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Resting-state functional magnetic resonance imaging (rs-fMRI) is an immensely powerful
method in neuroscience that uses the blood oxygenation level-dependent (BOLD) signal
to record and analyze neural activity in the brain. We examined the complexity of
brain activity acquired by rs-fMRI to determine whether it exhibits variation across
brain regions. In this study the complexity of regional brain activity was analyzed by
calculating the sample entropy of 200 whole-brain BOLD volumes as well as of distinct
brain networks, cortical regions, and subcortical regions of these brain volumes. It can
be seen that different brain regions and networks exhibit distinctly different levels of
entropy/complexity, and that entropy in the brain significantly differs between brains at
rest and during task performance.

Keywords: functional MRI, complexity, entropy, temporal analysis, resting state, computational neuroscience,
neuro imaging

INTRODUCTION

Resting-state functional magnetic resonance imaging (rs-fMRI) uses the blood oxygenation level-
dependent (BOLD) signal to characterize the spontaneous activity of the brain (Biswal et al., 2010).
In functional connectivity analysis, correlation is calculated between the time series of different
regions of interest (ROI). Analysis of regions with high correlation can aid in the identification of
functional networks. However, both within and across networks, fMRI signals can exhibit dynamics
that may reflect changes in brain state or mental activity (Chang and Glover, 2010; Hutchison et al.,
2013; Keilholz et al., 2013, 2016; Keilholz, 2014). If the complexity or regularity of these fluctuations
in the fMRI time-series could be evaluated and analyzed, it might provide insight into general brain
activity, brain structures, and brain networks.

Entropy, in general, is defined as a lack of order or predictability in a system. In the context
of physiologically time-based signals, entropy is a measure of disorderliness in the time dimension.
This can also serve as a parallel for system complexity, as a more complex system will often produce
more disorderly signals. The second law of thermodynamics indicates that the maximum entropy
is reached when a closed system rests at an equilibrium state, so in order to preserve vital activities,
living systems must constantly maintain low-levels of entropy, shying away from equilibrium
(Schrödinger, 1945). The human brain is one such living system, and while it maintains a relatively
low level of entropy when compared to a system at equilibrium, the complex nature of its various
networks’ spontaneous activities can cause a variation in local entropy that reflects differences in
the function of those areas. By calculating the entropy of the signal acquired from the brain, these
variations can be investigated, and the status of the resting brain can be compared across conditions
to understand how the brain adapts during task performance (Bergström, 1969; Singer, 2009).
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Establishment of a general algorithm for entropy requires
a vast data set. The accurate estimation of the probability
distribution function from the limited number of time points
obtained in rs-fMRI studies is difficult. Sample entropy
(Shalit, 1985), an extension of approximate entropy (Pincus,
1991), is an alternative technique that addresses these issues.
The Kolmogorov (1998) complexity model is the basis for
approximate and sample entropy (Wang et al., 2014), which can
be evaluated even with relatively small data sets (Shalit, 1985;
Pincus, 1991). This makes them well-suited for the analysis of rs-
fMRI data, where the number of time points is typically relatively
small (∼200–1000) compared to the number of voxels.

Previous analyses of the entropy of the BOLD signal have
shown that brain signals exhibit various levels of disorder.
Wang et al. (2014) performed a comprehensive study on the
Sample entropy map of approximately 1000 healthy subjects.
They observed a sharp low-high contrast between the neocortex
and the rest of the brain, which may indicate the higher
mental functions performed by cortex (Wang et al., 2014).
Moreover, entropy differs in patients with attention deficient
hyperactivity disorder (ADHD) (Sokunbi et al., 2013) and during
the administration of different drugs (Ferenets et al., 2007).

Motivated by these findings, we performed a more extensive
analysis of entropy to determine the amount of variability present
across brain areas and networks. We compared findings from
task-based and resting state data from the Human Connectome
Project (Van Essen et al., 2012) to characterize how entropy
changed across conditions. The results provide further evidence
that the entropy of the BOLD signal reflects aspects of the
brain’s functional organization and may prove informative about
neural processing.

MATERIALS AND METHODS

Data Acquisition
MRI Data was downloaded from the Human Connectome
Project (Van Essen et al., 2012). This data came from 100
randomly selected, unrelated individuals, ranging from ages
22 to 36 (54 female – 46 male). One anatomical scan from
each individual was used for preprocessing [T1-weighted three-
dimensional magnetization-prepared rapid gradient echo (T1w
3D MPRAGE) sequence; TR = 2400 ms, TE = 2.14 ms,
TI = 1000 ms, FA = 8◦, FOV = 224 mm × 224 mm, voxel size
0.7 mm isotropic] (Milchenko and Marcus, 2013).

In addition, two resting-state functional scans per subject,
each approximately 15 min long, were used, with the following
parameters: TR = 720 ms, TE = 33.1 ms, FA = 52◦,
FOV = 208 mm × 180 mm (RO × PE), matrix = 104 × 90
(RO × PE), slice thickness = 2.0 mm; 72 slices; 2.0 mm isotropic
voxels, multi-band factor = 8, echo spacing 0.58 ms, with right-
to-left (RL) phase encode direction in one scan and left-to-
right (LR) phase encode direction in the other (Feinberg et al.,
2010; Chen et al., 2015). Two working memory task functional
scans per subject, each approximately 5 min long, were used
for comparison with the rest scans, also with RL phase encode
direction in one scan and LR phase encode direction in the

other. The working memory task, described in Barch et al. (2013),
involves a version of the N-back task, assessing both working
memory and cognitive control in a block format. Each task
functional scan includes eight task blocks lasting 25 s as well as
four fixation blocks lasting 15 s. Half the task blocks use a 0-back
working memory task and the other half use a 2-back working
memory task. These blocks are divided into four categories: tools,
body parts, faces, and places. To adjust for the shorter length
of the task scans, rest scans were truncated to the same length
as the task scans.

Preprocessing Methods
Scans were preprocessed using both FSL 5.0 (Jenkinson
et al., 2012) and MATLAB (Mathworks, Natick, MA,
United States). First, FSL was used to register anatomical
data to the 2 mm Montreal Neurological Institute (MNI)
atlas using FMRIB’s Linear Image Registration Tool (FLIRT)
(Jenkinson and Smith, 2001; Jenkinson et al., 2002). Then
the brain was extracted from the scan using BET, and
segmented into gray matter, white matter, and CSF using
FMRIB’s Automated Segmentation Tool (FAST) (Zhang et al.,
2001). Functional data was then motion correction using
MCFLIRT (Jenkinson et al., 2002) and registered to MNI
space using FLIRT.

The seven functional networks based on Yeo et al.’s (2011)
parcellation method (were discriminated from each other. The
mean and the standard deviation of sample entropy for each
network were calculated and mapped to that network.

Entropy Calculation
A combination of home-designed MATLAB codes and the brain
entropy mapping toolbox (BENtbx1) by Wang et al. (2014) from
University of Pennsylvania were used to calculate the entropy
for each voxel. The equation for sample entropy is described in
BENtbx as follows:

Bm(r) =
1

(N −m) (N −m− 1)

N−m∑
i=1

Bmi (r)

Am(r) =
1

(N −m) (N −m− 1)

N−m∑
i=1

Bm+1
i (r)

SE (m, r,N, x) = − ln
[
Am(r)
Bm(r)

]
The fMRI data for one voxel is considered as x = [x1, x2, . . .,
xN], in this set “N” is the number of repetitions (N value is
specified based on functional scan length and TR). In sample
entropy a series of embedded vectors with m consecutive points
are extracted from the data set x: ui = [xi, xi + 1, . . . xi+m−1],
(i = 1 to N−m+ 1, m: pre-defined dimension which specifies the
pattern length). A distance threshold “r” is specified (tolerance
value) and Brm(r) counts the number of uj (j = 1, to N−m, and
j 6= i) whose distances to ui are less than r, as does, Bm+1

i (r) for the

1https://cfn.upenn.edu/~zewang/BENtbx.php
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FIGURE 1 | The average entropy values across scans of each of the seven networks in resting state (A) and during a working memory task (B) were mapped on the
T1-weighted image. The coronal and axial views were selected in a way that all parcellations can be presented in one figure. In (A) the axial view clearly
demonstrates the frontoparietal network, which has the highest value of the entropy during resting state. The somatomotor and limbic networks have low values of
the entropy in the resting state. In (B) the dorsal attention network which has the highest entropy during the working memory task can be seen both in the coronal
and axial view. Also, in (B) the visual and limbic networks are presented, which have the lowest values of entropy in task.

dimension ofm+ 1. Thus the sample entropy can be measured by
averaging across all possible vectors (Wang et al., 2014). A small
value for m results in improvement of sample entropy accuracy

so in current study the value of m was equal to 3. Based on the
previous studies the threshold of r = 0.6 SD would result in similar
values of sample entropy even for different values of m. Thus, in
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FIGURE 2 | The mean sample entropy of cortical regions and subcortical regions at rest and during the working memory task are shown. Subcortical regions have
higher significantly higher entropy than cortical regions (p-value < 0.05) both in task and at rest. The cortical and subcortical regions in rest show significantly higher
values compared to task (p-value < 0.05).

TABLE 1 | The mean and standard deviations of cortical and subcortical regions
at rest and during the working memory task.

Region Rest vs task Mean Standard deviation

Cortical Rest 0.1912 0.0200

Task 0.1815 0.0195

Subcortical Rest 0.1981 0.0232

Task 0.1897 0.0245

this study the value of r = 0.6 SD was used (Pincus, 1991; Richman
and Moorman, 2000).

Correlation Matrices
Pearson correlation was calculated between 7 pre-identified brain
networks (Yeo et al., 2011) and between cortical and subcortical
regions (42 cortical regions and 21 subcortical regions) of the
brain (Harvard-Oxford mask FSL) across scans. This was done

in both rest and task entropy maps, to identify the dependence of
networks and regions on each other in rest and task mode.

In the case of the seven functional networks, X and Y were
length 200 vectors representing the mean sample entropy of a
network in each scan. Correlation was then calculated for each
pair of networks and placed into a 7 × 7 correlation matrix
representing the correlation between each network and every
other network. This was calculated for both for rest and task
sample entropy maps.

The same process was repeated for the 63 cortical and
subcortical regions, where X and Y represented length 200
vectors representing the mean sample entropy of a distinct
subcortical or cortical ROI. This results in a 63 × 63 correlation
matrix of both cortical and subcortical regions.

Paired t-Test and Reliability Evaluation
The paired t-test was used to compare brain entropy maps at
rest and during the working memory task. This was performed
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FIGURE 3 | He sample entropy value of each of the seven cortical networks [1-visual (V), 2-somatomotor (SM), 3-dorsal attention (DA), 4-ventral attention (VA),
5-limbic (LM), 6-frontoparietal (FP), 7-default (DF)] in rest and during the working memory task are shown in the box plot (R = rest, T = task). The mean sample
entropy for each network in rest is significantly higher than during the working memory task (p-value < 0.05, see Table 2)

at voxel-level resolution to produce a whole brain volume t-test,
as well as for the seven networks and the cortical/subcortical
regions. In every case, the two paired samples are length 200
vectors representing entropy in each scan at rest and task. Due
to multiple comparison, the Bonferroni correction was done to
decrease the risk of a type I error. Box plots were produced for
the seven networks as well as the subcortical and cortical regions
to further highlight differences.

In order to examine the reproducibility of the entropy
measurements, we calculated them separately for the first and
second rsfMRI scans for each subject, and for the first and second
fMRI scans for each subject. We then measured correlation
between the values for the seven networks across individuals in
the two scans. We also measured correlation between the final
group level values for the seven networks across the two scans.

The intraclass correlation (ICC) was also used to evaluate the
reliability of the entropy calculation of each functional network

by comparing the variability of entropy of the two scans of the
same subject to the total variation across all subjects (for resting
state and for task performing) using a Microsoft Excel Add-in to
calculate ICC (3,1) (Merisaari et al., 2019).

RESULTS

The sample entropy was calculated at each voxel in all fMRI
task and rest scans (100 subjects, each of them scanned twice
at rest and twice during task performance). Figure 1 shows the
sample entropy network-level maps of resting-state (Figure 1A)
and task-performing (Figure 1B) groups, superimposed onto the
T1-weighted image. As shown in the figure, the frontoparietal
network has the highest entropy during rest, while the dorsal
attention network has the highest entropy during task. The
somatomotor network has the lowest entropy during rest, also the
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limbic network and somatomotor have the lowest entropy during
task. Entropy is generally higher during rest than during task.

Figure 2 shows quantitative values of Sample entropy for
rest and task, divided into cortical and subcortical regions. The
cortical regions in task have the average value of 0.1815± 0.0195.
The average value of Sample entropy of cortical regions
in rest is 0.1912 ± 0.0200, which is significantly higher
than the same regions during the working memory task (p-
value < 0.05). The subcortical regions in rest have the average
value of 0.1981 ± 0.0232. The average value of Sample entropy
for subcortical regions in task is 0.1897 ± 0.0245, which
is significantly lower than the values of the same regions
(subcortical) in rest. Interestingly, the subcortical regions during
task show the widest spread of entropy values (standard deviation
of 0.0245). Table 1 shows the average value and standard
deviation of cortical and subcortical regions in rest and during
task performance.

To further examine the variability of entropy across brain
networks, the values were separated by network (Figure 3).

The frontoparietal network has the highest entropy among
all the cortical networks at rest. The somatomotor network with
0.1830 ± 0.0223 and limbic network with 0.1884 ± 0.0237 have
the lowest entropy during rest. For each network, entropy during
rest was significantly higher than during task (p-value is shown in
the last column of Table 2).

During the working memory task, the dorsal attention
network has the highest entropy. The limbic network,
somatomotor network, and visual network have the low
values of entropy during task performance.

Correlation between the entropy of the networks describes
how entropy in different areas covaries across subjects (Figure 4).
This correlation is generally high but decreases during the task
in comparison to the resting state. The frontoparietal network
and default mode network have the highest correlation in the
resting state (0.95), followed by the frontoparietal network
and ventral attention network (0.92). During the working
memory task, entropy in the ventral attention network is

TABLE 2 | Means and standard deviations of all seven cortical networks at rest
and during working memory task.

Network name Rest vs task Mean Standard deviation p-Value

1 Visual Rest 0.1922 0.0212 1.01E-23

Task 0.1779 0.0186

2 Somatomotor Rest 0.1830 0.0223 2.09E-33

Task 0.1766 0.0239

3 Dorsal attention Rest 0.1908 0.0202 5.67E-29

Task 0.1845 0.0203

4 Ventral attention Rest 0.1906 0.0212 7.86E-33

Task 0.1816 0.0225

5 Limbic Rest 0.1884 0.0237 1.31E-24

Task 0.1778 0.0241

6 Frontoparietal Rest 0.1958 0.0195 2.07E-29

Task 0.1821 0.0221

7 Default mode Rest 0.1917 0.0200 3.28E-30

Task 0.1825 0.0217

strongly correlated with entropy in both the frontoparietal
network and the somatomotor networks (0.89).The dorsal
attention network and frontoparietal network are nearly as
strongly correlated (0.88). The lowest correlation is between
the limbic network and the visual network, both at rest and
during the working memory task. In task, the correlation
between the visual network and the somatomotor network is
among the lowest correlations (0.55), which is different from
the resting state.

We furthered examined the correlation of entropy values
across the 42 cortical regions and 21 subcortical regions in rest
and task (Figure 5). Correlation of entropy values is generally
high within the cortical regions (average of 0.83) and within the
subcortical regions (average of 0.89), but the correlation between
cortical and subcortical regions is not as strong (average of 0.43).
Also, by comparison of Figures 5A,B it can be observed that
correlation between all ROIs is decreased during task, but this
reduction in task mode is more severe in the cortical regions.

To determine the significance of the effects we observed,
a two-factor ANOVA test was performed with the null
hypotheses that

1- performing the memory task has no significant effect on the
entropy of the brain (comparing ROI voxels)

2- brain regions (Cortical/subcortical) has no significant effect
on the entropy of the brain.

As it is presented in Table 3, both the differences across rest
and task and across cortex and subcortex were significant (p-
value < 0.05), but there was no significant interaction effect. We
performed a similar analysis on the data separated by network
during rest and task.

The two null hypotheses were:

1- performing the working memory task has no significant
effect on the entropy of the brain

2- brain cortical networks have no significant effect on the
entropy of the brain.

As it is presented in Table 4, significant differences were
observed between rest and task and across networks (p-
value < 0.05). Moreover, the interaction term was significant,
indicating that task performance affects entropy in a network-
dependent manner.

Table 5 presents the consistency of entropy measurements
across scans. Pearson correlation ranges from 0.46 to 0.59 for rest
and from 0.36 to 0.47 for task. Interestingly, entropy values are
more consistent across scans in rest than in task. The means of
scan 1 and 2 within each network are not significantly different
(α = 0.05).

The ICC values are shown in Table 5 as well. Zuo et al. (2019)
and Xing and Zuo (2018) categorized the ICC values in to the
following intervals 0 < ICC < 0.2 (slight), 0.2 < ICC < 0.4
(fair), 0.4 < ICC < 0.6 (moderate), 0.6 < ICC < 0.8 (substantial),
0.8 < ICC < 1.0 (almost perfect) for reliability quantification. By
considering those intervals, all seven networks can be categorized
as having moderate reliability in resting state. In task, subjects’
visual network, somatomotor network and ventral attention
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FIGURE 4 | The correlation between the mean value of sample entropy for seven cortical networks across 200 scans (100 subjects) in resting state (A) and
performing a working memory task (B).

FIGURE 5 | The correlation between the mean value of sample entropy for 42 cortical and 21 subcortical regions of interest as a measure of similarity in rest is
shown in (A,B) shows the correlation between the same regions during the working memory task. Correlation is generally reduced during task performance, but the
subcortical regions are less affected than the cortical regions.

TABLE 3 | Two-factor ANOVA comparing mean cortical/subcortical entropies in
200 scans at task and rest.

Source Sum of squares d.f. Mean square F score p-Value

Rest/task 0.0164 1 0.0164 34.2164 7.1983e-09

Cortical/
subcortical

0.0115 1 0.0115 23.9758 1.1815e-06

Interaction 8.7399e-05 1 8.7399e-05 0.1824 0.6695

Error 0.3815 796 4.7928e-04

Total 0.4095 799

network are categorized within moderate reliability and dorsal
attention network, limbic network, frontoparietal network, and
default mode network are categorized within fair reliability.

At the group level, the measurements are quite consistent.
Values are given in Table 6. The correlation between average
entropy values for the seven networks across the two scans is
0.96 during rest, and 0.87 during task. The lower group-level

TABLE 4 | Two-factor ANOVA comparing mean network entropies in 200 scans at
task and rest.

Source Sum of squares d.f. Mean square F score p-Value

Rest/task 0.0691 1 0.0691 148.3814 2.7085e-33

Networks 0.0231 6 0.0039 8.2657 6.8201e-09

Interaction 0.0062 6 0.0010 2.2006 0.0402

Error 1.2980 2786 4.6589e-04

Total 1.394 2799

correlation during task is consistent with the reduced consistency
during task observed at the individual level.

DISCUSSION

In this article sample entropy was used to quantify the temporal
complexity of fMRI data. The complexity of time-series obtained
from healthy subjects in resting state and during the performance
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TABLE 5 | Consistency of entropy values in seven functional networks for scan 1 and scan 2.

Rest Task

ICC r p Two-tail ICC r p Two-tail

Visual 0.454 0.456 0.883 0.429 0.432 0.845

Somatomotor 0.474 0.475 0.092 0.467 0.468 0.915

Dorsal attention 0.513 0.523 0.755 0.365 0.369 0.321

Ventral attention 0.586 0.587 0.834 0.454 0.466 0.177

Limbic 0.525 0.527 0.660 0.345 0.363 0.107

Frontoparietal 0.554 0.556 0.464 0.370 0.382 0.174

Default mode 0.535 0.539 0.700 0.381 0.400 0.377

TABLE 6 | The average entropy and standard deviation of each network for scan 1 and scan 2.

Rest Task

Scan 1 (x̄) Scan 1 (σ) Scan 2 (x̄) Scan 2 (σ) Scan 1 (x̄) Scan 1 (σ) Scan 2 (x̄) Scan 2 (σ)

Visual 0.19235 0.02226 0.19202 0.02018 0.1781 0.0174 0.1777 0.0198

Somatomotor 0.18497 0.02280 0.18109 0.02171 0.1765 0.0231 0.1767 0.0247

Dorsal attention 0.19045 0.02187 0.19108 0.01849 0.1857 0.0189 0.1834 0.0217

Ventral attention 0.19084 0.02180 0.19043 0.02078 0.1832 0.0198 0.1800 0.0249

Limbic 0.18790 0.02287 0.18892 0.02466 0.1800 0.0199 0.1756 0.0276

Frontoparietal 0.19515 0.02043 0.19650 0.01854 0.1838 0.0192 0.1804 0.0247

Default mode 0.19129 0.02115 0.19204 0.01880 0.1836 0.0182 0.1814 0.0248

of a working memory task were calculated. Furthermore, Pearson
correlation was calculated to examine the similarity between the
complexities of different brain networks across individuals.

Our results add to existing studies of complexity in the
BOLD signal to show that entropy varies across brain networks
and during working memory as compared to rest. In general,
entropy decreases during a task in a network-dependent manner.
Moreover, when examined across subjects, entropy tends to
change in the same way across many brain areas, giving rise
to strong correlations within subcortical regions and within
subcortical regions. Interestingly, the correlation is weaker
between subcortical and cortical regions, suggesting that while
entropy within each region tends to change in the same way
across subjects, there is greater variability in the relation between
the two regions at the individual level.

Entropy During Rest and Task
Performance
Entropy across the brain has an average value of 0.1913 ± 0.023
(in rest) and 0.1815± 0.019 (in working memory task), indicating
that it falls within a fairly narrow range. Within this range,
however, there are distinct variations across networks and
between cortical and subcortical structures. The cortical areas
both in the task data and rest data demonstrate significantly
lower entropy in comparison to the subcortical areas. These
findings are consistent with previous work by Jia et al. (2017),
who created a sample entropy map of the brain in healthy subjects
and showed higher values in the caudate, the olfactory gyrus, the
amygdala, and the hippocampus, and lower values in primary
sensorimotor and visual areas. If entropy of the BOLD signal is

taken as a surrogate for neural complexity, this indicates that
the neural activity in the cortical areas is more organized than
in subcortical areas, in line with the general view of the cortex
as the primary site of most cognitive processes. The decrease in
entropy in both cortical and subcortical areas during the working
memory task might then reflect an increase in the coordination
of activity needed to perform the task. Interestingly, the decrease
in entropy was not limited to areas typically activated by the
task. For example, the extensive activation during the task is
observed in the frontoparietal network (Barch et al., 2013), but
comparable changes in entropy are found in networks like the
limbic network that are not typically activated. Moreover, the
default mode network is deactivated during task performance,
so that if entropy directly reflected activity, entropy there should
increase during the task. In fact, we observe a decrease in entropy
instead, evidence that entropy is sensitive to aspects of the BOLD
signal that are not directly tied to activity levels. These findings
are consistent with a previous study by Zhang et al. (2016),
who observed differences in entropy across fMRI studies while
subjects were listening passively to (i) emotionally neutral words
alternating with no word as the control condition (neutral-
blank), and (ii) threat-related words alternating with emotionally
neutral word as the experimental condition (threat-neutral). The
relative independence of entropy measures from changes in the
BOLD signal associated with activation during a task suggests
they may provide complementary insight into brain function.

Similarity Across Networks
In both rest and task, the entropy of both the visual network
and the limbic network tends to be less coupled to other brain
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networks across individuals. For the most part, the relationship
between networks is similar across rest and task. However, during
the working memory task, the entropy in the dorsal attention
network becomes less coupled to entropy in the visual and
somatomotor networks. When the brain is further divided into
69 parcels, the decoupling between areas is especially noticeable
in the cortex, where there are clear differences in the amount of
change in correlation between particular cortical areas during the
task. This suggests that there may be an interesting amount of
individual variability that relates to task performance, and future
work should examine whether particular patterns of entropy
changes during task predict performance on the task by the
individual subject.

Limitations
As with all BOLD-based measurements, the entropy calculated
here is based on the hemodynamic response to neural activity
rather than the activity itself. The inherent lowpass filter of the
vasculature limits the frequency content of the signal and reduces
the amount of information it carries. However, the change in
entropy observed during task performance is promising evidence
that some of the information about the complexity of neural
activity is preserved in the BOLD signal.

CONCLUSION

BOLD-based measurements of sample entropy vary across
brain regions, with lower values in cortical than subcortical
areas. During performance of a working memory task, entropy
decreases across the whole brain but in a region-dependent
manner. Both of these findings are consistent with the idea
that entropy encodes information about the complexity of
neural activity that is separate from simple measurements
of activation. When examined across individuals, entropy
changes are generally correlated, particularly within cortical and
within subcortical areas. More variability in this correlation

is observed during the working memory task, hinting at
potentially important differences at the subject level that may be
linked to performance.
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