. Genetic operators: In the GA used for the

optimization of the modular structure we use

crossover and mutation as the genetic operators.

Crossover can be done by exchanging single

modules, module-exchange crossover, or by swap-

ping multiple modules between two parents,one-

point crossover.

Consider two parents P1 ¼ ðm1
1; . . .;m1

n1
Þ and

P2 ¼ ðm2
1; . . .;m2

n2
Þ with n1 and n2 modules

respectively. In the module-exchange crossover,

two crossover points, i and j, are randomly

selected within P1 and P2 and then the crossover

is performed as follows:

if ðm1
i \ m2

j ¼ ;Þ
then swap mi

1 and mj
2;

else swap the kinetic constants of the common

rules within mi
1 and mj

2;

calculate the fitness of both offspring;

choose the better one as the crossover offspring.

The one-point crossover is performed by randomly select-

ing one crossover position from P1 and P2 and swapping

all the modules after the crossover points. To promote a

parsimonious combinatorial search, a valid crossover

offspring would be one in which the number of modules

does not exceed a predefined maximal module set size,

MAXMSIZE. If both offsprings are valid the one with the

better fitness is chosen.

The structure mutation is performed by randomly

selecting a module and making one of the three following

variations: (1) randomly pick a rule with variable kinetic

constant and change its values using Gaussian mutation;

(2) keep the module type unchanged but change some

objects in the module’s rules; (3) randomly instantiate a

module from those available in the library.

2. Parameters optimization of P system models: As the

kinetic constants associated with each rule are used in

Gillespie’s SSA to compute the probability of applying

each rule and the waiting time for the rule to be

executed (Gillespie 2007), the stochastic constants of a

P system model determine its behavior, and thus it is

crucial to optimize them in order to obtain a desirable

dynamics. Here we designed a GA (Yu et al. 2007) to

optimize the constants of each candidate P system

model for which their structures have been determined

in the algorithm’s previous stage.

The encoding of a parameter individual in the GA

population is done as follows. Given a stochastic P system

model generated in the previous stage with n modules P ¼
ðm1; . . .;mnÞ; first we calculate the total number of different

rules, l, whose kinetic constants are variables in P by

applying set union over the set of rules of the modules

RP ¼
Sn

i¼1

mi ¼ fr1; r2; . . .; rlg: Then we represent each

chromosome specifying the constants of P in the param-

eter population using an l-dimensional row vector CðPÞ ¼
ðc1; c2; . . .; clÞ where ci is the constant associated with ri for

i ¼ 1; 2; . . .; l: Each constant is encoded as a floating

number and generated randomly within the specific range

and precision defined in the module library.

As shown in Figs. 2 and 3, we use a GA as the main

optimization mechanism accompanied by a hill-climbing

procedure based on Gaussian mutation. The rate for using

the GA is determined adaptively based on the fitness of the

model (Hinterding et al. 1997). The hill climbing is per-

formed MAXHCSTEPS times by randomly choosing a

module and a rule with a variable kinetic constant and

doing Gaussian mutation on it. The new kinetic constant is

kept only if the fitness is improved.

For the GA we use crossover as the sole genetic operator

which is performed using a multi-parent crossover as fol-

lows. We randomly select M [ 2 individuals C1;C2; . . .;
CM from the parameter population with Ci ¼ ðci

1; c
i
2; . . .; ci

lÞ
for i ¼ 1; 2; . . .;M: Then M coefficients ai are randomly

Fig. 5 An example of a P system based model for a bacterium that

contains two modules and their rules
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generated satisfying: (1) ai [ (a, b) where a and b are

control parameters of our algorithm such that a \ 0 and

b [ 1; (2)
PM

i¼1

ai ¼ 1: Finally, a new vector of constants pxo

is generated as a non-convex linear combination of Ci

using the previous constants:

pxo ¼
XM

i¼1

aiCi

If the fitness of pxo is better than that of the worst indi-

vidual in the parameter population then replace it with pxo.

Four fitness methods

Suppose we have N target time series ðX1;X2; . . .;XNÞ;
each representing a specific protein, gene, rna, etc and

where Xj ¼ ðx1
j ; x

2
j ; . . .; xM

j Þ
T ; that is, each time series has

up to M data points. Each candidate stochastic model is run

MAXRUN times (see Fig. 6) and an average model output

obtained for each of the N time series: ðX̂1; X̂2; . . .; X̂NÞ
where X̂j ¼ ðx̂1

j ; x̂
2
j ; . . .; x̂M

j Þ
T ; j ¼ 1; . . .;N: These output

time series are then used to calculate fitness as follows:

1. Equally weighted sum method (F1): The fitness

calculation formula for this method is:

FitnessðF1Þ ¼
XN

j¼1

XM

i¼1

ðjx̂i
j � xi

jjÞ

This is the most commonly used method (Marler and Arora

2004) in which all the error items from different objects are

considered to have the same significance. As we have

showed in Fig. 1, using this method the fitness function can

be dominated by the errors of the objects with large values,

neglecting the errors of objects with small values. This can

prevent the algorithm from finding a good compromise

model for all the objects.

2. Normalization Method (F2): Data normalization is an

important data preprocessing technology for many

applications. Sola and Sevilla 1997 systematically

studied the importance of input data normalization for

the application of neural networks to complex indus-

trial problems by experimenting with five different

data normalization procedures on the training data set.

In essence, data normalization consists in the trans-

formation of the original data into the range [0, 1] in

order to make the data comparable at the same level.

There are many such transformations. For example, the

two formulas below:

f̂iðxÞ ¼
fiðxÞ

maxfjfiðxÞjg
ð2Þ

used in Leung and Wang 2000, Thompson et al. 2001 and

f̂iðxÞ ¼
fiðxÞ � minffiðxÞg

maxffiðxÞg � minffiðxÞg
ð3Þ

used in Coello et al. 2002.

In this work we use formula (3) to normalize the

absolute error for each data point. Hence the formula to

calculate the fitness using the F2 method is as follows:

FitnessðF2Þ ¼
XN

j¼1

XM

i¼1

ðjx̂i
j � xi

jjÞ � minðjx̂i
j � xi

jjÞ
maxðjx̂i

j � xi
jjÞ � minðjx̂i

j � xi
jjÞ

The above normalization method removes the saliency

of large absolute errors and brings all the time series

and their misfit values into an equal footing. On the

other hand, by compressing all the data into a [0, 1]

interval some of the time series subtleties might be

lost.

3. Randomly weighted sum method (F3): This method is

similar to F1 but instead of assuming equal contribu-

tion from all the errors, here they are adjusted

according to a normalized weight vector generated

randomly.

A weight vector ðw1;w2; . . .;wNÞ is called normalized

when it meets the following condition:

8jwj� 0 and
XN

j¼1

wj ¼ 1

This method was proposed by Ishibuchi and Murata

1998 to deal with the case of fitness functions that areFig. 6 Fitness evaluation procedure of a P system model
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composed of a weighted sum of partial objectives.

They argued that this method can provide multiple

randomly generated search directions towards the

Pareto frontier in multi-objective optimization

problems. Jaszkiewicz 2002 adapted the method for

solving the multiple-objective 0/1 knapsack problem.

In Ishibuchi and Murata 1998, the normalized weight

vectors were obtained by generating J random weights

from [0,1] with uniform distribution and then by

dividing each of the weights by their sum. As this

approach does not assure uniform sampling of the

normalized weight vectors, Jaszkiewicz proposed the

following algorithm in Jaszkiewicz 2002 to ensure that

the weights vectors are drawn with uniform probability

distribution:

k1 ¼ 1�
ffiffi
½

p
J � 1�randðÞ
� � �

kj ¼ 1�
Pj�1

l¼1

kl

� �

1�
ffiffi
½

p
J � 1� j�randðÞ

� �

� � �
kJ ¼ 1�

PJ�1

l¼1

kl

where function rand() returns a random value within

the range (0,1) with uniform probability distribution.

In this paper, we use the algorithm above to randomly

generate a normalized weight vector and to then obtain

the weighted sum of all errors as the fitness value. We

repeat this procedure K times and compute the average

as the final fitness. Thus, the fitness calculation

formula for this method is as follows:

FitnessðF3Þ ¼
PK

n¼1

PN
j¼1ðwn

j

PM
i¼1ðjx̂i

j � xi
jjÞÞ

K

where wn
j is the random weight for the jth target time

series generated at the nth time.

4. Equally weighted product method (F4): This fitness

method is obtained by multiplying all the error items

for each target time series and the fitness calculation

formula is:

FitnessðF4Þ ¼
YN

j¼1

XM

i¼1

ðjx̂i
j � xi

jjÞ

Bridgman 1922 was the first author to refer to this approach

and later Gerasimov and Repko 1978 successfully applied

this method to the multi-objective optimization of a truss.

A related idea was pursued by Straffin 1993. Mazumdar

et al. 1991 used this fitness function to solve problems of

optimal network flow in complex telecommunications

networks. Cheng and Li 1996 applied this method to a

three-story steel shear frame with four objective functions.

The main reason why we consider this approach as a

potential fitness method is that with a product of terms, it is

not necessary to ensure that errors of different target

objects have similar magnitude. That is, even relatively

small errors can have a significant effect on the final fitness

value. A caveat, however, of any product-type fitness

function is that it can introduce nonlinearities and numer-

ical instabilities.

Experiments

Case studies definition

In order to benchmark our methodology, four test cases

have been selected. These are gene regulatory networks of

increased complexity that start with relatively simple

negative and positive autoregulation cases and follows with

gene networks that implement a pulse generator and a

bandwidth detector. The target time series for all these case

studies were generated in silico by simulating the target

models and then using only the obtained time series to

attempt to reverse engineer the circuits that gave rise to the

various datasets. More specifically, and as a proof of

concept, we start by studying networks consisting of a

single gene regulating itself. Although autoregulation is a

very simple mechanism, it has been shown to be a highly

recurrent pattern in E. coli (Thieffry et al. 1998). It consists

of a gene whose protein product regulates its own tran-

scription either by repression, negative autoregulation, or

enhancement, positive autoregulation. In this paper we

study these two mechanisms first and check what kinds of

P system models our algorithm can suggest. The third case

study investigates regulatory networks consisting in three

genes that are able to produce a pulse in the expression of a

specific gene. This type of networks has been shown to be a

recurrent pattern or motif in transcriptional regulation of

cellular systems (Mangan and Alon 2003). A pulse gen-

erating synthetic network has also been designed and

implemented in E. coli (Basu et al. 2004). The target time

series used in this case were obtained by simulating this

synthetic network. The last case study is the most complex

one as it consists in the investigation of networks with five

genes behaving as a bandwidth detector. More specifically,

the network should be able to detect a signal within a

specific range and produce as a response the expression of

a specific gene. A specific such network has been syn-

thetically designed and implemented in E. coli (Basu et al.

2005). As in the previous case study we simulated this
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synthetic network in order to obtained the target time

series.

The details of the target models for the four test cases

are shown in Table 1. If the initial value of the object is not

listed in the table, it is set to the default value 0. Figure 7

illustrates the topologies of the four target models where

the increasing complexity of the models from Test case 1 to

Test Case 4 is evident. The parameters that were allowed to

evolve in our study were chosen according to the possi-

bility of performing directed evolution over them in the

lab. For example in Test case 3, the parameters that were

allowed to evolve were those representing the debinding of

transcription factors from the promoters of the corre-

sponding genes (c2 from PosReg and NegReg) and the

transcription initiation (c3 from PosReg). These parameters

can be easily altered in the lab by performing one point

mutations in the promoter of the corresponding genes

which weakens or stregthens the affinity of the corre-

sponding transcription factors and the RNAP to the pro-

moter. In test case 4, we also allowed to evolve parameters

representing transcription initiation (c10 from PluxR) as

described above. Here we also explored another possibility

for directed evolution. We allowed to evolve parameters

corresponding to the degradation rates of certain proteins

(c13 from PluxR and c4 from UnReg, PR and Plac). This

can also be done in the lab by tagging the natural protein

with specific sequences that are targeted for degradation by

proteases.

Parameter settings and measures

Table 2 presents the parameter values for the experiments

conducted. We run a total of 320 experiments: 20 inde-

pendent runs for each of the four case studies under each of

Table 1 Benchmark models generating the target time series

Test cases Target models Initial values

Test case 1 P ¼ ðm1;m2Þ Gene1 = 1

m1 = UnReg({X = 1}, {c_1=0.13,c_2=0.04,c_3=0.002,c_4=0.000578})

m2 = NegReg({X = 1, Y = 1}, {c_1=0.056,c_2=0.147})

Simulation time: 6,000 s

Iinterval: 10 s

Test case 2 P ¼ ðm1;m2Þ Gene1 = 1

m1 = UnReg({X = 1}, {c_1=0.0004,c_2=0.016,c_3=0.006,c_4=0.0001})

m2 = PosReg({X = 1, Y = 1}, {c_1=0.04,c_2=0.02,c_3=0.014,c_4=0.016,c_5=0.006,c_6=0.0001})

simulation time: 30,000 s

Interval: 50 s

Test case 3 P ¼ ðm1;m2;m3;m4Þ Gene1 = 1

Gene2 = 1

Gene3 = 1

m1 = UnReg({X = 1}, {c1 = 4.5, c2 = 1, c3 = 0.15, c4 = 0.6})

m2 = PosReg({X = 1, Y = 2}, {c1 = 1, c_2=100,c_3=5, c4 = 1, c5 = 0.15, c6 = 0.6})

m3 = PosReg({X = 1, Y = 3}, {c1 = 1, c_2=10,c_3=8, c4 = 1, c5 = 0.15, c6 = 0.6})

m4 = NegReg({X = 2, Y = 3}, {c1 = 1, c_2=0.1})

Simulation time: 118 min

Interval: 1 min

Test case 4 P ¼ ðm1;m2;m3;m4;m5Þ Plac::gFP = 1

PR::gLacI = 1

Plux::gCI = 1

Plux::gLacI = 1

gLuxR = 1

s3OC6ext = 5

m1 = UnReg({X = LuxR}, {c1 = 0.15, c2 = 0.004, c3 = 0.03, c_4=0.001})

m2 = PluxR({X = LacI}, {c1 = 0.1, c2 = 0.175, c3 = 1, c4 = 0.0063, c5 = 1, c6 = 0.0063, c7 = 0.01875,

c8 = 1, c9 = 1, c_{10 = 0.001, c11 = 0.004, c12 = 0.03, c_{13 = 0.001})

m3 = PluxR({X = CI}, {c1 = 0.1, c2 = 0.175, c3 = 1, c4 = 0.0063, c5 = 1, c6 = 0.0063, c7 = 0.01875,

c8 = 1, c9 = 1, c_{10 = 0.1, c11 = 0.004, c12 = 0.03, c_{13 = 0.001})

m4 = PR({X = LacI}, {c1 = 0.15, c2 = 0.004, c3 = 0.03, c_4=0.001, c5 = 0.000166, c6 = 0.002,

c7 = 0.166, c8 = 0.002, c9 = 0.0083, c10 = 0.0002})

m5 = Plac({X = FP}, {c1 = 0.15, c2 = 0.004, c3 = 0.03, c_4=0.001, c5 = 0.000166, c6 = 0.01,

c7 = 11.6245, c8 = 0.06 })

Simulation time: 3,600 s

Interval: 36 s.

The evolutionary algorithm must evolve, guided by one of the four alternative fitness functions, both the structure and parameters for each target

time series. Constants highlighted in bold are to be evolved, the rest are input to the algorithm
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the four fitness methods introduced in the previous section.

All the experiments were performed on the Jupiter super-

computer of the University of Nottingham with a 1,024

CPU 2.2GHz gigabit cluster and the Linux operating

system.

In addition, for each case study the constant range and

precision associated with each rule in the module are listed

in Table 3. Those values determine the search space for the

GA used in the parameter optimization. If the constant is

not listed in the table, it is fixed to the value in the target

model. The constant range can be defined on a linear or

logarithmic scale. In the linear scale the constant can take

any value between the lower and the upper bound with the

given precision. In the logarithmic scale, we are more

interested in the order of magnitude of the corresponding

constants. Therefore, the constant can take any power of

ten whose exponent is between the specified lower and

upper bound with the given precision.

In test case 4 almost all the kinetic constants are known

since the modules here represent gene promoters that are

widely used in synthetic biology. Although our focus in

this case is structure optimization we also enable five

constants to be tunable in order to allow our algorithm to

explore mutations in the promoters to optimize the

behavior of the system.

Results and discussions

In this section we present the results on the application of

the evolutionary algorithm we propose to the four test cases

discussed above.

Results for test case 1

The first row of Table 4 shows that for test case 1 all the

best models obtained using the four different fitness

methods have the same structure as the target model dif-

fering only in the stochastic kinetic constants.

Figure 8 shows the simulation results for the best

models obtained using F1; . . .; F41. Note that the model

obtained using F3 fits best the behavior of the target model

with an RMSE value of 1.69. The model found by F4 is

also very good whereas F1 and F2 produce slightly worst

results.

As mentioned above these models share the same

structure and differ only in the stochastic constants. In

Table 5 we compare the stochastic constants in each model

to the ones in the target model using the relative error

computed following the formula below.

jmodelvalue� targetvaluej
targetvalue

� 100%

Observe that the fitness method F3 produces the best

estimates for the constants in the target model with the

exception of c1 in the module UnReg which is in agreement

with the results shown in Fig. 8.

Results for test case 2

Table 12 shows that for this test case the fitness methods

F1, F3 and F4 found a model with the same structure as the

target model in all the 20 independent runs whereas F2

only found a model with this structure in 15% of the runs.

In most of the runs, method F2 found the following mod-

ular structure {UnReg, NegReg} instead of the target

{UnReg, PosReg}.

Figure 9 depicts the simulation results for the best

models obtained using F1; . . .; F4: The models found by

F1, F3 and F4 only differ in the constants associated with

the modules. When comparing only these three methods we

can observe that F1 is the one that best matches the

(a) (b)

(c)

(d)

Fig. 7 Target models’ topologies. In a), b), c), the black shaded big

arrow represents constitutive expression of the gene. An arrow with

(?) from a gene to another one represents positive regulation

whereas an arrow with ðaÞ represents negative regulation

1 Note that if the model has the same structure as the target model,

we mark it with a ‘‘*’’ on the right hand of the model graph.
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evolution of protein1 whereas it produces the worst results

for rna1. F4 is the one that performs best for the case of

rna1 and F3 is the secondary.

The reason behind the assymetry in the performance of

F1 for protein1 and rna1 is the big difference in the orders

of magnitude between the two time series. The target for

protein1 is within the range [0, 350] while the target for

rna1 is within [0, 2]. Since the method F1 calculates the

fitness value using an equally weighted sum of the errors

for protein1 and rna1 it is very likely to find some models

with a very small combined error which fits protein1 very

well but not rna1. Actually, as shown in Fig. 9, the RMSE

of the best F1 model is the smallest one with a value of

6.78 even though its simulation of rna1 is poor.

The method F4 calculates the fitness value as the

product of the errors for protein1 and rna1 which makes

both errors to contribute equally to the final fitness value

despite their different scales. As expected, the simulation

result of rna1 is improved significantly at the cost of

slightly degrading the fitting accuracy of protein1 as can

been seen for the best F4 model shown in Fig. 9. This

model can be chosen as the best one for test case 2 as it

presents a good compromise in the simulation of both

protein1 and rna1.

The fitness method F3 also performs well for this test

case as it can be observed in Fig. 9, which also presents a

good compromise results for protein1 and rna1. It shows

that this method has the potential to generate good

Table 2 The parameter settings

of the nested evolutionary

algorithm

Two GAs Parameters Values Meaning

GA for structure

optimization

POPSIZE 50 Model population size

SOMAXGENO 20 Maximal number of generations

MAXMSIZE 6 Maximal number of modules in a model

MAXRUN 50 Number of simulation runs to calculate the model fitness

K 100 Number of times to produce the random weights for F3

GA for parameter

optimization

POPSIZE 50 Parameter population size

MAXHCSTEPS 50 Maximal number of steps to do hill climbing

POMAXGENO 100 Maximal number of generations

M 8 Number of selected parents to do the crossover

a -0.5 Lower bound of the random coefficients in crossover

b 1.5 Upper bound of the random coefficients in crossover

Table 3 The range and the

precision of the kinetic

constants in the rule set of the

modules for four test cases

Test cases Module name Constants Scale Range Precision

Test case

1& Test case 2

UnReg c1 Linear (0,0.2) 10-4

c2 Linear (0,0.05) 10-3

c3 Linear (0,0.01) 10-3

c4 Linear (0,0.001) 10-6

PosReg c1 Linear (0,0.1) 10-3

c2 Linear (0,0.2) 10-3

c3 Linear (0,0.1) 10-3

c4 Linear (0,0.05) 10-3

c5 Linear (0,0.01) 10-3

c6 Linear (0,0.001) 10-6

NegReg c1 Linear (0,0.1) 10-3

c2 Linear (0,0.2) 10-3

Test case 3 PosReg c2 Linear (0,200) 10-1

c3 Linear (0,10) 10-1

NegReg c2 Linear (0,200) 10-1

Test case 4 UnReg c4 Logarithmic [-3,-1] 1

PluxR c10 Logarithmic (-3,1) 1

c13 Logarithmic [ -3, -1] 1

PR c4 Logarithmic [ -3, -1] 1

Plac c4 Logarithmic [ -3, -1] 1
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compromise solutions as it explores the search space in

different directions by randomly generating the weights of

the fitness function.

Finally, the simulations in Fig. 9 show that the alter-

native model found by F2 fails completely to reproduce the

targeted behavior of both protein1 and rna1.

Since the best models found by the F1, F3 and F4

methods share the same structure as the target model we

compare the relative error of the constants in these models

to the ones in the target, see Table 6. In total there are ten

adjustable parameters and the F4 method is the one that

gets closer to them in terms of relative error. The differ-

ences in the simulation results for these three models

sharing the same structure but with different constants

further illustrate the importance of parameter optimization

when modelling cellular systems.

Results for test case 3

As shown in Table 4 for this case study only the best

models found by using F1 and F4 share the same structure

with the target model. The F2 and F3 methods found

models with an alternative structure which interestingly is

Table 4 The best evolved models (out of 20 runs) under different

fitness methods for the four benchmarks

Test

cases

Fitness

methods

Best fitness model structure As target(Y/N)

Test

case 1

F1; � � � ;F4 P ¼ ðm1;m2Þ Y

m1 = UnReg{X = 1}

m2 = NegReg{X = 1, Y = 1}

Test

case 2

F1, F3, F4 P ¼ ðm1;m2Þ Y

m1 = UnReg{X = 1}

m2 = PosReg{X = 1, Y = 1}

F2 P ¼ ðm1;m2Þ N

m1 = UnReg{X = 1}

m2 = NegReg{X = 1, Y = 1}

Test

case 3

F1, F4 P ¼ ðm1;m2;m3;m4Þ Y

m1 = UnReg{X = 1}

m2 = PosReg({X = 1, Y = 2}

m3 = PosReg{X = 1, Y = 3}

m4 = NegReg{X = 2, Y = 3}

F2 P ¼ ðm1;m2;m3;m4Þ N

m1 = UnReg{X = 1}

m2 = UnReg{X = 2}

m3 = PosReg{X = 2, Y = 3}

m4 = NegReg{X = 1, Y = 2}

F3 P ¼ ðm1;m2;m3;m4Þ N

m1 = UnReg{X = 1}

m2 = UnReg{X = 3}

m3 = PosReg{X = 1, Y = 2}

m4 = NegReg{X = 1, Y = 3}

Test

case 4

F1, F4 P ¼ ðm1;m2;m3;m4;m5Þ Y

m1 = UnReg{X = LuxR}

m2 = PluxR{X = LacI}

m3 = PluxR{X = CI}

m4 = PR{X = LacI}

m5 = Plac{X = FP}

F2 P ¼ ðm1;m2;m3;m4;m5Þ N

m1 = PluxR{X = LacI}

m2 = UnReg{X = LuxR}

m3 = PR{X = CI}

m4 = Plac{X = FP}

m5 = PluxR{X = CI}

F3 P ¼ ðm1;m2;m3;m4;m5;m6Þ N

m1 = UnReg{X = LuxR}

m2 = PluxR{X = LacI}

m3 = PluxR{X = CI}

m4 = PR{X = LacI}

m5 = Plac{X = FP}

m6 = PluxR{X = LuxR}

(a)

(b)

(c)

(d)

Fig. 8 Simulated results of the best fitness models for test case 1

obtained by four fitness methods ðF1; . . .;F4Þ
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the same for both methods differing in the instantiation of

the variables that represent the objects.

The simulation results for the best models found using

F1; . . .; F4 are shown in Fig. 11. Note that for brevity’s

sake we only present the dynamics of protein1, protein2

and protein3 since the dynamics of the corresponding rna0s
is very similar to them differing only in the magnitude.

We start by comparing the best models found using F1

and F4 which have the same structure as the target but with

different model parameters. The simulation results of

protein1 and protein2 are quite similar for these two

models and they almost coincide with the target time ser-

ies. Nevertheless, the behavior of protein3 in both models

is quite different. In the target time series the expression of

protein3 presents a pulse that is only reproduced in the

model obtained using the F1 model although with a 25%

under-estimation, which results in a small RMSE with a

value of 1.91. In contrast, protein3 follows saturating

dynamics in the model obtained using F4 which produced a

RMSE with a value of 6.56. Again, these results suggest

the great effect of the constants contained in a model on the

expected behavior of the simulated cellular system. In

Table 7 we compare the different constants of the models

sharing the same structure found using F1 and F4. This

table shows that all the constant values of the best model

found using F1 are much closer to the target values than

those of the model found with F4 which explains why the

former model performs better as illustrated in Fig. 11.

Interestingly, the algorithm found another two alterna-

tive model structures that are biologically plausible using

the fitness methods F2 and F3. Fig. 10 depicts a graphical

representation of their topologies. When comparing the

behavior of these models to the target time series shown in

Fig. 11, we observe that the model found using F3 is fairly

good as it reproduces very well the dynamics of protein1

and protein2 and it also presents a small pulse in the

expression of protein3. This is not the case of the alter-

native model found using F2 which fails to reproduce the

dynamics of protein2 and protein3.

Results for test case 4

Table 4 shows that, as in test case 3, the methods F1 and F4

found a model with the same structure as the target whereas

F2 and F3 discovered alternative model structures. The

alternative model found using F2 differs from the target in

(a)

(b)

(c)

(d)

Fig. 9 Simulated results of the best fitness models for test case 2

obtained by four fitness methods ðF1; . . .;F4Þ

Table 5 Comparisons of the constants between the best fitness models obtained by F1; . . .; F4 and the target model for test case 1 (Best results

are bolded)

Module set Const. name F1 F2 F3 F4 Target value

Value RE(%) Value RE(%) Value RE(%) Value RE(%)

UnReg c1 0.1263 2.85 0.1737 33.62 0.1222 6 0.1251 3.77 0.13

c2 0.029 27.5 0.038 5 0.042 5 0.044 10 0.04

c3 0.002 0 0.003 50 0.002 0 0.002 0 0.002

c4 0.000612 5.88 0.000542 6.23 0.000581 0.52 0.000634 9.69 0.000578

NegReg c1 0.032 42.86 0.01 82.14 0.078 39.29 0.079 41.71 0.056

c2 0.131 10.88 0.031 78.91 0.2 36.05 0.2 36.05 0.147
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the module PR which is instantiated using CI instead of

LacI and the model found using F3 includes an additional

module Plux instantiated with LuxR.

The simulation results of the four best models found

using F1; . . .; F4 are shown in Fig. 12. The models found

using F1 and F4 perfectly match the four target time series.

As they share the same model structure with the target we

compare their model constants with the ones in the target,

see Table 8. The constants that are different from the ones

in the target model are highlighted and underlined. Note

that the best model found using F1 has the same constants

as the target whereas two of the seven tunable constants in

the model found using F4 differ from the ones in the target.

Since the latter model also perfectly reproduces the target

time series we conclude that the target model is not sen-

sitive to changes in the constant c4 of module UnReg and

the constant c13 of module PluxR.

As for the alternative model structure discoverd by F2,

Fig. 12 shows that it fails to reproduce the dynamics of the

target model. In contrast, the model found by F3 can be

regarded as a good alternative model based on accurate

match to all four target objects shown in Fig. 12.

It is worth mentioning that although the above three

good models are obtained by different fitness methods (F1,

F3 and F4), they all consistently achieve good simulation

results and their RMSEs are very small, with values of

0.55, 1.05, and 1.03 respectively. This demonstrates the

effectiveness of our algorithm in searching the global

optimum from different directions.

Table 6 Comparisons of the

constants between the best

fitness models obtained by F1,

F3, F4 and the target model for

test case 2 (Best results are

bolded)

Module set Const.

name

F1 F3 F4 Target

value
Value RE(%) Value RE(%) Value RE(%)

UnReg { X = 1 } c1 0.0003 25 0.0076 1800 0.0055 1275 0.0004

c2 0.005 68.75 0.018 12.5 0.011 31.25 0.016

c3 0.005 16.67 0.008 33.33 0.007 16.67 0.006

c4 0.00016 60 0.000049 51 0.00005 50 0.0001

PosReg {

X = 1, Y = 2 }

c1 0.09 125 0.003 25 0.004 90 0.04

c2 0.048 140 0.043 115 0.013 35 0.02

c3 0.054 286 0.01 28.57 0.014 0 0.014

c4 0.005 68.75 0.018 12.5 0.011 31.25 0.016

c5 0.005 16.67 0.008 33.33 0.007 16.67 0.006

c6 0.00015 50 0.000049 51 0.000046 54 0.0001

Table 7 Comparisons of the

constants between the best

fitness models obtained by F1,

F4 and the target model for test

case 3 (Best results are bolded)

Module set Const. name F1 F4 Target value

Value RE(%) Value RE(%)

PosReg { X = 1, Y = 2 } c2 132 32 42 58 100

c3 6 20 3 40 5

PosReg{ X = 1, Y = 3 } c2 23 130 139 1290 10

c3 9 12.5 1 87.5 8

NegReg { X = 2, Y = 3 } c2 0.2 100 123 122900 0.1

UnReg { X = 1 } ci All are fixed

(a)

(b)

Fig. 10 Topologies of the two alternative models obtained by F2 and

F3 for Test Case 3. The black shaded big arrow represents

constitutive expression of the gene. An arrow with (?) from a gene

to another one represents positive regulation whereas an arrow with

ðaÞ represents negative regulation
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We are interested in examining how many alternative

good models can be automatically found using our algo-

rithm. By checking each model structure and their RMSE

in 20 runs for each method, we obtainged another three

alternative good models in terms of small RMSE besides

the best model found by F3 as previously discussed. The

details of these four alternative models are listed in Table 9

and their topologies are illustrated in Fig. 13. The common

feature of these models is that all of them have an addi-

tional module besides the five modules in the target. As

shown in Fig. 14, despite the variety of the additional

modules, their simulation results are very similar and

match the target accurately.

More interestingly, our algorithm frequently found

another alternative model using F1, F3 and F4 as illustrated

in Fig. 15, which has a simpler structure than the target

excluding the module PluxR instantiated with LacI. Table 10

lists the statistical results for this model structure found by

each fitness method. For each method, the average and

standard deviation of the fitness and RMSE are calculated

from the runs that found this model structure neglecting the

model constants. This table shows that the RMSE values for

F1, F3, and F4 are around six whereas the RMSE value for F2

is extremely large, 246.12. The simulation results for the best

models with this alternative structure discovered using

F1; . . .; F4 are depicted in Fig. 16. As expected, the F2 model

does not match the target time series, especially pLacI and

pFP. However the simulation results for the F1, F3, and F4

models show how accurately this alternative structure can

reproduce the target.

(a)

(b)

(c)

(d)

Fig. 11 Simulated results of proteins of the best fitness models for test case 3 obtained by four fitness methods ðF1; . . .;F4Þ
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When comparing the stochastic constants, see

Table 11, we noticed that the model found by F1 has the

same constants as the target, whereas the F3 and F4

models have different c4 in the module UnReg. Since the

behavior of these models is extremely similar we con-

clude that this structure is robust for changes in this

constant. In contrast, we observed that the constants

found by F2 differ in the c4 in the module PR which

suggests that the structure is very sensitive to changes in

this constant.

Fig. 12 Simulated results for the fittest models obtained by the four fitness methods ðF1; . . .; F4Þ in Test Case 4

Table 8 Comparisons of the constants between the best fitness

models obtained by F1, F4 and the target model for test case 4

(Values different from the target are bolded and underlined)

Module set Constants F1 F4 Target

UnReg{X = LuxR} c4 0.001 0.01 0.001

PluxR{X = LacI} c10 0.001 0.001 0.001

c13 0.001 0.001 0.001

PluxR{X = CI} c10 0.1 0.1 0.1

c13 0.001 0.01 0.001

PR{X = LacI} c4 0.001 0.001 0.001

Plac{X = FP} c4 0.001 0.001 0.001

Table 9 Four alternative models found by F1, F3, F4 for test case 4

No. Model structure F Fitness RMSE

1 P ¼ ðm1;m2;m3;m4;m5;m6Þ F1 85.84 0.57

m1; . . .;m5 : same as target

m6 = Plac{X = LuxR}

2 P ¼ ðm1;m2;m3;m4;m5;m6Þ F1 99.61 0.69

m1; . . .;m5 : same as target

m6 = PR{X = FP}

3 P ¼ ðm1;m2;m3;m4;m5;m6Þ F3 34.0 1.05

m1; . . .;m5 : same as target

m6 = PluxR{X = LuxR}

4 P ¼ ðm1;m2;m3;m4;m5;m6Þ F4 4.6 9 105 0.91

m1; . . .;m5 : same as target

m6 = Plac{X = CI}
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Run times and diversity summary

Table 12 provides some statistics on the diversity of

evolved models. We noted that the model diversity does

not depend much on the fitness method used but only on

the complexity of the test case. It is obvious that for more

complex cases, the diversity of models increases. More

specifically, for the two simple cases, test case 1 and 2, as

expected, F1, F3 and F4 always found the target model

structure in most runs. On the contrary, although F2 per-

formed well for test case 1, in test case 2 it was able to find

the target model only three times out of 20 runs. For the

more complicated cases, namely test case 3 and 4, the

results are quite different. All the fitness methods can find

more than six alternative model structures for test case 3

and more than 14 for test case 4 which seldom have the

same structure as the target. Noteworthy, the alternative

models found by the evolutionary algorithm are compara-

ble in quality to the target model in terms of RMSD.

Table 13 shows the average running time for the dif-

ferent benchmarks under the various objective functions

used, (for reference only) the average fitness achieved is

shown as well as the average RMSE for the best model

evolved with a given objective function. Only the later

value can be used to compare, within a test case, the merit

of different objective functions as the fitnesses themselves

are not comparable (e.g, as expected, F4 usually leads to

very high values). Recall that for test case 1 and 2, the

target models consist of only two modules with a total

number of six and ten rules respectively. For these two

simple cases, each run finished in less than one minute in

average. In test case 3, the target model is composed of

four modules containing a total number of 18 rules. One

run in this case took on average two hours. Finally, in test

case 4 the target model contains five modules with 48 rules

and took approximately a week of runtime. Please note that

these numbers are absolute upper bounds as each run

involved a population of 50 individuals for the structural

optimisation loop, each of which undergoes a 50 individ-

uals GA run for its parameter optimisation. In turn, each

time a model structure or parameter is changed 50 simu-

lations with SSA were undertaken. Indeed, similar results

to those reported above could be obtained with only five

simulations each (experiments not reported). Hence,

although expensive, the results provided can be substan-

tially reduced if needed.

(a) (b)

(c) (d)

Fig. 13 Topologies of the four alternative models found by F1, F3, F4 for test case 4
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Evolutionary dynamics

Having analysed the quality of the best solutions, overall

models’ diversity and the run time, we turn next to the

evolutionary dynamic of the proposed algorithm. We report

results for benchmark four as it is the most challenging.

Figures 17 and 18 show the average over 20 runs of the

best fitness and average model diversity as a function of

generations. As shown in Fig. 17, the evolving curve for F2

fitness is rather flat and the improvement over the first

generations is small converging soon to a bad solution at

Generation 6. This result supports our previous observa-

tions of F2 always performing the worst for all test cases.

With respect to the F1 method we observe that the fitness

value improves gradually converging to a good solution at

Generation 10. It then becomes stable as indicated by the

small error bars in the graph. The fitness method F4 pro-

duces a faster convergence than F1 becoming stable at

Generation 8. Nevertheless, as shown by the bigger error

bars, the best solution at the following generations is not as

stable as when using F1. Error bars for F3 are also larger

across all the generations which can be explained by the

stochastic property of the random weighted sum fitness

method. However, this method shows the fastest conver-

gence at Generation 6.

(a)

(b)

(c)

(d)

Fig. 14 Simulated results of four alternative models found by F1, F3, F4 for test case 4

Fig. 15 Topology of the common model structure found by

F1; . . .;F4 for Test Case 4
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Figure 18 shows that unlike the evolution of the fitness,

the average diversities are similar for all different fitness

methods. The initial populations consists of 40 different

model structures generated randomly but subsequently this

number drops quickly and remains constant around 25 after

generation 6. This result suggests that the different fitness

methods tried have only a small effect on population

diversity throughout the evolutionary process. The fact that

half of the individuals in the population have different

model structures, needless to say their various model

parameters in all the generations, suggests that our algo-

rithm succeeds on maintaining model diversity during

evolution.

Finally, the results of the experiments are analyzed

using a one-way ANOVA test combined with a post-hoc

Tukey HSD test for multiple comparisons using a 95%

confidence level as suggested by Lanzi et al. 2006. The

data we use for statistical analysis are the RMSEs in 20

runs for each fitness method and each test case. The results

of the statistical test are shown in Tables 14 and 15. The

results for each test case are consistent and suggest the

following dominance order: F1 ?F2, F3 ?F2, F4 ?F2.

That is, F2 is a statistically significant inferior fitness

method while the other three methods (F1, F3, F4) are

Table 10 The statistical results of the common model structure most

frequently found by F1; . . .;F4 for test case 4 (Best results are bolded)

Fitness method Frequency Fitness RMSE

F1 4 745.05 ± 82.31 7.01 ± 0.87

F2 1 146.27 ± 0 246.12 ± 0

F3 6 177.21 ± 22.96 6.23 ± 0.41

F4 4 (3.07 ± 0.71) 9 106 6.89 ± 0.45

Model structure P ¼ ðm1;m2;m3;m4Þ
m1 = UnReg{X = LuxR} m2 = PluxR{X = CI}

m3 = PR{X = LacI} m4 = Plac{X = FP}

(a)

(b)

(c)

(d)

Fig. 16 Simulated results of the fittest models obtained by the four fitness methods ðF1; . . .;F4Þ with the common model structure in test case 4
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comparable and their performance may vary with different

case studies.

Further experiments

We conduct a suite of additional experiments on test case 4

as to ascertain the algorithm scalability. We keep the target

model and all the parameter settings exactly the same as in

previous experiments. However, rather than evolving only

five variables within the elementary modules as shown in

Table 3, we allow all the constants contained in each

module to be evolved within predefined ranges and preci-

sions (see Table 16) . As for the four elementary modules

for Test Case 4, {UnReg, Plac, PR, PluxR}, the number of

the constants to be evolved in each module are {4, 8, 10,

13} respectively. This leads to a 38-dimensional continu-

ous optimisation problem.

Table 17 collects the statistics for the 20 runs using the

four fitness methods. As expected, in terms of RMSD and

average fitness, the results obtained degrade slightly with

Table 11 Comparisons of the constants between the best fitness models with the common model structure by F1; . . .; F4 and the target model for

test case 4 (Values different from the target are bolded and underlined)

Module set Const. F1 F2 F3 F4 Target

UnReg{X = LuxR} c4 0.001 0:1 0:01 0:01 0.001

PluxR{X = CI } c10 0.1 0.1 0.1 0.1 0.1

c13 0.001 0.001 0.001 0.001 0.001

PR{X = LacI} c4 0.001 0:1 0.001 0.001 0.001

Plac{X = FP} c4 0.001 0.001 0.001 0.001 0.001

Table 12 Summary of model diversity for different fitness methods

on the four test cases across 20 runs. Best results appear in bold

Test cases Fitness

methods

Different

methods

Models

as target

Test case 1 F1 2 18

F2 2 17

F3 2 19

F4 2 16

Test case 2 F1 1 20

F2 2 3

F3 1 20

F4 1 20

Test case 3 F1 6 4

F2 6 1

F3 8 1

F4 8 2

Test case 4 F1 15 2

F2 15 0

F3 14 1

F4 14 2

Table 13 The average fitness

and running time for different

fitness methods on the four test

cases

Averages are taken over 20

runs. The RMSD for the best

model evolved under each

objective function is also

averaged for the 20 runs and

reported. The best RMSD

appears in bold

Test cases F Fitness RMSE Run-time

Test case 1 F1 2000 ± 671.8 3.54 ± 1.24 50 ± 1(s)

F2 272.55 ± 34.04 13.23 ± 6.82 49 ± 1(s)

F3 961.7 ± 467.11 3:46� 1:65 56 ± 3(s)

F4 (2.81 ± 1.93) 9 105 5.0 ± 1.99 54 ± 2(s)

Test case 2 F1 10226 ± 2727 19:04� 6:2 49 ± 2(s)

F2 246.39 ± 14.24 134.33 ± 47.61 46 ± 2(s)

F3 5740 ± 1738 21.89 ± 5.51 49 ± 2(s)

F4 (3.46 ± 1.51) 9 106 36.9 ± 19.78 43 ± 2(s)

Test case 3 F1 518.75 ± 156.93 4.86 ± 1.9 122 ± 22(m)

F2 152 ± 20.73 8.55 ± 1.08 116 ± 28(m)

F3 89.54 ± 11.42 4:63� 1:45 121 ± 22(m)

F4 (2.6 ± 6.1) 9 1011 4.96 ± 2.08 107 ± 13(m)

Test case 4 F1 638.89 ± 329.68 5:65� 2:83 149 ± 30(h)

F2 138.47 ± 16.38 75.72 ± 60.47 178 ± 42(h)

F3 350.03 ± 393.27 12.32 ± 14.46 149 ± 42(h)

F4 (1.53 ± 5.24) 9 107 5.89 ± 2.52 136 ± 30(h)
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the increased dimensionality (compared with the results in

Table 13). Interestingly, the algorithm still manages to

reverse engineer the target model even in this extended

38-dimensional problem when using fitness method 3 and

4. Furthermore, the simulation results for the best fitness

(a) (b)

(c) (d)

Fig. 17 Average over 20 runs of the best fitness under four different

fitness methods ðF1; . . .; F4Þ for test case 4

(a) (b)

(c) (d)

Fig. 18 Average over 20 runs of population diversity under four

fitness methods ðF1; . . .; F4Þ for test case 4

Table 14 One-way ANOVA test for different fitness methods and

four test cases

Test cases F-value Significant? Y/N

Test case 1 31.82 Y

Test case 2 114.6 Y

Test case 3 25.0 Y

Test case 4 14.61 Y
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models found by F1, F3, and F4 are quite good. Table 18

shows the model structure, the fitness and RMSE of the

best models obtained by F1; . . .; F4: Figure 19 illustrates

their simulation results. Again, as indicated by its large

RMSE value (70.44), the simulation results of the best F2

model are mediocre. As for fitness methods F1 and F3,

each finds an alternative model structure with small RMSE

values of 7.4 and 6.94 respectively. As shown in the figure,

the simulation results of these two models are very similar

and both are quite good. As for the best F4 model, our

algorithm can find the same model structure as the target

and its simulation results are slightly worse than previous

models but still good and acceptable.

Model selection

In this paper we have presented four different fitness cal-

culation methods that guide the search of models repro-

ducing a prefixed behaviour. All our models are biologically

plausible as a result of the methodology that we follow to

construct them. More specifically, our modules act as bio-

logically plausible building blocks and the operators used to

Table 16 The range and the precision of the kinetic constants in the

rule set of the modules for further experiments on test case 4

Module

name

Constants Scale Range Precision

UnReg c1 Linear (0.1, 0.3) 10-2

c2 Linear (0.001, 0.01) 10-3

c3 Linear (0.01, 0.05) 10-2

c4 Logarithmic [ -3, -1] 1

PluxR c1 Linear (0, 0.2) 10-2

c2 Linear (0, 0.2) 10-2

c3 Linear (0, 2) 10-1

c4 Linear (0, 0.01) 10-3

c5 Linear (0, 2) 10-1

c6 Linear (0, 0.01) 10-3

c7 Linear (0, 0.02) 10-3

c8 Linear (0, 2) 10-1

c9 Linear (0, 2) 10-1

c10 Logarithmic [ - 3,1] 1

c11 Linear (0.001, 0.006) 10-3

c12 Linear (0.01, 0.05) 10-2

c13 Logarithmic [ -3, -1] 1

PR c1 Linear (0.1, 0.3) 10-2

c2 Linear (0.001, 0.01) 10-3

c3 Linear (0.01, 0.05) 10-2

c4 Logarithmic [ -3, -1] 1

c5 Linear (0.0001,

0.0003)

10-5

c6 Linear (0,0.005) 10-3

c7 Linear (0.1, 0.3) 10-3

c8 Linear (0, 0.005) 10-3

c9 Linear (0.001, 0.01) 10-3

c10 Linear (0, 0.0005) 10-4

Plac c1 Linear (0.1, 0.3) 10-2

c2 Linear (0.001, 0.01) 10-3

c3 Linear (0.01, 0.05) 10-2

c4 Logarithmic [ -3, -1] 1

c5 Linear (0.0001,

0.0003)

10-5

c6 Linear (0, 0.02) 10-3

c7 Linear (9, 12) 10-2

c8 Linear (0.01, 0.08) 10-2

Table 17 Statistical results for test case 4 with all parameters to be

evolved under four fitness methods in 20 runs

Fitness

methods

Average

fitness

Average

RMSE

Different

models

Model

as target

F1 3198 ± 3087 26.47 ± 28.37 13 0

F2 122.35 ± 18.25 76.57 ± 39.66 16 0

F3 1011 ± 1299 31.22 ± 41.52 17 1

F4 (6 ± 12) 9 1010 49.47 ± 41.17 15 2

Table 18 The best fitness models for test case 4 with all parameters

to be evolved under four fitness methods in 20 runs

Fitness

methods

Best fitness model

structure

As target

(Y/N)

Fitness RMSE

F1 P ¼ ðm1;m2;m3;m4;m5Þ N 1126.58 7.4

m1 = UnReg{X = LuxR}

m2 = Plac{X = FP}

m3 = PluxR{X = CI}

m4 = UnReg{X = CI}

m5 = PR{X = LacI}

F2 P ¼ ðm1;m2;m3;m4;m5Þ N 92.3 70.44

m1 = UnReg{X = LuxR}

m2 = Plac{X = FP}

m3 = PluxR{X = CI}

m4 = PluxR{X = LacI}

m5 = PR{X = FP}

F3 P ¼ ðm1;m2;m3;m4;m5Þ N 223.91 6.94

m1 = UnReg{X = LuxR}

m2 = PR{X = FP}

m3 = PluxR{X = CI}

m4 = PR{X = LacI}

m5 = Plac{X = FP}

F4 P ¼ ðm1;m2;m3;m4;m5Þ Y 8.79 9 108 16.75

m1 = UnReg{X = LuxR}

m2 = PluxR{X = LacI}

m3 = PluxR{X = CI}

m4 = PR{X = LacI}

m5 = Plac{X = FP}

Evolving cell models for systems and synthetic biology 79

123



combine and vary them, crossover and mutation, preserve

biological plausibility. Consequently our methodology

produces a set of candidate biologically plausible models

that comparably match a prefixed behaviour which makes

difficult to decide which model is the best one.

In this section we apply model selection theory (Burn-

ham and Anderson 2002) in order to compare and rank the

five alternative models proposed by our algorithm for the

more complex test case 4, see Figs. 13 and 15. In particular

we associate two scores to each model using small-sample

corrected Akaike’s Information criterion (AIC; Burnham

and Anderson 2002) and minimun description length cri-

terion (MDL; Grumwald 2002) according to the formulas in

Eqs. (4) and (5) where RSS ¼
PN

j¼1

PM
i¼1ðx̂i

j � xi
jÞ

2
is the

residual sum of square errors, D = N 9 M is the number of

data points and K is the number of rules of each model. Both

scores are approximations of theoretical measures that are

not computable in general. Akaike’s information criterion is

an approximation of Kullback-Leibler divergence which

measures the amount of information lost when building a

model. Whereas the minimum description length criterion

aims at capturing the general idea of choosing the model

that provides the shortest description of the data.

AIC � DlogðRSSÞ þ 2K
D

D� ðK þ 1Þ

� �

ð4Þ

MDL � DlogðRSSÞ þ KlogðDÞ ð5Þ

These two scores share the same first part, D log(RSS),

which evaluates how good the model replicates the

prefixed behaviour. However they differ in the second

part that penalizes complex models with more parameters

over simpler ones. This second part aims at preventing the

overfitting of the sample data when using complex models.

In this respect, the penalty in Akaike’s information

criterion penalizes more strongly models with a number

(a)

(b)

(c)

(d)

Fig. 19 Simulated results of the fittest models obtained by the four fitness methods ðF1; . . .;F4Þ in test case 4 with all parameters to be evolved
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of parameters approaching the number of data points than

the minimum description length criterion.

The scores associated which each model are presented in

Table 19 and they determine the following rank of models;

alternative model 1, 2, 4, 3 and common model. Note that

although the common model is the simpler one consisting

of 33 rules it is ranked the last one due to its high fitting

error.

Finally, we apply another criterion to rank our alterna-

tive models based on sensitivity analysis (Saltelli et al.

2000). These networks respond to an extracellular signal,

3OC6, producing as output the expression of a fluorescence

protein (FP). A desirable property for them is robustness in

the number of FP molecules in the long run with respect to

small changes in the rate of increase of the extracellular

signal 3OC6, parameter c1 in the module PluxR. In order to

quantify this we computed the local sensitivity coefficient

of the number of FP molecules at 3,600 min associated

with the parameter c1. This was performed using the

indirect method or finite-difference approximation accord-

ing to formula (6) and a perturbation of 1% in c1. The

output associated with FP was computed by averaging

1000 simulations for the original and perturbed models

respectively.

Sc1
¼ oFP

oc1

� FPðc1 þ Dc1Þ � FPðc1Þ
Dc1

ð6Þ

The sensitivity coefficients for c1 associated with each

alternative model and the target model are presented in

Table 20. Observe that surprisingly the simplest model, the

common model, has the lowest sensitivity coefficient even

lower than the target model. In this respect, the common

model found by all the different fitness calculation methods

is a very good candidate that replicates the target robustly

with respect to small changes in the rate of increase of

signals.

These results suggest the necessity of including terms

that penalize complex and sensitive models in the fitness

calculation methods. This will be taken into account in

future enhancements of our methodology.

Conclusions and future work

This paper proposes a new methodology in cell systems

biology modelling. It mainly includes the following four

main features:

1. A computational, stochastic and discrete modelling

approach based on P systems.

2. Modular modelling approach using modules of rules as

building blocks for our models.

3. A nested EA designed to perform structural and

parameter optimization using a two-layer GA.

4. Four alternative fitness calculation methods applied to

cope with different cases.

The effectiveness of the methodology is tested on four

case studies predesigned with increasing complexity,

namely, negative and positive autoregulation and two gene

networks implementing a pulse generator and a bandwidth

detector. The four different fitness methods are applied to

each test case and their results are compared and analyzed.

Based on the experimental results, we draw some con-

clusions as follows:

1. When using the fitness method F2, our algorithm is

able to find the target model for simple cases, but it

fails for more complicated cases. Even when good

model structures are found it fails to obtain good

estimates for the stochastic constants which produces a

behavior that deviates considerably from the target.

2. When using the methods F1, F3, and F4, our algorithm

always finds good models that can accurately repro-

duce the dynamical behavior of the target cellular

system. Specifically, for simple cases all these methods

consistently find a single model structure, i.e. the target

one, nevertheless the diversity of the models found by

our algorithm using the methods increases significantly

with the complexity of the system. For example, for

the relatively complex cellular system in test case

4 our algorithm was able to propose a variety of

alternative model structures which reproduce the target

Table 19 Akaike’s information criterion (AIC) and minimun

description length criterion (MDL) scores associated with the alter-

native models found for Test Case 4

Model RSS K AIC MDL

Alternative model 1 33.75 39 704 719.08

Alternative model 2 48.85 41 773.83 789.17

Alternative model 3 112.34 39 914.99 930.07

Alternative model 4 82.99 42 860.3 884.76

Common model 3,132.02 33 1,484.38 1,498.82

Table 20 Sensitivity of FP expression in the long run with respect to

1% change in the rate of increase of 3OC6, parameter c1 in the

module PluxR associated with the alternative models found for Test

Case 4 and the target model

Model Sensitivity

Alternative model 1 987

Alternative model 2 408.13

Alternative model 3 534

Alternative model 4 637

Common model 17

Target model 208
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behavior. More interestingly, some of these models are

simpler than the target one. This result is very

encouraging as it could help biologists to design new

experiments to discriminate among competing hypoth-

esis (models) and then only engineered in the lab the

one that has been proven as the best. This is a

potentially very useful feature to help close the loop

between modeling and experimentation in both syn-

thetic and systems biology.

3. The statistical analysis of the experimental results

suggests that when comparing different fitness meth-

ods, F2 always performs the worst whereas the other

three methods (F1, F3, F4) are comparable and their

performance varies with different case studies. Gener-

ally speaking, if some target output objects of the

predesigned cellular system have very different orders

of magnitude in their time series, F3 and F4 work

better than F1 when trying to obtain a good compro-

mise solution.

4. Many results agree with the fact that a minor

discrepancy in the stochastic constants between two

models with the same structure will produce com-

pletely different dynamical behaviors. This shows the

great importance of parameter optimization for the

kinetic constants in the model. Fortunately, more than

one experiment demonstrate that our parameter opti-

mization algorithm implemented as a GA works well

for both continuous and discrete parameters.

5. With regard to the evolution of the average model

diversity, we conclude that the fitness method used has

little effect on the model diversity during the evolution.

This is essentially determined by the nested EA itself.

Nevertheless, it shows that the fitness method has some

influence on the convergence and stability of the

algorithm. As mentioned previously, F2 performs the

worst. The improvement of its fitness is small and the

algorithm converges soon to a bad solution. As for the

other three methods, the algorithm can always find

good solutions after reasonable number of generations.

Summing up, the order of the convergence is: F3 [
F4 [ F1 and the order of the stability is: F1 [ F4 [F3.

There are several conceivable extensions to our work,

including:

1. We notice that the biggest drawback for our algorithm

is its time cost, specially for modelling relatively

complex cellular systems. We are aware that in order

to obtain a solution in acceptable time, some key

control parameters in the algorithm need to to be set to

smaller values, like the maximal number of generation,

the population size, the number of simulations to

calculate the fitness of an individual etc. In order to

study more complicated regulatory transcriptional

networks we plan to explore the following possible

solutions to this problem:

• As most running time is spent in the fitness

calculation which is based on the multiple simu-

lations by Gillespie’s SSA, in the future we will

use a GPGPU based parallel implementation of the

SSA algorithm.

• Computationally expensive fitness functions can

sometimes be approximated through local or global

models and other surrogate techniques. This is

under investigation.

• To systematically chart the ‘‘control map’’ of the

algorithm as to ascertain its sensitivity to popula-

tion sizes and number of simulations as to try to

reduced them.

2. Since all our experimental results have clearly shown

that the stochastic constants have profound impact on

the dynamic behavior of a cellular system, it is very

important to adopt an efficient algorithm for parameter

optimization. We intend to investigate other advanced

optimization algorithms such as Estimation of Distri-

bution Algorithms (EDA), Covariance Matrix Adap-

tation Evolution Strategy (CMA-ES), Differential

Evolution (DE) etc.

3. By improving and extending our algorithm, we aim to

apply it to the automatic design of more complex and

challenging regulatory transcriptional networks as well

as the eukaryotic cellular systems with relevant com-

partmentalized structure.
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