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Background: Magnetic resonance spectroscopic imaging (MRSI) is a neuroimaging

technique that may be useful for non-invasive mapping of brain temperature (i.e.,

thermometry) over a large brain volume. To date, intra-subject reproducibility of

MRSI-based brain temperature (MRSI-t) has not been investigated. The objective of

this repeated measures MRSI-t study was to establish intra-subject reproducibility and

repeatability of brain temperature, as well as typical brain temperature range.

Methods: Healthy participants aged 23–46 years (N = 18; 7 females) were scanned

at two time points ∼12-weeks apart. Volumetric MRSI data were processed by

reconstructing metabolite and water images using parametric spectral analysis. Brain

temperature was derived using the frequency difference between water and creatine

(TCRE) for 47 regions of interest (ROIs) delineated by the modified Automated Anatomical

Labeling (AAL) atlas. Reproducibility was measured using the coefficient of variation

for repeated measures (COVrep), and repeatability was determined using the standard

error of measurement (SEM). For each region, the upper and lower bounds of

Minimal Detectable Change (MDC) were established to characterize the typical range

of TCRE values.

Results: The mean global brain temperature over all subjects was 37.2◦C with spatial

variations across ROIs. There was a significant main effect for time [F (1, 1,591) = 37.0, p

< 0.0001] and for brain region [F (46, 1,591) = 2.66, p < 0.0001]. The time∗brain region

interaction was not significant [F (46, 1,591) = 0.80, p= 0.83]. Participants’ TCRE was stable

for each ROI across both time points, with ROIs’ COVrep ranging from 0.81 to 3.08%

(mean COVrep = 1.92%); majority of ROIs had a COVrep <2.0%.

Conclusions: Brain temperature measurements were highly consistent between both

time points, indicating high reproducibility and repeatability of MRSI-t. MRSI-t may be

a promising diagnostic, prognostic, and therapeutic tool for non-invasively monitoring

brain temperature changes in health and disease. However, further studies of healthy
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participants with larger sample size(s) and numerous repeated acquisitions are imperative

for establishing a reference range of typical brain TCRE, as well as the threshold above

which TCRE is likely pathological.

Keywords: MRS, brain temperature, MR thermometry, neuroinflammation, neuroimaging

INTRODUCTION

Neuroinflammation is increasingly implicated in the initiation
and maintenance of a number of neurodegenerative diseases,
including multiple sclerosis, Alzheimer’s Disease, and epilepsy
(Lucas et al., 2006; Amor et al., 2010; Maroso et al., 2010). In
these disease states, neuroinflammatory cells (e.g., microglia)
do not return to quiescence and instead become chronically
activated, ultimately propelling a structural, functional, and
biochemical neurodegenerative state (Devinsky et al., 2013;
Albrecht et al., 2016; Chen et al., 2016). Elucidating what
drives and sustains neuroinflammation is a critical goal in the
field, especially in the disease states where chronic, low-level
neuroinflammatory phenomena result in negative consequences.
For example, as demonstrated by findings from studies of
animal models of epilepsy and resected human epileptic tissue,
sustained neuroinflammation causes chronic hyperexcitability,
lower seizure threshold, and neuronal death (Aronica et al., 2010;
Maroso et al., 2010; Ravizza et al., 2011; Vezzani and Friedman,
2011; Vezzani et al., 2019). A neuroimaging-based biomarker
of neuroinflammation may allow tracking disease progression,
treatment response, and associated comorbidities and cognitive
impairments; such a tool may even identify a way to prevent these
phenomena in the first place (Sharma and Szaflarski, 2020).

Structural magnetic resonance imaging (sMRI) is often
considered the gold-standard for pinpointing neurological
pathophysiology, but is frequently inadequate in localizing focal
tissue abnormalities. For example, in treatment-resistant epilepsy
patients, surgical resection of the epileptogenic zone is the only
approach that can grant seizure freedom (Noe et al., 2013;
Jehi, 2018). Surgical planning is straightforward in patients
with sMRI-detectable lesions, but challenging in the 20–30%
patients who are MR-negative (Salmenpera et al., 2007; Jobst
and Cascino, 2015; Muhlhofer et al., 2017). Moreover, patients
with sMRI-detectable lesions experience 2.5–2.9 times better
surgical outcomes than those with normal sMRIs (Salmenpera
et al., 2007; Giorgio and De Stefano, 2010; Téllez-Zenteno et al.,
2010; Finke, 2018; Alberts et al., 2020; Sharma and Szaflarski,
2020). Despite sMRI’s capacity to pinpoint major structural
abnormalities (e.g., large ischemic lesions), the data demonstrate
its diminished sensitivity and specificity for detecting the
smaller, more focalized neuroinflammatory phenomena (Barr

Abbreviations:MRSI, Magnetic resonance spectroscopic imaging; MRSI-t, MRSI-
based brain temperature; ROI(s), Region(s) of interest; COVrep, Coefficient of
variation for repeated measures; SEM, Standard error of measurement; MDC,
Minimal Detectable Change; TCRE, MRSI-based brain temperature calculated
according to the equation TCRE = −102. 61(1H20−CRE) + 206.1◦C; tCre, creatine
+ phosphocreatine (total creatine); tCho, total choline; NAA, N-acetylaspartate;
Glx, combined signal from glutamine and glutamate; MI, myo-inositol.

et al., 1997; Kälviäinen and Salmenperä, 2002; Blümcke et al.,
2012; Sharma and Szaflarski, 2020). Therefore, there is a
need to identify a sensitive and specific in vivo biomarker of
neuroinflammatory pathophysiology. Other currently available
approaches are invasive and/or costly (e.g., lumbar puncture,
positron emission tomography [PET]). Further, PET relies on the
use of radioisotopes that may localize key neuroinflammatory
cells, but variable quantitative accuracy, limited bioavailability,
and unclear specificity of ligand-target binding are critical gaps
that limit its clinical utility (Vivash and OBrien, 2016; Best et al.,
2019; Dickstein et al., 2019; Ghadery et al., 2019; Hamelin et al.,
2019; Sharma and Szaflarski, 2020). Thus, the question remains:
how can we non-invasively localize neuroinflammation in a
living human brain?

Since the focal inflammatory response generates focal
changes in temperature, brain temperature mapping may
be a promising proxy for diagnosing and monitoring the
progression of neurological diseases characterized by metabolic
and homeostatic disruptions (Ene Mrozek et al., 2012; Wang
et al., 2014). Brain temperature correlates well with systemic
temperature during healthy states, generally measuring 0.5–1◦C
higher than core body temperature (Rossi et al., 2001;Wang et al.,
2014). During pathological processes such as neuroinflammation,
increased metabolic demands overwhelm the brain’s already
limited cooling mechanisms and drive brain temperature 1–
2◦C higher than core body temperature (Rossi et al., 2001). As
neuroinflammatory phenomena such as leukocyte extravasation
and accumulation, blood brain barrier permeability, and even
cerebral edema increase, so does the brain temperature (Dietrich
et al., 1996, 1998; Chatzipanteli et al., 2000; Sharma and Hoopes,
2003).

Of the ways we can measure brain temperature, magnetic
resonance spectroscopic imaging (MRSI) is the most non-
invasive and economical. Brain temperature can be derived from
MRSI data by calculating the frequency difference between the
temperature-sensitive water peak and one or more metabolite
peaks that are temperature-insensitive (Maudsley et al.,
2017). MRSI-based brain temperature (MRSI-t) measurement
correlates well with the recordings of implanted probes, as
indicated by phantom and experimental studies (Cady et al.,
1995; Corbett et al., 1995). Brain temperature has already been
approximated using MRSI in a number of contexts: healthy
adults, ischemic stroke, neonatal encephalopathy, myalgic
encephalitis/chronic fatigue syndrome, and rheumatoid arthritis
(Maudsley et al., 2010; Mueller et al., 2019, 2020; Zhang
et al., 2020). The majority of previous studies have performed
MRSI-t measurements only at a single brain location or limited
spatial region, but it has recently been demonstrated that the
measurement can be obtained using a volumetric echo-planar
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spectroscopic imaging (EPSI) acquisition to create temperature
maps over a large fraction of the brain volume (Maudsley et al.,
2006, 2017). Limited data are available on the reproducibility
and reliability of MRSI-t using volumetric EPSI. Previous work
has established intra-subject reproducibility of serial EPSI
acquisitions in a limited sample (N = 2) at 5 1-week intervals,
as well as that of successive EPSI acquisitions (2 per session)
in a larger sample (N = 32) (Maudsley et al., 2010; Veenith
et al., 2014). However, the reproducibility and repeatability of
MRSI-t using volumetric EPSI has only been established in a
small sample (N = 10), with 3 acquisitions separated by 1-week
intervals (Zhang et al., 2020). Thus, the available data do not
mirror a real-life clinical situation in which participants are
typically exposed to a treatment/intervention for 12–16 weeks
before a second measurement is collected.

To date, no study has investigated whether intra-subject
reproducibility is maintained in a larger sample of healthy control
participants with longer duration between scans. Additionally, all
previous studies have only reported the coefficient of variation
(COV) and intraclass correlation coefficients as measures of
reproducibility and repeatability; these data are useful, but the
exact boundary at which a given region’s brain temperature is
normal vs. above-normal (i.e., areas of focal neuroinflammation
or other pathophysiological phenomena) remains uncertain
(Maudsley et al., 2010; Zhang et al., 2020). Before MRSI-
t can be used as a clinical tool for in vivo assessment of
neuroinflammation, we must determine whether MRSI-based
brain temperature estimates are reliable and reproducible over
typical study periods. In addition to establishing bounds of
normal global and region-level brain temperature, it is critical
that we determine the bounds at which brain temperature is
above-normal in each region. The objective of this study was to
establish intra-subject reproducibility and repeatability of brain
temperature derivations in healthy participants scanned twice,
∼12 weeks apart. In addition to establishing typical mean brain
temperature across regions, we aimed to define the bounds of
typical vs. atypical (i.e., possibly abnormal) brain temperature
by calculating region-level measures of Minimum Detectable
Change (MDC). We hypothesized that mean brain temperature
would range from 37.0 to 37.5◦C. We also hypothesized that
MDCwould indicate brain temperatures to be atypical if≥ 0.5◦C
above mean brain temperature.

METHODS

Participants
Healthy adult participants were recruited from the local area
via word of mouth and IRB-approved study flyers. Interested
participants contacted study personnel via phone or email.
Participants were scheduled for their first study visit pending a
phone screen for inclusion criteria and MR compatibility. The
primary inclusionary criteria were: (1) age of 18–65 years, (2)
no history of neurological disease or injury (e.g., traumatic brain
injury), (3) ability to undergo MRI at 3-Tesla (e.g., no metal
implants or claustrophobia), and (4) negative urine pregnancy
test if female of childbearing potential. Of importance is that
participants’ self-reported history of neurological disease or

injury was collected during phone screening; no neurological
examinations were performed, and medical records were not
reviewed unless patient history was questionable. Written
informed consent was obtained from all participants before
collecting any clinical measures or imaging data.

Study Visits
Participants completed two study visits scheduled at the
University of Alabama at Birmingham (UAB) Civitan
International Neuroimaging Laboratory housed in the UAB
Highlands Hospital. For most participants (N = 14), visits were
scheduled 10–12 weeks apart; for the last 4 participants recruited,
the second study visit was delayed by 5–7 weeks due to COVID-
19 research restrictions. The mean overall time between visits
was 11.33 ± 2.59 weeks. During each study visit, participants
completed 2 self-report questionnaires: the Hospital Anxiety
and Depression Scale (HADS) and the Profile of Mood States
(POMS) (Zigmond and Snaith, 1983; McNair et al., 1989). Prior
to imaging, tympanic temperature measurements were collected
using a Braun Pro 4000 ThermoScan aural thermometer;
this measure was included due to evidence that tympanic
temperature can reliably reflect brain temperature and to make
sure there were no individual temperature elevations that could
affect brain temperature measurements (Mariak et al., 2003).

Data Acquisition
Participants were scanned on a 3T Siemens Magnetom Prisma
scanner using a 20-channel head coil. T1-weighted structural
images were acquired using a magnetization-prepared rapid
gradient echo sequence with the following parameters: repetition
time (TR)= 2,400ms; echo time (TE)= 2.22ms; flip angle= 8◦;
208 slices (0.8mm thick); matrix= 256× 256.

Whole-brain metabolite MRSI data were collected using a
3-dimensional EPSI sequence with spin-echo excitation with
the following parameters: TR1 = 1,500ms (TR for metabolite
data), TR2 = 511ms (TR for water reference data), TE =

17.6ms, lipid inversion-nulling with TI = 198ms; FOV =

280 × 280 × 180mm, sampled with 50 × 50 × 18 k-
space points. A separate MRSI dataset was acquired using an
interleaved acquisition without water suppression and served
as the water reference signal; with the exception of TR,
these data were acquired with identical spatial and spectral
parameters as the metabolite MRSI data. Spectral sampling
used 1,000 sample points with 2,500Hz spectral width; with
resampling and combination of the odd and even echoes, this
was reduced to 500 points and 1,250Hz (Metzger and Hu, 1997).
Prior to MRSI data acquisition, we performed off-resonance
frequency correction, and shimming to reduce magnetic field
inhomogeneities. Shimming consisted of a 3D automatic shim by
the scanner, followed by an interactive shim to achieve a peak
FWHM ≤30Hz (Zeinali-Rafsanjani et al., 2018).

We also acquired 2D arterial spin labeling (ASL) perfusion
scans to rule out perfusion-related contributions to brain
temperature and metabolite concentration measurements (Zhu
et al., 2009; Ene Mrozek et al., 2012; Rango et al., 2015).
ASL data were acquired using a Proximal Inversion with
Control of Off-Resonance Effects (PICORE) labeling scheme for
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FIGURE 1 | Brain temperature can be non-invasively derived from volumetric magnetic resonance spectroscopic imaging (MRSI) data by calculating the frequency

difference between the temperature-sensitive water peak and one or more metabolite peaks that are temperature-insensitive (left*). When using creatine as the

reference, voxel-level brain temperature can be calculated according to the following equation: TCRE = −102.61(1H20−CRE) + 206.1◦C, 1H20−CRE = chemical shift

difference between the creatine and water resonances. Example TCRE calculations are provided for a participant’s single tissue slice (right). Representative spectra

illustrate 1H20−CRE derivations, with plots depicting a water-suppressed metabolite spectrum (red line), with an overlay that indicates the location of the reference

water signal (blue line). Spectral plots were created within the Metabolite Imaging and Data Analysis System (MIDAS) software package, and the figure was created

using BioRender. *Adapted from Dehkharghani et al. (2015).

background suppression. Sixty pairs of label/control ASL images
were collected in the axial direction at a single inversion time of
1,800ms, TR = 2500 sms, TE = 16.18ms, 12 slices, 4 × 4 × 10
mm voxels.

Data Processing
Image reconstruction and spectral processing was completed
within the Metabolite Imaging and Data Analysis System
(MIDAS) software package (Maudsley et al., 2006). Raw
metabolite and water MRSI data were reconstructed with
interpolation to 50 × 50 × 36 voxels and spatial smoothing.
This yielded 5.6 × 5.6 × 5mm voxels, with a voxel volume of
∼0.1568 cm3. Processing included B0 inhomogeneity correction
and formation of individual metabolite maps using a parametric
spectral modeling method to quantify relative peak areas
and resonance frequencies for resonances of N-acetylaspartate
(NAA), creatine (tCre), choline (tCho), and water, as described
by Maudsley et al. (2006). For repeat studies, each MRSI dataset
was spatially registered to the T1-weighted image of the first
study. Voxel-level brain temperature was then calculated using
the chemical shift difference between the creatine and water
resonances (1H20−CRE; Figure 1), according to the equation
TCRE = −102.61(1H20−CRE) + 206.1◦C (Maudsley et al., 2017).
The creatine resonance was selected for the frequency reference
as it is broadly distributed within the cells and, as such, is
less sensitive to cellular-level changes of magnetic susceptibility
with neuronal orientation (Maudsley et al., 2017). We provide
an example of raw MRSI metabolite and temperature data
in Figure 2. The resultant MRSI-t maps were then spatially
registered to Montreal Neurological Institute (MNI) template at
2mm isotropic voxel resolution, which was also aligned with a

modified version of the Automated Anatomical Labeling (AAL)
atlas that delineated 47 regions of interest (ROIs) (Tzourio-
Mazoyer et al., 2002; Maudsley et al., 2017).

Following initial processing, the atlas was mapped into
subject space using an inverse spatial transformation algorithm
within the MIDAS Project Review and Analysis (PRANA)
module (Maudsley et al., 2006). The Map Integrated Spectrum
(MINT) module within MIDAS was then used to compute
mean estimates of metabolite concentrations, metabolite ratios,
and brain temperature within each of the atlas-defined brain
regions. Spectral integration was limited to voxels that had a
fitted metabolite linewidth between 2 and 12Hz, and voxels were
excluded if they had an outlying values of 2.5 times the standard
deviation of all valid voxels in the image (Maudsley et al., 2006).

ASL data were processed using ASLtbx batch scripts
with Statistical Parametric Mapping (SPM12; http://www.fil.
ion.ucl.ac.uk) running in MatLab R2019b (The MathWorks,
Inc., Natick, MA, USA) (Wang et al., 2008). Images were
motion-corrected and smoothed with a 6mm full-width-at-
half-maximum (FWHM) Gaussian kernel to diminish motion
artifacts and decrease noise for subsequent image subtraction.
Cerebral blood flow (CBF) was quantified in ml/100 g/min using
simple subtraction between each tag/control pair (120 smoothed
volumes, 60 pairs). Each participant’s mean CBF maps were
then 1) registered to high-resolution structural space with affine
registration, followed by 2) non-linear registration to MNI space.

Data Analysis
Descriptive statistics and correlation analyses were conducted in
IBM SPSS Version 26.0 (www.ibm.com/products/spss-statistics).
Reproducibility of MRSI-t based TCRE was evaluated using
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FIGURE 2 | Selected axial slices showing raw metabolite and brain

temperature maps derived from a single participant’s volumetric magnetic

resonance spectroscopic imaging data (MRSI) data. Shown are (A) normalized

gray matter volumes, (B) water reference signal, (C) total creatine (creatine +

phosphocreatine), (D) total choline, (E) NAA (N-acetylaspartate), (F)

myo-inositol, (G) Glx (combined signal from glutamine and glutamate), (H)

frequency difference between water and creatine (1H20−CRE), (I) brain

temperature calculated according to the equation TCRE = −102.61(1H20−CRE)

+ 206.1◦C. Raw MRSI data were visualized within the Metabolite Imaging and

Data Analysis System (MIDAS) software package, and the figure was created

using BioRender.

the coefficient of variation for repeated measures (COVrep)
(Shechtman, 2013). Reliability was evaluated with the Standard
Error of Measurement (SEM = square root of the MSERROR
term from 2-way mixed ANOVA used to compute Cronbach’s
Alpha) (Weir, 2005). Minimal Detectable Change (MDC) was
then calculated from SEM to provide a clinically meaningful basis
for evaluating TCRE changes over repeated measures. Standard
MDC was calculated at the 68th confidence interval (CI) (Weir,
2005). To investigate temporal and spatial variation in TCRE,
we performed a linear mixed effects analysis using GraphPad
Prism version 8.0 for Mac (GraphPad Software, La Jolla, CA,
USA, www.graphpad.com).

In a secondary analysis, the relationship between TCRE

and brain metabolites and/or metabolite ratios implicated
in neuroinflammatory disease was assessed. Metabolites
were quantified within MIDAS as previously described, with
metabolite concentrations corrected in reference to water and
CSF percentage (Maudsley et al., 2009; Lecocq et al., 2015;

Zhang et al., 2020). Since quantification did not account for
metabolite and reference relaxation, our analyses were based
on metabolite values in institutional units (I.U.) (Kreis et al.,
1993; Maudsley et al., 2009). Metabolites of interest included
myo-inositol, choline, NAA, and the combined signal of
glutamine and glutamate (Glx) (Oz et al., 2014). Myo-inositol
(MI) is a glial marker, with increased levels indicating glial
activation or proliferation seen in neuroinflammation (Haris
et al., 2011). Choline (total choline, tCho) is expressed in cell
membranes, with increased levels indicating high cell turnover
during inflammatory processes (Oz et al., 2014). NAA indicates
neuronal health, with lower values representing axonal loss
(Moffett et al., 2007; Oz et al., 2014). Due to evidence of creatine
(total creatine, tCre) as a reference metabolite, metabolites were
also evaluated on the basis of their ratios with tCre (Maudsley
et al., 2017). Spearman’s rho (rs) correlation coefficients were
calculated between TCRE, each metabolite ratio of interest, and
tympanic temperature using a two-tailed threshold of p < 0.05.
Variables with rs >|0.5| were evaluated as predictors of TCRE

in a multiple regression model. Independent samples t-tests
assessed hemispheric (right vs. left) differences in region-level
TCRE. Independent samples t-tests contrasting sex differences in
global and region-level TCRE were planned but not performed
due to unequal sex distribution in the final dataset. Data quality
was evaluated on the basis of (1) number of accepted voxels (%)
following processing and (2) spectral linewidth.

Paired samples t-tests of participants’ mean CBF maps
contrasted cerebral perfusion between the two time points. This
served as a measure of whether brain temperature differences—if
present—could be attributed to perfusion differences.

RESULTS

Participant Demographics and Metabolite
Measures
Twenty-one participants were recruited; 18 completed all study
procedures and were included in the analyses (N = 7 females).
The mean age was 30.39 ± 7.47 years (range 23–46 years).
Descriptive statistics for study measures of temperature, blood
flow, and inflammatory metabolite ratios were tabulated for both
time points; global within-subject differences from time1 to time2
were computed with repeated measures t-tests (Table 1). The
repeated measures t-tests revealed significant increase in HADS
sub-scale Depression scores [t(17) = −4.12, p = 0.001], though
this change was not clinically significant and scores remained
in the normal range (0–7) for both time points (Zigmond and
Snaith, 1983). Additionally, there was a global reduction in mean
NAA/tCre, t(17) = 2.19, p = 0.04. Mean TCRE was 37.00◦C
at time1 and 37.40◦C at time2, with a global mean TCRE of
37.2◦C across both time points. Box-and-whisker plots of TCRE

calculated at both time points are provided in Figure 3.

Brain Temperature Reproducibility,
Reliability, and Minimal Detectable Change
The COVrep, our measure of reproducibility, ranged from 0.81
to 3.08% (mean 1.92%) across 47 ROIs, with 30 ROIs having a
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TABLE 1 | Descriptive statistics for clinical and imaging-derived measures of temperature, blood flow, average metabolite values (in institutional units), and metabolite

ratios.

time1 (N = 18) time2 (N = 18) time1 vs. time2

Heart rate (bpm) 73.50 ± 11.40 74.17 ± 17.12 t(17) = −0.20, p = 0.84

HADS, depression 1.72 ± 1.96 2.72 ± 2.27 t(17)= −4.12, p = 0.001

HADS, anxiety 5.33 ± 2.63 4.83 ± 2.36 t(17) = 0.89, p = 0.39

POMS, TMD −0.39 ± 20.75 0.06 ± 18.89 t(17) = −0.18, p = 0.85

Tympanic temperature (◦C) 36.73 ± 0.30 36.65 ± 0.19 t(17) = 0.98, p = 0.34

Global TCRE (◦C) 37.00 ± 0.62 37.40 ± 0.94 t(17) = −1.28, p = 0.22

Global CBF (ml/100 g/min) 70.77 ± 6.15 71.03 ± 4.24 t(17) = 0.21, p = 0.84

tCre 26270.0 ± 1807 26844.98 ± 1345.20 t(17) = −1.91, p = 0.07

tCho 5279.00 ± 664.10 5288.66 ± 723.35 t(17) = −0.10, p = 0.93

NAA/tCre 1.35 ± 0.24 1.26 ± 0.09 t(17) = 2.19, p = 0.04

Glx/tCre 0.66 ± 0.06 0.64 ± 0.05 t(17) = 1.76, p = 0.10

MI/tCre 0.55 ± 0.08 0.59 ± 0.22 t(17) = −0.63, p = 0.53

*All measures are in I.U., institutional units unless otherwise specified.

HADS, Hospital Anxiety and Depression Scale; POMS, Profile of Mood States; TMD, total mood disturbance; CBF, cerebral blood flow; tCho, total choline; tCre, creatine +

phosphocreatine (total creatine); NAA/tCre, N-acetylaspartate ratio to tCre; Glx/tCr, ratio of combined signal from glutamine and glutamate to tCre; MI/tCre, myo-inositol ratio to

tCre; I.U., institutional units.

COVrep < 2.0%. SEM ranged from 0.365 to 2.713 (mean 1.295
± 0.647) (Table 2). The highest COVrep (3.08%) was in the R
Fusiform Gyrus. Mean brain temperature was the lowest in the R
and L putamen, R and L pallidum, R and L hippocampus, L and
R anterior cingulum, R and L thalamus, and R insula (Table 2).
Mean brain temperature was highest in the R occipital lobe, L
and R precuneus, R and L frontal lobes, and R and L cuneus.

Based on the MDC, the TCRE at which we consider brain
temperature as atypical varies across brain regions (Table 2,
Figure 4). When considering MDC computations at the 68th CI,
the upper bounds of brain temperature indicating above-typical
TCRE ranged from 37.57 to 41.49◦C (mean 39.03 ± 1.14◦C);
the lower bounds indicating below-typical TCRE ranged from
33.74 to 36.91◦C (mean 35.37 ± 0.80◦C). According to MDC
calculations, the TCRE at which values are considered above-
typical were highest in the following regions: R and L frontal lobes
(41.49, 40.99◦C), R occipital lobe (41.38◦C), L precentral gyrus
(41.13◦C), and L and R parietal lobes (40.92, 41.03◦C) (Table 2,
Figure 4). In addition to assessing these ROI-based measures,
brain temperature maps visualized brain temperature changes
within participants from time1 to time2 (Figure 5).

Spatial and Temporal Variations in Brain
Temperature
A linear mixed effects model investigated the variation of TCRE

across 47 brain regions over 2 time points. Fixed effects included
time, brain region, and the interaction of time∗brain region,
with participants considered random effects. In the case of a
statistically significant interaction, we planned follow-up tests to
assess pairwise differences using simple effects analysis. P-values
were corrected for multiple comparisons by controlling the False
Discovery Rate (FDR=0.05) with the two-stage step-up method
of Benjamini and Yekutieli (2001). The interaction of time∗brain
region was not significant [F(46, 1,591) = 0.80, p= 0.83]. There was

a significant main effect for time [F(1, 1,591) = 37.0, p < 0.0001],
and for brain region [F(46, 1,591) = 2.66, p < 0.0001].

Within-Subjects Variation in Cerebral
Blood Flow
Voxel-level repeated measures t-tests did not find significant
within-subjects differences in mean CBF when comparing time1
vs. time 2; the same results were found when mean TCRE was
included as a covariate. Further, participants’ global CBF values
did not change significantly from time1 to time2, as indicated by
paired samples t-tests [t(17) = 0.21, p = 0.84]. At time1, mean
global CBF was 70.77 ± 6.15 mL/100 g/min. At time2, mean
global CBF was 71.03 ± 4.24 mL/100 g/min (Table 1). Mean
CBF ranged from 56.66 to 79.99 mL/100 g/min (Figure 5). Each
participant’s mean CBF maps for time1 and time2 are visualized
alongside TCRE maps (Figure 5). Mean CBF for all participants
across both time points was 70.90 mL/100 g/min.

Relationship Between Brain Temperature
and Other Physiological Variables
For major metabolites (tCre, tCho, NAA, and MI), COVrep (%)
values are provided in Table 3. In contrast to TCRE, metabolite
concentrations varied substantially across time. For tCho, mean
COVrep was 12.49% (range 3.13–84.52%); with the removal of
outlying values for the R Precentral Gyrus, the COVrep range for
tCho became limited to 3.13–34.44%. For tCre, mean COVrep
was 10.38% (range 4.35–22.08%). For NAA, mean COVrep was
6.93% (range 2.68–28.44%). Lastly, mean COVrep for MI was
16.05% (range 6.41–41.97%).

Spearman correlations were run to test the relationship
between TCRE and the ratios MI/tCre, NAA/tCre, and Glx/tCre
(Table 4). There was a strong, positive correlation between TCRE

and NAA/tCre (rs = 0.678, p < 0.0001), and a strong negative
correlation between TCRE and tCho/tCre (rs = −0.575, p <

0.0001). There was a moderate, positive statistically significant
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FIGURE 3 | Graphical illustration of mean brain temperature for time1 (mean 37.0◦C) and time2 (37.4◦C) across 47 regions of interest (ROIs) delineated by the

modified Automated Anatomical Labeling (AAL) atlas. Brain temperature was non-invasively derived from volumetric magnetic resonance spectroscopic imaging

(MRSI) data, using the following equation: TCRE = −102.61(1H20−CRE) + 206.1◦C, where 1H20−CRE = chemical shift difference between the creatine and water

resonances. For each brain region, colored bars (time1, teal; time2, burgundy), reflect the mean TCRE; whiskers indicate range of TCRE values beyond the mean. The

mean global brain temperature over all subjects was 37.2◦C with spatial variations across regions (37.57–41.49◦C). There was a significant main effect for time

[F (1, 1,591) = 37.0, p < 0.0001] and for brain region [F (46, 1,591) = 2.66, p < 0.0001]. The time*brain region interaction was not significant [F (46,1,591) =0.80, p = 0.83].
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TABLE 2 | Mean MRSI-based brain temperature (TCRE) in 47 ROIs for both time

points time1 (T1) and time2 (T2), their standard deviations (SD), and corresponding

reproducibility and reliability statistics.

ROI Scan n Mean SD COVrep

(%)

SEM MDC

L Calcarine T1 18 37.320 1.019 1.85 1.131 1.600

T2 18 37.289 1.244

R Calcarine T1 18 37.306 1.052 2.24 1.288 1.822

T2 18 37.247 1.421

L Caudate T1 18 36.788 0.963 1.66 0.733 1.036

T2 18 37.106 0.807

R Caudate T1 18 36.921 0.800 1.73 0.827 1.170

T2 18 36.922 0.721

Cerebellum T1 18 36.822 0.848 2.10 1.141 1.614

T2 18 37.497 1.436

L Anterior Cingulum T1 17 36.853 0.807 1.29 0.581 0.822

T2 17 36.641 0.606

R Anterior Cingulum T1 17 36.965 0.799 1.11 0.511 0.722

T2 17 36.806 0.610

L Mid Cingulum T1 18 37.345 0.597 0.81 0.365 0.516

T2 18 37.512 0.383

R Mid Cingulum T1 18 37.387 0.661 0.88 0.421 0.595

T2 18 37.600 0.391

L Posterior Cingulum T1 18 37.363 0.735 1.41 0.824 1.165

T2 18 37.262 0.875

R Posterior Cingulum T1 18 37.364 0.605 1.36 0.696 0.985

T2 18 37.366 0.698

L Cuneus T1 18 37.062 1.257 2.50 1.522 2.153

T2 18 38.140 1.835

R Cuneus T1 18 37.161 1.316 2.65 1.586 2.243

T2 18 38.138 1.620

L Frontal Lobe T1 18 37.431 1.787 2.88 2.713 3.837

T2 18 37.884 2.582

R Frontal Lobe T1 17 37.445 1.759 2.56 2.395 3.387

T2 17 37.771 2.285

L Fusiform Gyrus T1 18 36.909 1.065 1.60 0.831 1.176

T2 18 37.221 0.959

R Fusiform Gyrus T1 18 36.601 1.108 3.08 2.179 3.082

T2 18 38.067 2.735

L Hippocampus T1 18 36.758 0.616 1.55 0.879 1.243

T2 18 36.674 0.902

R Hippocampus T1 18 36.278 0.956 2.13 1.016 1.437

T2 18 36.824 0.980

L Insula T1 18 36.854 0.996 1.92 1.022 1.446

T2 18 37.126 0.978

R Insula T1 18 36.572 0.991 1.93 0.934 1.321

T2 18 36.979 0.897

L Lingual Gyrus T1 18 37.213 1.134 1.89 1.111 1.572

T2 18 37.120 1.161

R Lingual Gyrus T1 18 37.096 1.021 1.61 0.853 1.206

T2 18 37.355 0.594

L Occipital Lobe T1 18 37.326 1.761 1.33 0.731 1.033

T2 18 37.696 2.106

(Continued)

TABLE 2 | Continued

ROI Scan n Mean SD COVrep

(%)

SEM MDC

R Occipital Lobe T1 18 37.179 0.879 2.98 2.507 3.546

T2 18 38.484 3.504

L Pallidum T1 18 36.749 1.776 2.58 1.195 1.691

T2 18 36.693 1.005

R Pallidum T1 17 36.406 1.381 2.70 1.292 1.828

T2 17 36.483 0.939

L Paracentral Lobule T1 18 37.124 1.151 1.49 0.663 0.937

T2 18 37.603 0.692

R Paracentral Lobule T1 18 37.409 1.073 1.66 1.430 2.023

T2 18 37.761 1.190

L Parietal Lobe T1 18 36.921 1.349 2.57 2.564 3.627

T2 18 37.877 2.485

R Parietal Lobe T1 18 36.998 1.424 2.47 2.414 3.414

T2 18 38.016 2.307

L Postcentral Gyrus T1 18 36.994 1.232 2.35 2.420 3.422

T2 18 37.851 2.350

R Postcentral Gyrus T1 18 37.084 1.157 1.88 2.003 2.833

T2 18 37.850 1.944

L Precentral Gyrus T1 18 36.984 1.315 2.57 2.609 3.690

T2 18 37.891 2.625

R Precentral Gyrus T1 18 37.028 1.459 2.40 2.216 3.133

T2 18 37.793 2.211

L Precuneus T1 18 37.399 0.867 1.69 1.222 1.728

T2 18 37.920 1.134

R Precuneus T1 18 37.382 1.002 1.73 1.341 1.897

T2 18 37.944 1.201

L Putamen T1 18 36.392 1.105 2.18 1.029 1.455

T2 18 36.808 0.911

R Putamen T1 18 36.248 0.975 1.89 0.872 1.233

T2 18 36.511 0.849

L Rolandic Operculum T1 18 37.013 0.821 1.76 1.289 1.823

T2 18 37.419 1.328

R Rolandic Operculum T1 18 36.983 0.830 1.51 0.757 1.071

T2 18 37.360 0.582

L Supplemental Motor

Area

T1 18 37.187 0.872 1.66 1.301 1.840

T2 18 37.547 1.190

R Supplemental Motor

Area

T1 17 37.251 0.837 1.67 1.295 1.831

T2 17 37.496 1.142

L Temporal Lobe T1 18 36.971 0.569 1.24 1.111 1.571

T2 18 37.308 1.981

R Temporal Lobe T1 18 36.634 0.822 1.72 1.197 1.694

T2 18 37.182 1.529

L Thalamus T1 18 36.823 0.696 1.57 0.853 1.207

T2 18 36.748 1.059

R Thalamus T1 18 36.715 0.886 1.94 1.004 1.420

T2 18 36.824 1.104

For each ROI, reproducibility was measured with the coefficient of variation for repeated

measures (COVrep). The standard error of measurement (SEM) provided a measure

of reliability. Minimal Detectable Change (MDC) was calculated from SEM to provide a

clinically meaningful basis for evaluating TCRE changes over repeated measures.

MRSI, magnetic resonance spectroscopic imaging; ROI, region of interest; n, number of

observations; R, right; L, left.
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correlation between TCRE and Glx/tCre, rs = 0.458, p = 0.001.
Lastly, there was a weak, negative correlation of statistical
significance between TCRE and MI/tCre, rs = −0.322, p = 0.027.
Based on results of correlation analysis, a multiple regression
was performed to predict TCRE from tCho/tCre, NAA/tCre,
Glx/tCre, and MI/tCre. However, none of the metabolite ratios
were significant predictors of TCRE. The mean distribution of
tCho/tCre, NAA/tCre, Glx/tCre, and MI/tCre across regions at
time1 is included in Figure 6.

There were no significant differences in brain temperature
when comparing left and right ROIs at p < 0.05, corrected for
FDR. Due to unequal sex distribution of our participants in the
final dataset, we did not perform independent samples t-tests to
evaluate sex differences in global and regional TCRE.

Assessing Quality and Spectral Resolution
Our data were of moderate to high quality as indicated by the
spectral resolution and total percentage of voxels included in our
final analysis. An average of 75.18% of voxels within the brainmet
quality criteria across both timepoints (76.47 ± 10.68% of voxels
at T1, 73.89 ± 12.39% of voxels at T2), with a range of 48.13%
to 89.53%. As indicated by the mean linewidth of 7.31Hz (range,
6.39 to 8.69) our data also had high spectral resolution.

We performed post-hoc correlation analysis of SEM, COVrep,
mean TCRE, and ROI size to determine if there was an association
between reproducibility, repeatability, TCRE, and region size. ROI
size was calculated by multiplying the mean # of voxels in each
region (pre-processing) by the mean % accepted voxels after
processing. To adjust for varying scale, SEM, COVrep, mean
TCRE, and ROI size were z-transformed. Reproducibility and
repeatability (COVrep∗SEM) had a strong positive correlation
(r = 0.805, p < 0.001) (Table 5). Mean TCRE had a moderate
positive correlation with both SEM (r = 0.487, p < 0.001) and
ROI size (r = 0.626, p < 0.001) (Table 5). Finally, in addition to
its association with mean TCRE, ROI size had a moderate positive
correlation with SEM (r = 0.524, p < 0.001) (Table 5).

DISCUSSION

Main Findings
In this study, a global brain temperature of 37.2◦C was found,
with spatial variations across ROIs consistent with previous
studies (Cady et al., 1995, 2011; Zhang et al., 2020). Also
consistent with previous studies was a significant main effect
for time [F(1, 1,591) = 37.0, p < 0.0001], and for brain region
[F(46, 1,591) = 2.66, p < 0.0001]. The central aim of this study was
to evaluate whether intra-subject reproducibility is maintained
in a large sample of healthy participants with longer duration
between scans than previously investigated. Though this study
acquired MRSI-t data with a much greater time interval between
acquisitions (∼12 weeks apart), the COVrep ranged from 0.81
to 3.08% (mean COVrep = 1.92%), with 30 ROIs having a
COVrep < 2.0%. Thus, TCRE was stable across all 47 ROIs and
paralleled results of previous studies of serial acquisitions or those
separated by 1-week intervals (Maudsley et al., 2010; Thrippleton
et al., 2014; Zhang et al., 2020). Another important question was
whether timepoint has an impact on the mean brain temperature

within a given ROI. Mixed effects analysis confirmed that the
effect of time does not depend on ROIs, as indicated by the
lack of a significant interaction [time∗brain region, F(46, 1,591) =
0.80, p = 0.83)]. Thus, in the absence of neuropathology, the
effect of time likely exerts a global change in brain temperature
that equally impacts all brain regions. Interestingly, the highest
TCRE was found in (1) posterior regions affected by anterior-
posterior gradient effects (L and R occipital lobe, L and R cuneus,
L and R precuneus), and 2) large peripheral cortical regions
(L and R frontal lobes, R parietal, L and R occipital). Large
posterior regions demonstrated higher TCRE with more within-
subject variability and greater SEM. Based on MDC, atypical
TCRE ranged from 37.57 to 41.49◦C. MDC was calculated at
the 68th confidence interval (CI), but future work with larger
sample sizes and more repeated acquisitions may enable MDC
calculation at the 90th or 95th CIs. Based on the aforementioned
findings, our study confirms previous findings of spatial brain
temperature variations from structure to structure; even if time
has a significant effect, this effect is distributed over regions, and
does not change in magnitude as a function of ROI.

Though TCRE correlated moderately with some of the
neuroinflammatory metabolites, the regression model indicated
that none were significant predictors. Thus, the relationship
between TCRE and neuroinflammatory metabolites could not be
fully assessed in this population, as would be expected for healthy
participants without neuroinflammatory pathophysiology.
Creatine was among the most stable brain metabolites (COVrep
= 10.38%), though NAA still demonstrated far less variability
between timepoints. Consistent with previous investigations,
myo-inositol was the least stable across time points (COVrep
= 16.05%) (Brooks et al., 1999; Wellard et al., 2005; Okada
et al., 2007; Zhang et al., 2020). Myo-inositol quantification is
technically challenging due to low signal-to-noise ratio, which
primarily stems from the distributed signal of 6 hydrogen atoms
and spectral overlap with spectra of other metabolites (e.g.,
Glx) (Haris et al., 2011). Previous studies have demonstrated
substantial variability of MI globally and across regions. Choline
demonstrated a wider range of COVrep across ROIs (range
3.13–84.52%), as compared to MI. This unexpected finding may
result from scanner-specific anomalies, increased cellular or
brain activity, or even undocumented physiological phenomena
(e.g., injury or illness). Given the small body of repeatability
data for volumetric MRSI, more studies are necessary before the
reliability, variability, and expected range of metabolite and brain
temperature values can be solidified for healthy populations or
region to region.

Maudsley et al. previously established tCre as the reference
metabolite for brain temperature derivations; this is because of
its even distribution across cellular compartments (at least in the
absence of disease), which renders tCre the least susceptible to
gray matter (GM) and white matter (WM) tissue-dependency
frequency shifts (Maudsley et al., 2017). Given the difficulty of
separating GM and WM within each ROI, we used tCre as our
reference metabolite. However, it is not always the case that
tCre is well-distributed or best reference metabolite—especially
when considering neurodegenerative conditions characterized by
significant changes in bioenergetics/metabolism. The posterior
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FIGURE 4 | Mean brain temperature for 47 brain regions delineated by the Automated Anatomical Labeling (AAL) atlas, with estimates of the upper and lower bounds

of Minimal Detectable Change (MDC) at which temperatures may be above- or below-typical, respectively. Brain temperature was non-invasively derived from

volumetric magnetic resonance spectroscopic imaging (MRSI) data. Voxel-level brain temperature was calculated according to the following equation: TCRE =

−102.61(1H20−CRE) + 206.1◦C, where 1H20−CRE = chemical shift difference between the creatine and water resonances. The upper bounds of MDC are indicated in

dark gray bands, and the lower bounds of MDC are indicated in light gray bands.

regions that indicated higher brain temperature and greater
variability could be the result of anterior-posterior gradient
due to acquisition, but may also be the result of visual
stimulation effects from watching movies during acquisition
(Kauppinen et al., 2008; Rango et al., 2015). Future studies would
benefit from acquiring data both with and without in-scanner
visual stimulation.

Limitations and Other Considerations
Our study was limited by the heterogeneity of the participant
population, limited age range (no participants >46 years),
and acquisition-related methods that are inherently variable
between- and within-participants. Additionally, we did not
monitor or control for a number of variables that could
alter brain temperature, including circadian rhythms, diurnal
changes, hormonal variations (e.g., due to menstruation),
or even environmental conditions (e.g., temperature in the
scanner room). Our methodological limitations stem from two
issues that critically impact all MRSI-t data: (1) magnetic
field inhomogeneities and (2) interfering signal from water-
containing structures (e.g., the aqueous humor of the eyes).
Shimming during EPSI acquisition can substantially reduce
magnetic field inhomogeneities and improve signal-to-noise

ratio by adjusting spectral linewidth, but the process is time-
consuming and difficult without substantial training. Due to
investigators’ extensive training in manual shimming, automated
shimming was followed by interactive shimming to optimize
signal resolution and data quality. All participants’ data were
acquired a peak FWHM ≤30Hz as recommended (Zeinali-
Rafsanjani et al., 2018). Though shimming greatly improves
spectral linewidth, it cannot correct the spatial inhomogeneities
present across structures and even within large brain regions—
additionally, it is unclear whether these spatial inhomogeneities
are truly artifact or a reflection of actual physiological processes.
Signals from water-containing structures are typically masked
with the placement of a saturation band placement during
data acquisition. While this is effective to an extent, the
saturation band is a 3D rectangular slab of fixed bounds
and shape—it can only be angled to cover the eyes and
sphenoidal sinuses, and there is currently no capacity for altering
the curvature of the band. Depending on each participant’s
structural anatomy, the saturation band may cut off regions
of cortex in the frontal areas. Additionally, the placement
and angling of this slab cannot be replicated from subject-to-
subject or even within a subject across time points. As with
our own data, these issues can result in missing or even heavily
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FIGURE 5 | Representative axial slices showing brain temperature (TCRE) and cerebral blood flow (CBF) for 18 healthy participants at time 1 and time 2. Brain

temperature was non-invasively measured using volumetric magnetic resonance spectroscopic imaging (MRSI) data, with calculation according to the following

equation: TCRE = −102.61(1H20−CRE) + 206.1◦C, 1H20−CRE = chemical shift difference between the creatine and water resonances. Mean CBF maps (ml/100 g/min)

were generated following processing of arterial spin labeling (ASL) data, with voxel-level CBF quantified using simple subtraction between each tag/control pair (120

(Continued)
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FIGURE 5 | smoothed volumes, 60 pairs) for 18 participants. Mean TCRE and CBF maps were resliced and co-registered to Montreal Neurological Institute template

space with the Statistical Parametric Mapping (SPM12) toolbox running in MatLab R2019b. All data are visualized for axial view of the same slice (z = 8; L, left; R;

right). The TCRE color scale ranges from 36.0 to 39◦C, with dark to light blue coloring indicating TCRE values within the typical range. The majority of voxels

demonstrate TCRE <37.5◦C, with a mean of 37.0◦C for time1 and 37.4◦C for time2 (global mean of 37.2◦C). As demonstrated by the time1 and time2 maps and the

global COVrep of 1.92%, there was a minimal variation in participants’ data from time1 to time2. For some participants’ data, brain regions were excluded from

analysis due to technical reasons; these areas are represented by regions where the template brain is exposed. Each participant’s mean CBF maps for time1 and time

2 are visualized alongside TCRE maps; as with TCRE mean CBF varies little from time1 to time2. Spatial TCRE variations did not vary as a function of cerebral perfusion

as indicated by mean CBF. The open-source software MRIcroGL (McCausland Center for Brain Imaging, University of South Carolina; https://www.mccauslandcenter.

sc.edu/mricrogl/) was used to overlay mean TCRE and CBF maps on the MNI single-participant template for 3D renderings of participant data. The figure was created

using BioRender.

FIGURE 6 | Regional differences in the concentration of major metabolites ratios, as indicated by magnetic resonance spectroscopic imaging (MRSI) data collected at

3-Tesla at a single timepoint (time1). Following the processing of MRSI data within the Metabolite Imaging and Data Analysis System (MIDAS) software package,

metabolite ratios were quantified using the Map Integrated Spectrum (MINT) module within MIDAS. Spectral integration was limited to voxels that had a fitted

metabolite linewidth between 2 and 12Hz, and voxels were excluded if they had an outlying values of 2.5 times the standard deviation of all valid voxels in the image.

Metabolite ratios were derived for 47 brain regions delineated by the Automated Anatomical Labeling (AAL) atlas. Ratios for the following metabolites in reference to

creatine (tCre) are demonstrated: choline (tCho), N-acetylaspartate (NAA), Glx (combined signal from glutamine and glutamate), and myo-inositol (MI). Mean

tCho/tCre, NAA/tCre, Glx/tCre, and MI/tCRE across regions at time1, with regions ordered (left to right) by ascending mean TCRE at time1 and corresponding coloring

metabolite ratio data.

contaminated metabolite and temperature data for impacted
ROIs, as voxels may not contain sufficient information or signals
of sufficient quality.

A countless number of phenomena could theoretically impact
brain temperature and weaken the ability to maintain sufficient
reproducibility and reliability. Functional activity, time of day,
and even transient hormonal fluctuations such as menstruation
may impact MRSI-t-based estimates (Ene Mrozek et al., 2012).
Thrippleton et al. limited data acquisition to afternoon hours
to minimize diurnal temperature variation, and went so far as
to recruit only male subjects to avoid the hormonal fluctuations

that may impact brain temperature in females (Thrippleton et al.,
2014). They additionally instructed their participants to refrain
from eating, drinking, exercising, or going outdoors within 1 h
of scanning; even the temperature of the scanner room was
regulated to obtain the most precise measurements (Thrippleton
et al., 2014). These methods may be the reason for low error
in repeated measurements (0.14◦C), with less deviation between
successive measurements. Of course, not all studies have the
capacity to limit such phenomena, and one could argue that
varied reference data in both sexes and across a varied number
of experimental situations is imperative for fully understanding
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TABLE 3 | Coefficient of variation (COVrep, %) for major metabolites.

COVrep (%)

Brain region tCho tCre MI NAA

L Calcarine 7.27 8.94 5.47 13.43

R Calcarine 11.63 14.42 10.59 13.00

L Caudate 12.03 7.93 8.53 22.89

R Caudate 19.00 10.67 6.62 24.31

Cerebellum 10.61 17.31 28.44 20.28

L Anterior Cingulum 6.20 8.78 4.71 14.59

R Anterior Cingulum 6.85 6.41 3.43 12.83

L Mid Cingulum 9.62 9.44 3.18 13.89

R Mid Cingulum 5.26 11.24 2.68 17.67

L Posterior Cingulum 4.73 6.45 5.01 7.19

R Posterior Cingulum 10.62 6.10 4.58 6.41

L Cuneus 7.29 10.71 7.58 9.37

R Cuneus 8.04 12.06 11.11 11.07

L Frontal Lobe 4.33 7.18 4.76 8.68

R Frontal Lobe 12.79 4.39 3.28 9.58

L Fusiform Gyrus 15.91 10.46 10.02 18.75

R Fusiform Gyrus 10.84 13.19 19.78 20.94

L Hippocampus 12.45 11.14 7.72 11.01

R Hippocampus 15.24 10.46 10.74 12.08

L Insula 3.13 6.79 3.48 19.45

R Insula 34.44 6.60 4.63 17.07

L Lingual Gyrus 10.53 12.34 10.68 17.38

R Lingual Gyrus 16.60 13.27 13.28 16.60

L Occipital Lobe 5.76 9.93 6.63 11.15

R Occipital Lobe 9.08 12.74 8.48 9.53

L Pallidum 12.41 10.15 8.04 41.97

R Pallidum 12.70 17.14 8.88 37.91

L Paracentral Lobule 17.79 17.57 6.26 22.12

R Paracentral Lobule 16.46 20.08 5.93 29.10

L Parietal Lobe 4.47 6.30 3.49 6.54

R Parietal Lobe 10.22 5.44 4.29 6.77

L Postcentral Gyrus 10.16 10.10 4.18 9.89

R Postcentral Gyrus 10.58 11.64 4.13 12.59

L Precentral Gyrus 11.91 12.20 4.56 16.17

R Precentral Gyrus 84.52 11.54 4.72 14.53

L Precuneus 6.94 5.99 4.21 7.87

R Precuneus 7.82 6.65 3.09 10.72

L Putamen 6.23 6.94 4.91 30.85

R Putamen 13.48 9.99 7.32 22.54

L Rolandic Operculum 4.07 6.96 4.25 7.96

R Rolandic Operculum 4.72 8.29 4.30 9.05

L Supplemental Motor Area 14.95 19.46 7.08 32.60

R Supplemental Motor Area 22.56 22.08 4.86 25.93

L Temporal Lobe 3.70 4.35 3.78 8.12

R Temporal Lobe 8.23 5.15 6.17 6.48

L Thalamus 11.69 8.28 7.63 14.71

R Thalamus 21.24 12.43 8.35 20.60

L, left; R, right; tCho, total choline; tCre, creatine + phosphocreatine (total creatine); MI,

myo-inositol; NAA, N-acetylaspartate.

TABLE 4 | Spearman correlations between metabolite ratios and brain

temperature.

TCRE tCho/tCre NAA/tCre Glx/tCre MI/tCre

TCRE – −0.575 0.678

tCho/tCre −0.575 – −0.464

NAA/tCre 0.678 −0.464 – 0.623 −0.603

Glx/tCre 0.623 –

MI/tCre −0.603 –

All correlations significant at the 0.01 level (2-tailed).

TCRE , brain temperature calculated according to the equation TCRE =

−102.61(1H20−CRE ) + 206.1◦C; tCho, total choline; tCre, creatine + phosphocreatine

(total creatine); NAA, N-acetylaspartate; Glx, combined signal from glutamine and

glutamate); MI, myo-inositol.

TABLE 5 | Pearson correlations between measures of reproducibility and

repeatability (SEM and COVrep), mean TCRE, and ROI size.

SEM, COVrep, Mean TCRE, ROI Size,

z-score z-score z-score z-score

SEM, z-score – 0.805 0.487 0.524

COVrep, z-score 0.805 –

Mean TCRE, z-score 0.487 – 0.626

ROI size, z-score 0.524 0.626 –

All correlations significant at the 0.01 level (2-tailed).

MRSI, magnetic resonance spectroscopic imaging; ROI, region of interest; n, number of

observations; TCRE , brain temperature derived using the frequency difference between

H and creatine; ROI, region of interest; COVrep, coefficient of variation for repeated

measures; SEM, standard error of measurement.

MRSI-t-based temperature estimates. Additionally, the calibrated
equation we used for deriving TCRE was developed on a more
dated scanner model than that used for our study. There
is disagreement over whether a calibrated formula derived
phantom data is a worthwhile endeavor (Verius et al., 2019;
Annink et al., 2020). The difference is minimal for short TE
MRSI-t, but significant for long TE MRSI-t, resulting in a mean
difference between derivations of up to 0.15◦C (Annink et al.,
2020). Given this small but possibly significant difference, future
studies would benefit from developing a calibrated temperature
formula that accounts for conditions at their particular scanner.
It is worth noting that a calibration would only impact the
intercept of the temperature calculation, with no impact on the
slope. Thus, calibration would have little impact on outcomes if
all participants’ data are acquired with the same sequence and
identical temperature equation.

Conclusions
MRSI-t is a reliable and reproducible approach to measuring
brain temperature, though future studies of larger sample size
withmore repeated acquisitions over long duration are necessary.
We must also determine whether MRSI-t measurements of
brain temperature are sensitive to the phenomenon we are
attempting to visualize. Since this study included healthy
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participants only, the relationship between brain temperature
and neuroinflammatory metabolites could not be fully assessed.
Thus, the reference data this study provides must be applied to
assessing patients with focal neuroinflammation. Before MRSI-
t-based temperature can be utilized clinically, it is imperative
to determine (1) if this tool can isolate focal brain temperature
increases in regions of neuroinflammation and (2) if it can
differentiate those with neuroinflammatory pathophysiology
from those who are healthy.
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