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Abstract: Brugada syndrome (BrS) is diagnosed by the presence of an elevated ST-segment and can
result in sudden cardiac death. The most commonly found mutated gene is SCN5A, which some
argue is the only gene that has been definitively confirmed to cause BrS, while the potential causative
effect of other genes is still under debate. While the issue of BrS genetics is currently a hot topic,
current knowledge is not able to result in molecular confirmation of over half of BrS cases. Therefore,
it is difficult to develop research models with wide potential. Instead, the clinical genetics first need
to be better understood. In this study, we provide crucial human data on the novel heterozygous
variant NM_198056.2:c.4285G>A (p.Val1429Met) in the SCN5A gene, and demonstrate its segregation
with BrS, suggesting a pathogenic effect. These results provide the first disease association with this
variant and are crucial clinical data to communicate to basic scientists, who could perform functional
studies to better understand the molecular effects of this clinically-relevant variant in BrS.

Keywords: Brugada syndrome; sudden cardiac death; genetic testing; mutation; variant; SCN5A;
sodium channel; arrhythmia; channelopathy; human; family

1. Background

There has been an ever-increasing interest in Brugada Syndrome (BrS) ever since its first description
almost three decades ago, due to its ability to cause ventricular tachycardia/fibrillation (VT/VF) and
sudden cardiac death (SCD) in young and otherwise healthy individuals [1]. Accordingly, BrS genetics
has gained widespread popularity and is currently a hot topic, as not even half of BrS cases can be
molecularly confirmed [2], and all but the involvement of the SCN5A gene is fiercely debated [3–5].
However, even the roles of several specific variants within the SCN5A gene are disputed, with many
listed as variants of unknown significance, and many are thought to result in pathologies other than
BrS, such as atrial standstill, atrial fibrillation, left ventricular non-compaction, dilated cardiomyopathy,
Long QT syndrome, idiopathic ventricular fibrillation, and heart block [6,7]. Some SCN5A variants
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found in patients undergoing routine genetic testing have never been described before in the literature,
or are listed in popular genetic databases, such as Varsome [8], as benign or likely benign.

Novel mutations in the SCN5A gene and their likely causative role in BrS have been of recent
interest [9–15], as well as new candidate genes [13,16,17]. Most studies have reported autosomal
dominant inheritance with incomplete penetrance [18–20], with a few suggesting a recessive or X
linked inheritance [21,22] and a possible involvement of mitochondrial mutations [23]. Variants in
the SCN5A gene associated with BrS result in a loss of function of the voltage-gated sodium channel
subunit (Nav1.5) [17,24,25].

It is necessary to better understand clinical genetics to increase the power of the diagnostic
capability based upon genetics alone. Genetic testing is a far easier test to perform clinically than other
diagnostic tests, such as an ajmaline challenge, which requires the patient to travel to a highly-specialized
facility because of the high risks of the procedure [26]. Travel restrictions or the cost of an invasive
procedure could impair the ability to diagnose this potentially fatal disease, which often results in
sudden death in otherwise asymptomatic and seemingly otherwise healthy individuals. Genetic testing,
on the other hand, can be performed in more remote areas, either with a blood or saliva sample,
without serious risks related to the procedure.

In this study, the variant NM_198056.2:c.4285G>A (p.Val1429Met) in the SCN5A gene is
characterized for the first time, generally and in a family with BrS, providing crucial human data that
are the first step in advancing diagnostic capabilities.

2. Case Presentation

Written informed consent of human subjects included in this case series report was obtained for
their participation in the study and for publication. The procedures employed were reviewed and
approved by the local ethics committee. The study was conducted in accordance with the Declaration
of Helsinki, and written informed consent of human subjects was obtained for their participation in
the study and for publication. The procedures employed were reviewed and approved by the local
Ethics Committee (approver number: M-EC-006/A, rev. 1 March 2013).

The proband is a 38-year-old female with a personal history of syncope. Both her father (at 46 years)
and maternal grandfather (at 70 years) died suddenly (Figure 1). Her maternal uncle experienced
an aborted cardiac arrest at the age of 36 years old, and was diagnosed with BrS due to the presence
of the type 1 BrS ECG pattern identified elsewhere after the diagnostic workup for aborted cardiac
arrest. Thus, the proband underwent an ajmaline challenge at our facility, which resulted positive
(Figure 2). She then underwent an electrophysiology study (EPS), and was inducible for ventricular
tachycardia/fibrillation (VT/VF) (Figure 2). An ICD was implanted.

Genetic testing of several genes described in BrS research literature (ABCC9, AKAP9, CACNA1C,
CACNA2D1, CACNB2, DSG2, GPD1L, HCN4, KCND2, KCND3, KCNE3, KCNE5, KCNH2, KCNJ8,
PKP2, RANGRF/MOG1, SCN1B, SCN2B, SCN3B, SCN5A, SCN10A, SEMA3A, TRPM4) by Next
Generation Sequencing and confirmed by Sanger sequencing revealed the novel heterozygous variants
NM_198056.2:c.4285G>A (p.Val1429Met) in the SCN5A gene (LOVD: https://databases.lovd.nl/shared/

variants/0000673713#00018523) (Figure 3) and NM_201596.2:c.1880G>A (p.Arg627His) in the CACNB2
gene (LOVD: https://databases.lovd.nl/shared/variants/0000673714#00024101).

https://databases.lovd.nl/shared/variants/0000673713#00018523
https://databases.lovd.nl/shared/variants/0000673713#00018523
https://databases.lovd.nl/shared/variants/0000673714#00024101
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Figure 1. Family pedigree. Proband identified with arrow. Square: male; Circle: female; Shaded: 
clinically affected by Brugada syndrome; Star: molecularly confirmed SCN5A variant; Triangle: 
molecularly confirmed CACNB2 variant; Triangle with slash: negative for CACNB2 variant; y = years 
old at diagnosis. 

 
Figure 2. Electrocardiogram at baseline, after ajmaline administration, and ventricular 
tachycardia/ventricular fibrillation inducibility during electrophysiological study for proband. 

Genetic testing of several genes described in BrS research literature (ABCC9, AKAP9, CACNA1C, 
CACNA2D1, CACNB2, DSG2, GPD1L, HCN4, KCND2, KCND3, KCNE3, KCNE5, KCNH2, KCNJ8, 
PKP2, RANGRF/MOG1, SCN1B, SCN2B, SCN3B, SCN5A, SCN10A, SEMA3A, TRPM4) by Next 
Generation Sequencing and confirmed by Sanger sequencing revealed the novel heterozygous 
variants NM_198056.2:c.4285G>A (p.Val1429Met) in the SCN5A gene (LOVD: 
https://databases.lovd.nl/shared/variants/0000673713#00018523) (Figure 3) and 
NM_201596.2:c.1880G>A (p.Arg627His) in the CACNB2 gene (LOVD: 
https://databases.lovd.nl/shared/variants/0000673714#00024101). 

Figure 1. Family pedigree. Proband identified with arrow. Square: male; Circle: female; Shaded:
clinically affected by Brugada syndrome; Star: molecularly confirmed SCN5A variant; Triangle:
molecularly confirmed CACNB2 variant; Triangle with slash: negative for CACNB2 variant; y = years
old at diagnosis.
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Figure 3. A. Identification of the novel heterozygous variant c.4285G>A in the SCN5A gene by Sanger 
sequencing. B. Interspecies conservation of the p.Val1429 residue, denoted by the red arrow (Uniprot 
annotation). 

2.1. Assessment of Family Members 

The proband’s 59-year-old mother is asymptomatic. Due to her family history, she underwent 
an ajmaline challenge at our facility, which resulted positive (Figure 4). She was not found to be 
inducible for VT/VF at EPS. Genetic testing by Sanger sequencing was positive for the familial variant 
NM_198056.2:c.4285G>A (p.Val1429Met) in the SCN5A gene but negative for the familial variant 
NM_201596.2:c.1880G>A (p.Arg627His) in the CACNB2 gene. 
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aunt. 

The proband’s maternal uncle experienced an aborted cardiac arrest and he came to our facility 
only for genetic testing, revealing by Sanger sequencing the presence of the familial variant 

Figure 3. (A) Identification of the novel heterozygous variant c.4285G>A in the SCN5A gene by
Sanger sequencing. (B) Interspecies conservation of the p.Val1429 residue, denoted by the red arrow
(Uniprot annotation).
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2.1. Assessment of Family Members

The proband’s 59-year-old mother is asymptomatic. Due to her family history, she underwent
an ajmaline challenge at our facility, which resulted positive (Figure 4). She was not found to be
inducible for VT/VF at EPS. Genetic testing by Sanger sequencing was positive for the familial variant
NM_198056.2:c.4285G>A (p.Val1429Met) in the SCN5A gene but negative for the familial variant
NM_201596.2:c.1880G>A (p.Arg627His) in the CACNB2 gene.
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Figure 4. Electrocardiogram at baseline and after ajmaline administration for proband’s maternal aunt.

The proband’s maternal uncle experienced an aborted cardiac arrest and he came to our
facility only for genetic testing, revealing by Sanger sequencing the presence of the familial variant
NM_198056.2:c.4285G>A (p.Val1429Met) in the SCN5A gene in him as well. However, he was negative
for the familial variant NM_201596.2:c.1880G>A (p.Arg627His) in the CACNB2 gene.

2.2. In Silico Predictions

The novel c.4285G>A variant in the SCN5A gene was classified as likely pathogenic according to
ACMG criteria and Varsome database accessed on 13 July 2020 [8,27]:

• PM1 Moderate: Hot-spot of length 61 base-pairs has seven non-VUS coding variants (seven
pathogenic and zero benign), pathogenicity = 100.0%, qualifies as hot-spot.

• PM2 Moderate: Variant not found in gnomAD exomes (good gnomAD exomes coverage = 51.3).
Variant not found in gnomAD genomes (good gnomAD genomes coverage = 33.1).

• PP2 Supporting: 272 out of 342 non-VUS heterozygous missense variants in gene SCN5A are
pathogenic = 79.5% which is more than threshold of 51.0%, and 426 out of 1915 clinically reported
variants in gene SCN5A are pathogenic = 22.2% which is more than threshold of 12.0%.
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• PP3 Supporting: Pathogenic computational verdict based on 11 pathogenic predictions from
DANN, DEOGEN2, EIGEN, FATHMM-MKL, M-CAP, MVP, MutationAssessor, MutationTaster,
PrimateAI, REVEL and SIFT vs. no benign predictions.

Table 1 demonstrates the mutational hot-spot in the region harboring the novel SCN5A
variant described.

Table 1. Demonstration of mutational hot-spot in the region harboring the novel c.4285G>A
SCN5A variant.

Chromosome Position Reference Sequence Altered Sequence Mutation Effect

3 38598716 A G c.4137 + 6T >C Uncertain

3 38598720_1insC None C c.4137 + 1dupG Pathogenic

3 38598725 C A c.4134G > T Likely pathogenic

3 38598726 CT GA c.4132_4133delAGinsTC Likely pathogenic

3 38598736 C T c.4285G > A Likely pathogenic

3 38598738 G A c.4121C > T Pathogenic

3 38598759 C T c.4100G > A Pathogenic

3 38598762 C A c.4097G > T Pathogenic

3 38598763 C G c.4096G > C Pathogenic

The novel c.1880G>A (p.Arg627His) variant in the CACNB2 gene was classified as likely benign
according to ACMG criteria and Varsome database accessed on 13 July 2020 [8,27]:

• BS2 Strong: Observed in healthy adults: gnomAD exomes allele count = 8 is greater than the five
threshold for dominant gene CACNB2 (good gnomAD exomes coverage = 69.5).

• BP1 Supporting: seven out of eight non-VUS missense variants in gene CACNB2 are benign = 87.5%
which is more than threshold of 51.0%, and 79 out of 267 clinically reported variants in gene
CACNB2 are benign = 29.6% which is more than threshold of 24.0%.

3. Discussion

In the present study, we report for the first time the variant NM_198056.2:c.4285G>A (p.Val1429Met)
in the SCN5A gene, both generally and in BrS. The family segregation analysis and the in silico
predictions support the hypothesis of a pathogenic effect of this variant and provide the first step
towards understanding the pathophysiology in these patients and improving diagnostic capabilities.

The clinical presentations of the family members presented are severe, ranging from cardiac
arrest to spontaneous type 1 pattern, syncope, inducibility for VT/VF during EPS, and a family
history of sudden death. Clearly, aborted cardiac arrest is the most severe presentation of the disease
possible. However, the presence of both syncope and a spontaneous type 1 ECG pattern have also
been associated with a poor prognosis (6%–19% of people experiencing an arrhythmic event within
24–39 months during the follow-up period) [16,28]. Inducibility for VT/VF during EPS is also indicative
of a poor prognosis [29,30]. Therefore, the clinical phenotypes indicate the presence of a severe disease,
potentially requiring ICD implantation to prevent life-threatening arrhythmias.

The SCN5A gene encodes for the alpha subunit of the NaV1.5 protein. Disease-causing variants
found in the SCN5A gene responsible for BrS result in a loss of function of the NaV1.5 protein and
reduced sodium transport due to any of a variety of mechanisms, including reduced expression [31–33],
non-functional channels [34], and changes in gating properties [35,36].

The c.4285G>A variant in the SCN5A gene is currently listed as likely pathogenic [8] and has
several factors supporting the possible pathogenicity of this variant, including its genic expression
and apparent low frequency. In fact, to date, the heterozygous c.4285G>A variant has never been
found in the GnomAD database, consistent with the hypothesis of having a very low frequency in the
general population. Supporting the hypothesis of a pathogenic role of this variant, the interspecies
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conservation of the p.Val1429 residue is shown in Figure 3B, according to Uniprot. Several other
variants in this gene are known to be either pathogenic or likely pathogenic. In particular, Table 1
shows at least seven of such heterozygous mutations localized very close to our variant. Therefore,
the region from position 38598716 to 38598763 might be a hot-spot for pathogenic variants. Moreover,
several computational studies and many bioinformatic tools predict this heterozygous variant to be
pathogenic, while no computational studies or bioinformatic tools predict the variant to be benign.

The NM_201596.2:c.1880G>A (p.Arg627His) in the CACNB2 gene was additionally found in the
proband, but not in her mother, who exhibits the SCN5A familial variant and BrS. The proband’s father
died suddenly at the age of 46 years old. Therefore, it is likely that the proband inherited the CACNB2
variant from her father (as opposed to being a de novo variant). Some variants in the CACNB2 gene are
currently disputed as possibly causative for BrS. However, considering also the presence of the SCN5A
variant in the proband in the current study, the family segregation information for the CACNB2 variant
is inconclusive.

4. Concluding Remarks

The novel heterozygous variant NM_198056.2:c.4285G>A (p.Val1429Met) in the SCN5A gene
segregates with BrS in the family presented, suggesting a pathogenic effect of this variant. These crucial
human data are the first step in understanding the pathology of BrS for patients with this variant and
set the stage for both functional studies to better understand the molecular pathways involved, and
eventually better diagnostic capabilities, based upon very minimally invasive and safe genetic tests.
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