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Whole-brain tissue mapping toolkit using large-
scale highly multiplexed immunofluorescence
imaging and deep neural networks
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Mapping biological processes in brain tissues requires piecing together numerous histological
observations of multiple tissue samples. We present a direct method that generates readouts
for a comprehensive panel of biomarkers from serial whole-brain slices, characterizing all
major brain cell types, at scales ranging from subcellular compartments, individual cells, local
multi-cellular niches, to whole-brain regions from each slice. We use iterative cycles of
optimized 10-plex immunostaining with 10-color epifluorescence imaging to accumulate
highly enriched image datasets from individual whole-brain slices, from which seamless
signal-corrected mosaics are reconstructed. Specific fluorescent signals of interest are iso-
lated computationally, rejecting autofluorescence, imaging noise, cross-channel bleed-
through, and cross-labeling. Reliable large-scale cell detection and segmentation are achieved
using deep neural networks. Cell phenotyping is performed by analyzing unique biomarker
combinations over appropriate subcellular compartments. This approach can accelerate pre-
clinical drug evaluation and system-level brain histology studies by simultaneously profiling
multiple biological processes in their native anatomical context.
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ammalian brain cytoarchitecture is a complex assem-

blage of multiple cell types, supported by an intricate

microvascular network. Each cell has a molecular sig-
nature and morphology that defines its type (e.g., neuron,
astrocyte, microglia, oligodendrocyte, endothelial cell, etc.), sub-
type (e.g., myelinating or non-myelinating oligodendrocyte), and
functional state (e.g., resting, reactive, proliferating, apoptotic,
phagocytic, etc.)!=®. These details are vital for understanding
healthy and pathophysiological biological processes in the brain.
Long-range brain connectivity implies that these processes can be
spread across distant regions, requiring large-scale imaging.
Unfortunately, conventional immunohistochemical (IHC) tissue
imaging typically using only 3-5 molecular biomarkers of inter-
est, and limited fields of view’” does not capture this complexity.
Additionally, human visual scoring of acquired imaging data is
typically subjective, and limited to the visually detectable pat-
terns®, thus potentially missing latent cellular states that can only
be revealed sensitively and specifically by a differential presence/
absence/distribution using unique combinations of molecular
biomarkers. Given these limitations, mapping complex processes
in brain tissue requires investigators to piece together information
painstakingly from a large number of bioassays and tissue sam-
ples, often from multiple tissue sources.

There is a compelling need for comprehensively and quanti-
tatively profiling all relevant cellular and molecular players spread
across all brain cell types and regions, in their natural micro-
environmental niches and spatio-anatomical context®. This
requires the ability to record high-resolution images of brain
tissue covering a comprehensive panel of molecular biomarkers,
over a large spatial extent, e.g., whole-brain slices, and automated
ability to generate quantitative readouts of biomarker expression
for all cells (including appropriate sub-cellular compartments),
identifying the type/sub-type and phenotypic state of each cell
based on unique combinations of biomarkers, and aggregating the
resulting data at scales ranging from subcellular compartments,
individual cells, local multi-cellular niches, to whole-brain
regions.

In this regard, multiplex biomarker immunohistology on
whole-brain tissue slices combined with high-resolution, large-
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scale epifluorescence microscopy offers detection of molecular
specificity, structure preservation, and sufficient spatial resolution
for discerning cellular morphology and protein localization
within the correct anatomical context. Current alternatives to
fluorescence microscopy come up short. Microarrays!'? provide a
detailed molecular signature but entail a cytoarchitectural dis-
ruption and loss of cell-spatial information. Single-cell RNA
sequencing provides a detailed transcriptomic profile but is not
scalable to millions/billions of brain cells without losing spatial
location. Mass spectrometry!! offers a detailed peptide signature,
but is expensive, less accessible, and provides low spatial resolu-
tion (~20 um) compared to optical microscopy. However, fluor-
escence microscopy imaging is not without challenges when
attempted on a large scale. It requires validated immunolabeling
protocols that are capable of imaging large panels of molecular
biomarkers across large swathes of brain tissue, and automated
image scoring methods that can cope with staining variability,
illumination non-uniformity, autofluorescence, background
noise, photobleaching, spectral bleed-through, cross-labeling,
stage movement errors, random artifacts, and tissue imperfec-
tions (e.g., inadvertent tissue folds/tears due to tissue slicing).
To address the above challenges, we present a comprehensive
toolkit for achieving a major scaling of the multiplexing level and
spatial extent (whole-brain slices) using a conventional epi-
fluorescence microscope optimized for high-content imaging to
phenotype all major cell classes resident to the whole brain,
efficiently overcoming the fluorescence signal limitations, and
achieving highly enriched and high-quality source imagery for
reliable automated scoring at scale. Our goal is to accelerate
system-level studies of normal and pathological brains, and pre-
clinical drug studies by enabling targeted and off-target drug
effects to be profiled simultaneously, in context, at the cellular
scale. Our toolkit includes 3 major components: (1) optimized
multiplex IHC staining and multispectral epifluorescence imaging
protocols and associated computational tools; (2) robust fluor-
escence signal isolation algorithms; and (3) comprehensive deep
learning-based methods for automated cell phenotyping at scale
(Fig. 1a). This toolkit generates a comprehensive data table that
can be analyzed without limitations and profiled at multiple scales
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Fig. 1 Overview of the whole brain tissue phenotyping pipeline for processing highly multiplexed immunohistological (MP-IHC) image datasets

acquired using a customized wide-field multispectral epifluorescence imaging platform (refer to Fig. 2 for details) in conjunction with integrated open
source computational modules for image reconstruction, optimization and quantitative deep machine learning data analyses (refer to Figs. 3-6 for
details). a The pipeline input consists of raw high-content 2D multispectral MP-IHC imaging datasets sourced from batch slide scans of 10 um thick serial
rat brain tissue sections iteratively probed with a myriad of biomarkers, which are then computationally processed for image registration, and intra- and
inter-channel correction prior to deep learning-based quantitative analyses for cell phenotyping, cell counting, and anatomical mapping. b Additional

modules include 3D reconstruction from MP-IHC image datasets sourced from multiple batches of serial whole rat brain tissue sections imaged in 2D and

processed for volumetric 3D data analyses.
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ranging from individual cells and multi-cellular niches to whole-
brain anatomic regions in thin sections which enables high
fidelity protein expression screening and data mining due to
accessibility of target proteins to applied antibodies. The readouts
can also be stacked to assess 3D brain immunohistology datasets
from serial 2D sections (Fig. 1b), allowing comprehensive system-
level studies of brain structure and function.

Results

Multiplex THC staining, fluorescence imaging, and image
reconstruction. In the interest of widespread adoption, we
developed our multiplex IHC staining and multispectral wide-
field epifluorescence imaging strategy, as detailed in Methods
section by adapting the use of standard laboratory protocols and
conventional imaging equipment. With regards to the latter, we
used a Zeiss Axiolmager.Z2 scanning epifluorescence microscope
with a standard motorized 10-position filter turret, a x20, 0.8 NA
Plan-Apochromat (Phase-2) non-immersion objective (Carl
Zeiss), a 16-bit ORCA-Flash 4.0 sCMOS digital camera (Hama-
matsu Photonics, Japan), and a 200 W X-Cite 200DC broad-
spectrum excitation light source (Lumen Dynamics). In order to
enable larger antibody panels, we performed 10-plex imaging
using 10 custom self-contained excitation/dichroic/emission filter
sets optimized for iteratively imaging up to 10 different spectrally
compatible fluorescently tagged biomarkers at a time, over mul-
tiple iterative rounds of antibody staining and imaging (Fig. 2).
This enables efficient fluorescence signal detection spanning the
ultraviolet to near-infrared (350-800nm) light spectrum, in
conjunction with a comprehensive palette of validated primary
antibody probes (Supplementary Table 1) and spectrally com-
patible fluorophore-conjugated secondary antibody probes
(Supplementary Table 2). The signals of each fluorophore are
resolved using excitation/dichroic/emission filter sets selected to
minimize spectral crosstalk (Fig. 2a, Supplementary Tables 3 and
4). Iterative rounds of antibody staining and imaging are per-
formed on the same tissue specimens, with carefully chosen
combinations of biomarker probes, and an antibody stripping
step added between each 10-plex biomarker screening round.
Images are computationally aligned laterally and across staining
rounds to reconstruct multiplex mosaic images of entire brain
slices. For this, we developed an automated computational
pipeline using Python and MATLAB® programming languages
for combining the series of Nx Tx R raw images collected as
described above, where N is the multiplexing level (typ. 10), T the
number of image fields (typ. 330), and R is the number of
repeated staining rounds (typ. 1-10), into a single multiplex
mosaic image that contains only the corrected fluorescence sig-
nals of interest (Fig. 3). The raw images are stitched using the
Zeiss microscope’s software (Zen) and registered to correct for
stage alignment errors by computing an affine spatial transfor-
mation for pixel-to-pixel registration (Fig. 3a). Then, signal cor-
rections are performed, providing seamless 10-100 plex mosaics
of whole-brain slices that provide sufficient spatial extent and
spatial resolution to reveal cellular structures!?!3. Importantly,
they are suitable for automated scoring, for identifying a rich
diversity of cell types (Fig. 2b, Supplementary Tables 5 and 6),
functional states in situ, and spatial profiling of cellular dis-
tributions for comprehensive cytoarchitectural mapping in the
context of brain anatomy (Fig. 1a).

Computational signal isolation. Isolating the specific fluores-
cence signal of interest from diverse potential sources of non-
specific signals in acquired fluorescence images using direct
physics-based methods is a forbidding task given the large
number of parameters, most of which are variable or unknown,

and high computational requirements. The specific fluorescence
signals arising from the immunolabeled targets may be corrupted
by signal degradations including autofluorescence, photobleach-
ing, sensor noise, non-uniform illumination, spectral mixing,
cross-labeling, and microscope stage positioning errors (within
and between staining and imaging rounds). We overcome this
barrier using the following strategy. First, we make the well-
founded assumption that the labeling and imaging protocols are
sufficiently optimized to ensure that the specific fluorescent sig-
nals of interest are always brighter than the non-specific back-
ground. Second, we assume that the structures of interest have a
local morphology that is distinct from the background. Under
these assumptions, we use alternating sequential filters (ASF) that
only require the minimum and maximum spatial scales 0y,;, and
Omax Of the cellular objects to be specified, to identify and subtract
the non-specific intra-channel signals including non-uniform
illumination, spatially varying photobleaching!4, imaging noise!”
and tissue autofluorescence (Fig. 3b). Next, we developed an
efficient semi-supervised sparse linear spectral unmixing algo-
rithm to correct for spectral bleed-through!®, and cross-labeling!”
(Fig. 3c) as detailed in Methods section.

Deep learning-based multiplex quantification. Reliable detec-
tion of cell nuclei is a fundamental first step to automated image
scoring. However, when imaging extended brain regions, we
found that common DNA binding dyes (e.g., DAPI) exhibit so
much staining variability that many cell nuclei are nearly unde-
tectable (Fig. 4). We found that pan-histone markers provide a
valuable complement to label such nuclei. For this reason, we
trained deep neural networks to achieve reliable cell detection by
co-analyzing images containing DAPI and pan-histone labeling
markers (Fig. 4a-e). We developed a transfer learning-based
approach to generate sufficient training samples to train the
Faster-RCNN neural network!® for detecting cell nuclei
(Fig. 4f-j). This network generates a set of bounding boxes
indicating detected cell nuclei (Supplementary Table 7). The
bounding boxes are then used to classify major brain cell types
(neurons, astrocytes, oligodendrocytes, endothelial cells and
microglia) based on specific cell phenotype markers using an
imporved Capsule Network!®20 (Fig. 5a). Next, we developed
algorithms to delineate key sub-cellular compartments (nucleus,
soma, membrane, and processes), as illustrated in Fig. 6a—f. These
compartments (masks) are used to generate localized measure-
ments of biomarker expression for cell phenotyping analysis.
These results are consolidated into a unified table of measure-
ments (Supplementary Table 7), in which each row corresponds
to a single cell, and the columns list the quantitative measure-
ments for each cell. This table can be analyzed in a variety of
ways, as illustrated by the following examples.

The first example shows the use of Hinton’s Capsule Neural
Network to identify cell types based on cell-type markers (Fig. 5a)1%20.
Capsule Networks analyze multiple cellular features jointly by
encapsulating them into a vector, whose lengths that can be
thresholded for reliable cell classification (Fig. 5b, ¢) and phenotyping
(Supplementary Table 7). This method overcomes the limitations of
traditional phenotyping of histogram of intensity of the biomarker by
using a set of comprehensive features (Fig. 5d-h) and corrects the
mis-identified cells. The second example (Fig. 6h-m) shows the ability
to identify a rich set of neuronal sub-types (glutamatergic, GABAergic,
cholinergic, and catecholaminergic) based on combinations of
molecular markers (GLUT, GAD67, CHAT, and TH). The functional
status (proliferation and apoptosis) of each cell is also derivable from
the related markers (PCNA and CC3) using Supplementary Table 7.
The third example (Fig. 6b—f) illustrates the analysis of molecular
markers in cells with arbors to infer cell states based on sub-cellular
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Fig. 2 Overview of the multiplex IHC staining and multispectral epifluorescence imaging platform. a The imaging platform optimally utilizes the
commercial availability of a wide selection of spectrally compatible fluorophores across the full usable light spectrum ranging from ultraviolet to near-
infrared (350-800 nm). Components of the wide-field epifluorescence microscope required for 10-color multispectral imaging include a Zeiss Axiolmager.
Z2 upright fluorescence microscope (left) equipped with a high-resolution objective, a high sensitivity digital camera, a broad-spectrum light excitation
source and 10 self-contained excitation/dichroic/emission filter sets optimized to detect up to 10 commonly used or custom-derived spectrally compatible
fluorescent reporters (Supplementary Table 2), with minimal spectral cross-talk (Supplementary Table 4), as specified in the excitation/dichroic/emission
filter table (right), and exemplified in the included representative images (bottom) of major brain cell types as visualized using a 10-plex immunostaining
protocol outlined in Supplementary Table 5. b The basic 10-color fluorescence imaging platform can be user-configured to include different combinations of
customized filters to accommodate optimal imaging of different selections of commonly applied and custom-derived fluorescent dyes (Supplementary
Table 2) and used iteratively with different selection of immunocompatible biomarkers to label a myriad of brain cell types exemplified in the included
representative images in the 50-plex image dataset as visualized using a 5-round immunostaining protocol outlined in Supplementary Table 6.

localization of the markers. Our analysis is limited to the basal
portions of the arbors to the extent captured by the 10 um tissue
thickness used to slice brain tissues for immunohistology. In this
example, astrocytes were reconstructed using Sox2 (nuclear mask),
S100p (soma mask), and GFAP (arbor processes mask) channels.
IBA1 channel was used to reconstruct microglia soma and processes.
MAP2 and NeuN channels were used for basal neuron arbor
reconstruction. Olig2 (nuclear mask) and CNPase (soma and

processes mask) were used to reconstruct oligodendrocytes. This
analysis produces a comprehensive table in which each entry
corresponds to an identified cell (along with its spatial, morphological,
and molecular measurements over cell compartments, and determi-
nations of cell type and cell functional status), with negligible loss
(<5%), as summarized in Fig. 6g and Supplementary Table 7. These
tabular data can readily be profiled at multiple scales including whole-
brain anatomical mapping (Fig. 6n-p) and analyzed using standard
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Fig. 3 Overview of the post-acquisition image optimization module. a Pixel-to-pixel registration of the separate imaging rounds by detecting the nuclei
landmarks from the DAPI channel in each round (top) and applying affine transformation to register the images to the target round (bottom). b Intra-
channel correction of non-specific signals introduced during imaging including uneven illumination (left), photobleaching (center), and tissue folds (right)
using Alternating Sequential Filters (ASF). The registered image (top) is subtracted from the estimated intra-channel non-specific signal to get the

corrected signal (bottom). ¢ Inter-channel correction of non-specific signal to extract spectral bleed-through (left) and molecular co-localization (right)
utilizing a semi-supervised sparse linear spectral unmixing approach. Original signal (top) is subtracted from the estimated mixed channel (middle) to get

the specific fluorescent signal of interest (bottom).

statistical packages. The spatial relationships of the quantified cells can
be grouped based on the anatomical region they are located. We can
leverage the anatomical position information to study the differences
in the population of cells in different anatomical regions or between
the same regions in different sections or different animals.

Finally, we expanded the analysis of the proposed pipeline
(Fig. 1a) for associating 3D brain immunohistology datasets by
comparing the 2D phenotyping results from the immediately
adjacent serial whole-brain sections to assess a volumetric dataset
in the context of 3D brain anatomical mapping (e.g., Fig. 1b). Our
aim is not to present a method for true 3D reconstruction
representing the connectome of brain cytoarchitecture but to
expand the 2D immunohistology results from individual whole-
brain slices by associating the cellular phenotyping across
adjacent thin serial sections. This representation intends to fill
in the gaps depicted in the published atlases which illustrates the
consistency of the cellular composition in the adjacent sections.
The effectiveness of our deep learning-based analysis provides an
additional tool for rigorous scalable validation of future 3D
analyses?!.

Discussion

By synergistically integrating iterative high-content 10-plex IHC
immunostaining with 10-color fluorescence imaging using con-
ventional laboratory techniques and instrumentation, together
with open source computational pipeline for specific signal iso-
lation, and robust automated signal scoring using deep learning
methods at scale, we developed a versatile toolkit that can be
readily implemented for widespread use with the potential to
transform 2D and 3D brain histology studies requiring compre-
hensive cellular profiling from single and serial slices of brain
tissue.

Compared to existing multiplex IHC biomarker screening
techniques using iterative immunostaining and computational
analysis, that typically build from low-plex panels of directly
conjugated antibodies (3-4 biomarkers screened per cycle) using
small tissue samples and/or limited fields of view and are mostly
focused on tumor biology?2, our methods are more flexible,
scalable and efficient, enabling multiplex IHC imaging and
computational analysis of up to 10 different biomarkers of
interest at the same time using direct or indirect IHC immu-
nostaining protocols. The prior work of Micheva et al.23 imaged
brain tissue using array tomography on very thin (49 nm) sec-
tions, but screened a limited number of biomarkers compared to
the present work, predominantly focused on neuronal

phenotyping in smaller ~1 mm regions of the brain. Our work
represents a different tradeoff, with a lower spatial resolution, but
greater coverage in terms of molecular markers and spatial extent,
and with an emphasis on routine usage in systems studies. Our
protocols can be expanded using iterative staining and imaging
cycles to screen a potentially unlimited number of biomarkers of
interest per individual tissue samples, with a “clean slate” enabled
on individual tissue specimens with each probing cycle using
antibody stripping steps to remove tissue-bound antibodies
between each antibody staining round. The latter approach has a
significant advantage over currently used multiplex THC methods
that rely on photobleaching and/or fluorophore quenching to
remove residual fluorescence signals on tissue bound antibodies
between iterative staining and imaging rounds??, instead of
stripping those antibodies off tissue samples, leading to possible
steric hindrance and antibody/antigen binding issues with each
subsequent antibody probing cycle on the same tissue samples.
Our computational analysis pipeline is inherently scalable, both
in terms of molecular signature as well as spatial coverage. Our
core approach is also adaptable to other tissues. This can accel-
erate systems-oriented studies by providing quantitative profiles
of all the molecular and cellular players at once, in their detailed
spatial context. It can be used as part of an assay to reveal both
the targeted as well as off-target side effects of drug candidates at
once, reducing the animal usage and eliminating the need to piece
together a process narrative from a series of low-content obser-
vations from multiple animals. The core methods presented here
can form the basis for advanced turnkey quantitative neurohis-
tology systems including antibody labeling kits that replace
conventional H&E-based methods. Although the cost of multi-
plex THC processing of individual and serial tissue slices is higher
compared to conventional low-plex methods, our approach can
be cheaper overall since less tissue needs to be processed to
definitively answer specific questions using high-content (>10-
plex) targeted biomarker screening and the analyses of the results
are directly comparable on the same cells and cell populations of
interest rather than correlating the fragmented low-content (< 5-
plex) results sourced from multiple sections.

Our immunostaining protocols can be scaled up/down as
needed and applied to successive serial sections for whole-brain
3D reconstruction. Even a single 10-plex round of staining is
quite informative. More extensive molecular signatures can be
acquired by performing additional rounds of staining and ima-
ging, or vice versa, without compromising tissue integrity. Our
computational methods rely on streaming computer architectures
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Fig. 4 Improved nuclei detection in whole brain images using a multiplexed approach. a Montage showing variability in DAPI (pan-nuclear DNA stain)
and histone (pan-nuclear protein) expression labeling across the whole rat brain tissue slice. b-e The sum of the DAPI and pan-histone markers capture
nuclear morphology more reliably than either marker alone. f-i Close-up images showing DAPI and pan-histone labeling variations in a sparse and a
densely packed region and the generated location (bounding box) results of the proposed model for reliable detection of the cell nuclei using transfer
learning approach in conjunction with a Faster-RCNN network. j Receiver Operating Characteristic (ROC) curve of cell nuclei detection using single marker
and combination of markers shows significant improvement in performance when both markers are included.

(GPU arrays), making them scalable to larger image datasets, e.g.,
whole primate and human brains and other large organ tissues,
without limit.

To promote broad adoption, our method is designed around a
conventional epifluorescence microscope with commercially
available components (objectives, digital camera, filter sets,
broad-spectrum light source, and a computer-controlled stage),
and the computations are handled by GPU-equipped computers.
For practicality and efficiency, we focused on thin (10 um) slices
that are imaged two-dimensionally to avoid antibody/dye pene-
tration limitations and complexities associated with 3D imaging
and automated image analysis?*. The proposed computational
pipeline is specifically designed to generate 2D immunohistology
results from individual whole-brain slices which is expandable for
3D segmentation?’ and reconstruction?® to better understand the
connectome of brain cytoarchitecture at cellular, niche, and organ
levels?’. Cellular measurements are exported to flow cytometry

standard (FCS) and Image Cytometry Experiment (ICE) file
formats for visualization and statistical profiling using common
commercially available software tools (e.g., FCS Express, De Novo
Software; Flow]o, BD Biosciences, Kaluza, Beckman Coulter, etc.).
We provide sample images, staining and imaging protocols, and
open source code written in Python and MATLAB® program-
ming languages?8. The images and the results could be visualized
in commercially and open-source available software tools (e.g.,
Adobe Photoshop, Image], Napari??, etc.). The cellular mea-
surements can be also studied in relation to the anatomical
mapping which we manually fitted in this study as a proof of
principle. However, this approach can certainly be automated

using existing computational methods from published atlases30.

Methods
Specimen preparation. We used an ex vivo rat brain model as proof-of-concept
for our multiplex IHC staining and imaging method. All animal handling
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Fig. 5 Improved methods for cell-type classification and quantification using deep morphological features compared to traditional intensity levels
thresholding. a Architecture of the proposed Capsule Network (CapsNet) to extract more comprehensive features for more accurate cell classification.

b Pseudo-colored multichannel montage image of 5 major brain cell types. ¢ Computational reconstruction of major cell-type montage from classified seeds
(centers of bounding boxes) pseudo-colored to match the color of the actual biomarker expression recapitulating the specific cellular distribution of each cell
type in the original raw image in (b) with high fidelity. Histogram of lengths of capsule vectors in the last layer of the network (right) compared to traditional
phenotyping approach by thresholding on the histogram of mean signal intensity of the major brain cell-type classification biomarkers (left) measured inside
individual bounding boxes using DAPI+histone for seed detection (depicted in Fig. 4f-i) identifying (d) neurons (NeuN), (e) astrocytes (S1008), (f)
oligodendrocytes (Olig2), (g) endothelial cells (RECAT), and (h) microglia (Iba1). The histograms of the proposed method shows bimodal distribution with
well-separated peaks for better separation of negative and positive population of cells for each cell phenotype with enlarged regions of interest from insets with
single biomarker channels and overlaid classified seeds (white dots) illustrates the complete match of the generated cell phenotypes in the raw images.
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8
Glutamatergic 67,703
GABAergic 2,849
Neurons Cholinergic 94 37.12
Catecholaminergic 128
Uncharacterized 10759

Pericytes 3,691
Blood 2 17.86
Vessels  Endothelial Cells 35,552
Oligodendrocytes 35,299 16.07
g Astrocytes 32321 1471
Neural Stem Cells 641 0.29
Microglia 13,241  6.02
Ependymal Cells 2,247 1.02
Uncharacterized 15176  6.91

Fig. 6 Summary of quantification and morphological modules. a Pseudo-colored multichannel montage of the whole rat brain image scan (left) showing
biomarkers used for morphological masking. b-f Selected close-up regions illustrate the original image (top), nucleus/soma mask (middle) and whole cell
mask (bottom) including nucleus, cytoplasm, cell processes, plasma membrane for each major brain cell type including oligodendrocytes (b), neurons (e),
astrocytes (d), microglia (e) and endothelial cells (f). g Summarized table of enumeration and percentage of cell types and subtypes in a single whole-brain
2D tissue slice shown in (a). h Pseudo-colored multichannel montage image of neuronal cell-subtype classification biomarkers including glutamatergic
(GLUT), GABAergic (GAD67), cholinergic (CHAT), catecholaminergic (TH), and uncharacterized neurons. i Computational reconstruction of neuronal
cell-subtype montage from classified seeds pseudo-colored to match the color of the actual biomarker expression recapitulating the specific cellular
distribution in the original raw image with high fidelity. j-m Enlarged regions of interest from insets in panel (h) with single biomarker channels and overlaid
classified seeds (white dots) illustrates the complete match of the generated cell phenotypes in the raw images. n Manually-fitted Paxinos atlas on the 2D
brain section to quantify the number of the cells per unit area for phenotypic analysis of cells in defined anatomical regions. Heatmap plot showing the

number of positive cells per 106 pixel2 area, exemplified for neurons (o) and the oligodendrocyte (p) population.

procedures were approved by the Institutional Animal Care and Use Committee
(IACUC) of the National Institute of Neurological Disorders and Stroke (NINDS,
Bethesda, MD). Briefly, 8-week-old male Lewis LEW-Tg(CAG-EGFP)YsRrrc
transgenic rats, initially sourced from Rat Resource and Research Center
(Columbia, MO) and bred in-house at NINDS, were deeply anesthetized and
transcardially perfused with heparin infused phosphate-buffered saline (PBS) pH
7.4 followed by 4% paraformaldehyde (PFA) in PBS. The brains were promptly
removed from the skull and post-fixed in 4% PFA/PBS at 4 °C for 24 h, before
sequentially undergoing cryoprotection in graded 10%, 20%, and 30% (w/v)
sucrose solutions in PBS until the tissue specimens completely sank in each
solution. The brains were then embedded in Optimum Cutting Temperature
(OCT) medium, snap-frozen in isopentane and 10 pm thick whole-brain coronal
sections cut in the areas immediately adjacent to coordinates interaural 6.72 mm
and bregma —2.28 mm using the Rat Brain Atlas! as reference. These coordinates
showcase a diverse anatomy of major brain regions, including the cerebral cortex,
hippocampus, striatum, thalamus, and the hypothalamus. Cryosections were
mounted on Leica Apex Superior Adhesive Slides (VWR, product# 3800080),
which proved optimal for performing multi-round multiplex IHC staining pro-
tocols with minimal loss of tissue sections during repeated antibody stripping and
heat-induced antigen retrieval steps detailed below.

Multiplex IHC staining and imaging. Current multi-round multiplex IHC bio-
marker screening techniques using iterative immunostaining with low-plex panels

of directly conjugated antibodies (3-4 biomarkers screened per cycle) published to
date?? or offered by commercial automated systems (MACSima, Miltenyi Biotech;
CODEX, Akoya Biosciences) have largely been optimized for tumor cell biology.
For efficient high-order multiplex imaging of brain tissue, we developed an anti-
body staining protocol combining up to 10 well-characterized immunocompatible
and individually validated primary antibodies of interest in a single staining
cocktail mixture, including one mouse antibody from each available IgG subclass
(IgG1, IgG2a, IgG2b, IgG3), plus one mouse or rat IgM antibody, plus one IgG
antibody raised from each of the following non-mouse hosts (rat, hamster, rabbit,
guinea pig, chicken, sheep, directly conjugated goat). All multiplexed antibody
panels have been tested to stain their intended target antigens in the rat brain
tissues and validated to show insignificant cross-reactivity and non-specific bind-
ing. Supplementary Table 1 exemplifies a growing list of empirically-tested mul-
tiplex IHC compatible primary antibodies to screen for virtually any and all
different cell types either resident to the rat brain or infiltrating into the brain in
response to diverse neuropathological conditions, with many of these antibodies
also cross-reactive to their specific targets in mouse and human brain tissues. To
visualize the unconjugated primary antibodies, we used highly cross-adsorbed
secondary antibodies with each conjugated to one of the following spectrally
compatible dyes for 10-color fluorescence slide scanning: DY-395XL, DyLight 405,
Alexa Fluor 430, Alexa Fluor 488, Alexa Fluor 546, Alexa Fluor 594, Alexa Fluor
647, PerCP, IRDye 680LT, and IRDye 800CW (see Supplementary Table 2 for full
listing of all commercially available off-the-shelf or custom-ordered spectrally
compatible fluorophore-conjugated secondary antibodies optimized for 10-color
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epifluorescence imaging). Furthermore, if using primary antibodies from the same
host and immunoglobulin class or subclass, it is also possible to combine up 10
different antibodies with each directly conjugated to one of aforementioned
spectrally-compatible fluorophores. Optimal detection of these fluorophores using
widefield epifluorescence microscopy, as detailed below, also necessitated the
customization of standard off-the-shelf filter sets typically used for imaging the
aforementioned dyes (Supplementary Table 3) to a more stringent optical con-
figuration of the exciter, dichroic, and emitter filters with more narrow bandpass
and/or off-peak excitation/emission properties to minimize filter crosstalk to <10%
bleed-through signal transmission as detailed in Supplementary Table 4.

The multi-round iterative multiplex IHC staining protocol is described as
follows. Prior to the first round of immunostaining, the cryosections are thawed
from —80 °C storage to room temperature (RT) and left to completely air-dry
overnight to assure firm tissue bonding with the microscope slide. The entire
immunostaining protocol is then carried out at RT. The sections are first
permeabilized in graded 70%, 80% and 95% methanol (2 min/step) then rehydrated
and washed in distilled water (dH,O). Sections are then completely submerged in
10 mM Sodium Citrate buffer pH 6.0 and antigen unmasking is carried out with a
2-minute heat mediated antigen retrieval using an 800 W microwave with a
turntable (GE model PEM31DFWW) set at 100% power. Sections are then
sequentially treated with 15 min incubation at RT in neat FcR blocking solution
(Innovex Biosciences, NB309) to block endogenous Fc receptors, followed by
incubation in neat Background Buster solution (Innovex Biosciences, NB306) to
block non-specific binding of exogenously applied primary and secondary
antibodies. After the blocking steps, the sections are first immunoreacted using a
cocktail mixture of unconjugated (or directly conjugated) immunocompatible
primary antibodies (or ligands) of interest, with each primary antibody used at
1 pg/ml final concentration (i.e., 1:1,000 dilution of 1 mg/ml stock concentration),
as exemplified in Supplementary Tables 5 and 6, with all staining reagents diluted
in PBS supplemented with 1 mg/ml BSA, and incubated for 60 min at RT, then
washed 3x in PBS and 3x in dH,O (1 min/wash) prior to application of
appropriate matching and spectrally compatible secondary antibodies as referenced
above and in Supplementary Table 2, with each secondary antibody also used at
1 pg/ml final concentration (i.e., 1:1,000 dilution of 1 mg/ml stock concentration).
Sections are then washed again 3x in PBS and 3x in dH,O and subsequently
counterstained with 1 pg/ml DAPI (Thermo-Fisher Scientific) to serve as a
reference channel for autofocus during image scanning and pixel-to-pixel
registration of separate image datasets sourced from iterative rescanning of the
same specimen with different 10-plex biomarker panels. The slides with 10-color
fluorophore-labeled tissue sections are then cover-slipped using Immu-Mount
medium (Thermo-Fisher Scientific, MI). Sections are then imaged using an Axio
Imager.Z2 10-channel scanning fluorescence microscope (Carl Zeiss, Thornwood,
NY) equipped with a x 20, 0.8 NA Plan-Apochromat (Phase-2) non-immersion
objective (Carl Zeiss), a 16-bit ORCA-Flash 4.0 sCMOS digital camera
(Hamamatsu Photonics, Japan) sensitive to a broad-spectrum of emission
wavelengths, including those approaching infrared, a 200 W X-Cite 200DC broad-
spectrum light excitation source (Lumen Dynamics), and 10 self-contained
excitation/dichroic/emission filter sets (Semrock, Rochester, NY) optimized to
detect the following combination of fluorophores with minimal spectral crosstalk:
Combination 1 - DAPI, DyLight 405, Alexa Fluor 430, Alexa Fluor 488, Alexa
Fluor 546, Alexa Fluor 594, Alexa Fluor 647, PerCP, IRDye 680LT, and IRDye
800CW (see Supplementary Table 4 Custom 10-color Filter Setup 1 for filter
specifications and spectral compatibility) or Combination 2 - DAPI, DyLight 405,
DY395XL, Alexa Fluor 488, Alexa Fluor 546, Alexa Fluor 594, Alexa Fluor 647,
PerCP, IRDye 680LT, and IRDye 800CW (see Supplementary Table 4 Custom 10-
color Filter Setup 2 for filter specifications and spectral compatibility). Each
labeling reaction was sequentially captured in a separate image channel using
filtered light through an appropriate fluorescence filter set and the image
microscope field (600 x 600 um) with 5% overlap, individually digitized at 16-bit
resolution using the ZEN 2 image acquisition software (Carl Zeiss). For multiplex
fluorescence image visualization, a distinct color table was applied to each image to
either match its emission spectrum or to set a distinguishing color balance. The
pseudo-colored images were then converted into 8-bit BigTIFF files, exported to
Adobe Photoshop, and overlaid as individual layers to create multi-colored merged
composites. For the computational image analyses detailed below, microscope filed
images were seamlessly stitched in Zen 2 and exported as raw uncompressed 16-bit
monochromatic BigTTFF image files for further image optimization and processing,
as detailed below.

Subsequent rounds of tissue specimen re-staining and re-imaging involved the
following iterative steps. After imaging the first round of 10-plex biomarkers, as
exemplified in Fig. 2a (bottom panels) and Fig. 2b (first row panels), tissue bound
primary and secondary antibodies (and fluorescently tagged ligands) were both
stripped off the slides after a 5-minute incubation step at RT in NewBlot Nitro 5X
Stripping buffer (Li-Cor Biosciences) followed by 1-minute additional heat
mediated antigen retrieval step in 10 mM Sodium Citrate buffer pH 6.0 using
the same 800 W microwave mentioned above set at 100% power. The above
processing cycle, beginning with tissue re-blocking in FcR Blocking and
Background Buster solutions, was then repeated and the same sections then
incubated using a second mixture of primary antibodies and appropriate secondary
antibodies, as exemplified in Supplementary Table 6 and Fig. 2b (second row
panels). In the 5-round 50-plex IHC staining example focused in this study, the

whole process was sequentially repeated three more times using select first and
second step reagents as listed in Supplementary Table 6 and exemplified in Fig. 2b
(panels in rows 3-5).

Mosaicing of image microscope fields. Methods for stitching a series of image
microscope fields to form a seamless mosaic image by correcting for stage trans-
lation errors are now well established32, and incorporated into commercial
microscope control software. Since our imaging was performed on a Zeiss system,
we used the built-in Zen software (Zeiss) to align the image microscope fields
laterally for each staining round.

Registration of channels between staining rounds. For aligning mosaics from
one staining round to the next to single-pixel resolution, we noted that the tissue
slices are minimally deformed by the processing at each staining round since they
are mounted firmly on glass slides. An affine spatial transformation is adequate to
describe these small deformations. For registration, we found that DAPI-stained
cell nuclei provide reliable spatial landmarks2. For this reason, we include DAPI
staining in each round. From the DAPI channel, we extracted key points and
pattern descriptors using Oriented Fast and Rotate BREIF (ORB)33. These are more
robust to imaging noise, and computationally more efficient compared to the Scale
Invariant Feature Transform (SIFT)34. For matching pairs of key points, we used
the Hamming distance metric. To estimate the affine spatial transformation
between pairs of image mosaics, in a manner that is robust to outliers, we employed
RANdom SAmple Consensus (RANSAC)?°. To achieve scalable handling of
mosaic images, we implemented RANSAC over cropped windows rather than the
full mosaic to accelerate the keypoints extraction speed using parallel processing
techniques. This approach is scalable, robust, and accurate to within a pixel across
the entire tissue slice. Figure 3a shows a representative example of image matching
using this procedure.

Fluorescence signal correction. The aligned fluorescence data are consolidated
to produce a seamless 36-channel (42,906 x 29,286 pixels) raw mosaic containing
only the biomarker signals of interest, correcting for non-uniform illumination,
photobleaching!4, imaging noise!, tissue autofluorescence, spectral bleed-
through!®, and cross-labeling!”. The raw fluorescence image I°(x,y) for channel c is
modeled as the sum of the specific fluorophore-generated signal of interest,
I¢(x,y), background signal I§ (x,y) comprising of the tissue autofluorescence that
is modulated by the non-uniform illumination and photobleaching, and cross-
channel bleed-through arising from spectral overlap, and molecular co-localization
signals arising from non-specific labeling of one or more markers in other
channels.

In order to extract the specific signal of interest without the challenges
associated with a full-blown physics-based modeling, we developed the following
strategy. We made the well-founded assumption that the immuno-fluorescent
labeling and imaging protocols are optimized to ensure that the signal of interest
is always brighter than the background signals. We also assumed that the
structures of interest (cells and parts thereof) have a local morphology that is
distinct from the background. With these assumptions, we developed a fast
approach using alternating sequential filters (ASF)3° that only requires the
minimum and maximum scale factors 0,,;, and 0,,,, of the cellular objects
to be specified. The combined background signal I§(x, y) is estimated as ASF
(I(%,)),0min> Omax)> and subtracted from I°(x,y). Next, we developed a robust
unmixing algorithm that corrects each channel for cross-channel bleed-through
as well as molecular cross-labeling. We estimated the cross-channel bleed-
through fractions «. using the Least Absolute Shrinkage and Selection Operator
(LASSO)?7 by introducing an I, regularization term to the linear unmixing® as
rgin”l‘(x,y) -0 I (x,y)||2+HyadHl where y is the trade-off constant of
sparsity. It accounts for the fact that the cross-talk occurs over a sparse set of
channels, providing a more reliable estimate compared to least-squares methods.
To account for all inter-channel signals we proposed a semi-supervised linear

unmixing algorithm by automatically estimating bleed-through channel fraction
() and cross-labeling channel fraction from user (B.,) as:

min |[I°(x,9) = > alf(xy)— > Bul”(x,y) (1)

as B J=1
d=d’ d"#(c,c)
0<a,<e,,0<fB.<eu
10 10
> oA+ Y Bu=K
st =1 =1
dc dec
e. €{0,1},es €E

)

where e, is the existence of bleed-through channels ¢’ (i.e., e, is 1 for channels
with bleed-through and 0 otherwise) derived automatically using constrained
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LASSO%, e, is the existence of cross-labeling channels ¢” (i.e., e, is 1 for
channels with cross-labeling and 0 otherwise) provided by the user from E, and K
is the maximum number of channels for inter-channel correction including both
bleed-through and cross-labeling. Optimization algorithm will solve for &, and
B> and subtract the fraction of non-specific signal from the original channel. It
has been empirically seen that K=3 will count for both bleed-through and
molecular cross-labeling.

To optimize the inter-channel correction estimation, we use a Region Of
Interest (ROI) selected by the user that contains background, auto-fluorescence,
and fluorescence signal of interest. The unmixing algorithm will estimate the
parameter based on the selected ROI which is faster than estimated on the whole
image and enables the algorithm to work on desktop machines. Selecting the ROI
also helps us addressing the imaging artifacts appearing in the background. Since
the selected ROI is guaranteed to have the brightest fluorescence signal and it is
debris-free, we can threshold any pixel that is brighter than the brightest pixel in
the ROI to remove the random bright spots/debris.

To use this method, the algorithm works without the knowledge of bleed-
through channels and the user merely needs to specify the pairs of channels for
which cross-labeling is expected to occur (as vector E). All other parameters are
estimated automatically. This procedure also copes with small tissue tears, folds,
and sediment residues occasionally introduced during the staining process, as
illustrated in Fig. 3b, c. The resulting images contain only the fluorescence signals
of interest without the background and cross-channel interference and are ready
for reliable automated image analysis.

Reliable detection of cell nuclei in large multiplex images. Detection of cell
nuclei is a first step for cell profiling since all the cells of interest are nucleated. We
found that the widely used DNA stain 4/,6-diamidino-2-phenylindole (DAPI) is
inadequate for highlighting all cell nuclei across a brain slice. DAPI staining varies
by brain region (Fig. 4a), and the staining can be incomplete or weak for many
cells. To overcome this limitation, we added a pan-histone marker to complement
DAPI As shown in Fig. 4b-d, a summation of the DAPI and pan-histone signals
reveals nuclei far more reliably compared to either stain alone. Even with this
combined staining, detecting cell nuclei is challenging since they exhibit con-
siderable morphological variability, and dense packing in some brain regions
(Fig. 4e). Deep neural networks have the representational capacity to cope with
these challenges. The challenge is to generate a sufficiently large corpus of training
data. Fortunately, these networks are robust to occasional errors in the training
data. With these factors in mind, we developed the following partly automated
training strategy. First, we noted that conventional nuclear segmentation algo-
rithms work well in most brain regions, but fare poorly on densely-packed cell
ensembles (such as hippocampus). With this in mind, we trained a Faster RCNN8
over ~200,000 nuclear segmentation results that were generated automatically by
our earlier method“%#! on the sum of DAPI and the pan-histone labels. The RCNN
inputs consisted of the DAPI and pan-histone channels, and it was initialized with
pre-trained weights from the ImageNet database?2. The feature extraction module
of this network was chosen to be the Inception ResNet V243, In order to improve
the performance of this network on the densely packed regions, we manually
generated two corpuses of ~8,500 cells from 4,000 x 6,000 pixel region of the left
and right hippocampal regions, for training and validation. To minimize the
manual effort, we built these corpuses by manually editing the automatically
generated cell detections for these regions. The Faster RCNN was then retrained on
one of the corpuses by transfer learning®4, and validated on the other corpus. For
evaluation, we used the Intersection over Union (IOU) metric, which is an upper
bound of Aggregated Jaccard Index (AJI) metric*, with a threshold of 0.5 to
determine whether a detected cell is valid or not (Fig. 4f-j). We found that the
Faster RCNN’s performance on the combination of DAPI and pan-histone markers
is better (AUC = 0.97) than either channel by itself (AUC = 0.88 for DAPI and
0.80 for pan-histone). To achieve scalable processing of large images with available
GPU memory, we utilized the overlap-window strategy4®. The end result is a set of
identification tags (ID), locations, and bounding boxes for each nucleus.

Identifying major cell types using Capsule Network. The type, and when
appropriate, the sub-type of each detected cell, was identified by analyzing the
association of molecular biomarkers within their bounding boxes*’. Since the
signals are already corrected using computational synthesis of multiplex signal-
corrected mosaic, they are directly summed over each box to quantify the overall
expression level of each protein of interest. These data are exported to the cyto-
metry tool FCS Express*349 for visualization. For identifying cell types, we used
Capsule Networks!?20:50:51 due to their ability to learn the object-part relation-
ships of cells, built-in understanding of the 3D space, ability to learn from smaller
training sets compared to CNNs, and their open-set classification ability>? that
allows us to assign ambiguous cells to the “unknown” type. However, the original
Capsule Network is computationally expensive, motivating us to adopt the Fast
CapsNet instead>? (Fig. 5a). For generating the training sets in an automated
manner, we used the 5,000 cells for each cell type with the highest expression level
of the corresponding marker, e.g., NeuN for neurons, S100f for astrocytes, IBA1
for microglia, Olig2 oligodendrocytes, and RECA1 for endothelial cells.

Unlike a CNN whose output only indicates a cell as belonging to one of K fixed
classes, the CapsNet can also indicate unknown classes. It generates an array of 16-

_— = —
dimensional vectors for the known classes{ Vi, V,,..., Vg } The entries of each

output vector (i.e., its direction) represent the pose information (such as location,
size, and orientation) of the associated cell type, while the length (the norm or
magnitude) of the vector encodes the cell’s existence probability. The vectors are
normalized, with Euclidean lengths between 0 and 1. We used margin loss? to
ensure that the lengths of these vectors are large if and only if a cell of the
corresponding class exists in the image, and vice versa. If the lengths of all vectors
are below a set threshold (0.5), the cell is assigned to the “unknown class”. The
histogram of lengths of capsule vectors exhibits a bimodal distribution for
biomarkers that are present in the multiplex image (Fig. 5b). The major brain cell
types can be identified reliably using this strategy (Fig. 5¢). The deep network
learns abstract representations of the input image (biomarkers of interest) and
encapsulate the information into a vector in the last layer. The length of this vector
contains comprehensive information (Fig. 5d-h right) compared to the traditional
thresholding the histogram of mean intensity of the biomarker (Fig. 5d-h left).
Figure 5d-h shows the ability of the proposed model in correcting the mis-
identified cell types in 5 major cell types.

Expanding cell phenotyping using morphological masking. For identifying cell
sub-types and phenotypic states, we found that the majority of phenotypic clas-
sifications follow a Boolean logic since most proteins of interest are either
expressed strongly, or hardly at all, with a bi-modal histogram. For these cases, we
introduced compound morphological masking based on combination of single or
multiple channels consisting of different subcellular compartments (i.e., nucleus,
soma, cytoplasm, plasma membrane, and cell processes). These masks were used to
calculate the averaged marker expressions within each channel in order to
threshold and assess whether the corresponding cell is either positive (4) or
negative (—) for the molecular marker of interest. The cell type identifications and
bounding boxes provided the basis for analyzing cell and arbor morphologies to the
extent that they are revealed in the 10 pm thick slices to generate the compound
morphological masks. The cell type information is used to select the molecular
markers that indicate the major compartments of each cell. Given the sheer size of
our images, we performed a simplified arbor analysis compared to our prior
work>#->6, For segmenting cell nuclei and soma, we used a Mask RCNN*7, and
matched the results to the cell detections. We estimated cytoplasmic compartments
by subtracting the nuclear masks from soma masks. We used skeletonization (62)
to extract the basal processes, and directional ratios (63) to segregate soma from
processes (e.g., IBA1 marks soma and processes for microglia, S100p marks soma
and extends into processes for astrocytes). The directional ratios range from 0 to 1
with low values on processes and high values on soma. We delineated membranes
by a 1-pixel dilation of the combined mask of soma, nucleus, and processes, in the
absence of a membrane marker channel. For masking endothelial cells, we used
RECAI which marks plasma membranes of these cells as a validated membrane
mask to trace endothelial cells. RECA1 was combined with endogenous GFP
expression (a cytoplasmic label of brain endothelial cells in Lewis LEW-Tg (CAG-
EGFP) YsRrrc transgenic rats) for endothelial cell reconstruction. Astrocytes were
reconstructed using Sox2 (nuclear mask), S100 (soma mask), and GFAP (pro-
cesses mask) channels. IBA1 channel was used to reconstruct microglia. MAP2 and
NeuN channels were used for basal neuron arbor reconstruction. Olig2 (nuclear
mask) and CNPase (soma and processes mask) were used to reconstruct oligo-
dendrocytes. The morphological masking of subcellular compartments for each
major cell type is illustrated in Fig. 6a—f. The generated masks were then used to
calculate the average abundance of biomarker expression in each channel to
expand the cell phenotyping. The resulting cell composition summary for the
sample brain section is presented in Fig. 6g. As an example, we identified different
neuronal cell subtypes using the proposed method based on transmitter pheno-
typing (i.e., Glutamatergic, GABAergic, Cholinergic, Catecholaminergic neurons),
as shown in Fig. 6h-m.

Using the above steps, we generated a comprehensive output table containing
the location, morphology, and phenotypic data of all cells (Supplementary Table 7)
and a set of nucleus, soma, cytoplasm, and process morphological masks.
Supplementary Table 7 includes data for 219,643 detected cells with phenotypic
information of cell type, cell sub-type, and functional status from 28 unique
biomarkers. These data can be profiled without restriction to generate readouts of
the brain tissue at any scale. For example, these data can be parcellated using fitted
brain Atlases. We fitted the Paxinos atlas to the corresponding section based on the
coordinates using Adobe Photoshop (Fig. 6n). To quantify regional biomarker
expression from Supplementary Table 7, we plotted the heatmap of the number of
positive cells per 10° pixel? area for the neurons (Fig. 60) and the oligodendrocyte
(Fig. 6p) populations.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The datasets including the original acquired images from the microscope and the results

of each step are publicly hosted at https://doi.org/10.6084/m9.figshare.13731585.v1%8.
The cell nuclei detection model was trained on top of pre-trained

“faster_rcnn_inception_resnet_v2_atrous_coco” model on ImageNet dataset. The pre-
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trained weights can be found on https://github.com/tensorflow/models/blob/master/
research/object_detection/g3doc/tfl_detection_zoo.md. The authors declare that all
other data supporting the findings of this study are available within the paper and its
supplementary information files.

Code availability
Codes for reconstruction and quantitative analysis of the images are available at https://
github.com/RoysamLab/whole_brain_analysis.git?®.
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