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The last year has seen the development and application of a large
number of novel techniques and probes, most notably for genome
manipulation and imaging. Since technological papers can appear
in a number of different journals it is easy to miss some of them.
This overview briefly summarizes recent developments while
providing links to the original publications. This technology
overview will be a regular feature inWorm and over time can serve
as a compendium describing new techniques and tools. For more
techniques, Methods in Biology has recently published two lengthy
issues devoted solely to C. elegans techniques.1,2 We encourage
authors to alert us to novel publications so that we can incorporate
them in future editions.

Genome Manipulation

RAD for positional cloning. The last few years have seen a
tremendous advancement of DNA sequencing technologies and
other technologies interrogating and manipulating the genome.
This has dramatically changed strategies to identify phenotype-
causing mutations.3 O’Rourke et al. recently described a new
rapid mapping technique based on restriction site associated
DNA polymorphism (RAD) markers, which are identified
through large-scale sequencing.4 In combination with selective
pull-down and sequencing of the genomic interval containing the
region of interest this provides a cost-effective and rapid approach
for positional cloning. This approach complements previously
published strategies using whole genome sequencing for simul-
taneous mapping and mutant identification.5,6

Single copy gene insertion. Evaluating the effects of transgenes
in C. elegans is notoriously difficult as most methods either insert
an uncontrollable amount of copies of the transgene, creating
unwanted dosage effects, or introduce extrachromosomal arrays
that are easily silenced, especially in the germline. Transposons
circumvent these problems and have emerged as powerful tools to
manipulate and modify the C. elegans genome.7 Recently, Zeiser
et al. provided a set of vectors designed to insert a single copy of a
transgene expressing fluorescently tagged proteins in the germline
and early embryo.8 The authors are able achieve this by exploiting
the Mos1 mediated single copy insertion9 that not only allows for
the insertion of a single copy transgene, but also allows for
targeted insertion. This strategy should help avoid dosage-related
effects of transgenes and problems with germline silencing.

Targeted gene manipulation. Targeted manipulation of the
C. elegans genome is still challenging. Wood et al. have adopted

nucleases targeted to specific sites by engineered zinc-finger
containing DNA-binding proteins (ZFN)10 or transcription
activator-like effector domains nucleases (TALENs).11,12 Both
strategies use nucleases fused to DNA-binding proteins, which
have been modified to bind specifically to the target sequence.
Repair of the double-strand breaks introduced by the nuclease
can lead to deletions or insertions at the break-point. This
approach has been used to efficiently recover deletions in genes
of interest.

Zheng et al. developed tools for special and temporal regulation
of MicroRNA activity.13 They are based on caged antisense
oligonucleotides that are released by the application of UV light,
allowing the researcher to block MicroRNA activity at specific
time points. This study provides valuable tools to examine the
requirements for MicroRNA at particular stages or in particular
cells.

Proteomics

Stable-isotope labeling for proteomics. Proteomic analysis in
C. elegans has proven to be a difficult as 15N-labeling, a technique
that labels proteins by converting isotope-labeled arginine to
proline,14 does not come without a few complications. However,
Fredens et al. and Larance et al. were able to bi-pass some of these
problems by using stable-isotope labeling with amino acids in cell
culture (SILAC).15,16 The group were able to avoid the proble-
matic arginine to proline conversion by feeding the worms heavy
lysine- and heavy arginine–labeled Escherichia coli, ultimately
creating new methods for efficient quantitative mass spectro-
metry-based proteomic strategies.

In vivo degradation assays. The degradation of proteins via
the ubiquitin/proteasome system (UPS) is extremely important
for maintaining the homeostasis of proteins, or proteostasis. It is
unclear what cues the UPS needs in order to maintain this delicate
balance of proteins. Segref et al. have designed an assay to uncover
these specific cues by identifying ubiquitin-dependent proteolysis
pathways. The group did this by engineering a novel substrate,
ubiquitin fusion degradation (UFD), tagged with a noncleavable
ubiquitin N-terminally fused GFP (UbV-GFP), under the control
of the promoter sur-5.17 Using this tagging method the group
were able to identify novel endogenous degradation factors in
C. elegans.

Metabolite profiling. Analysis of metabolites in the tissues of
experimentally altered C. elegans strains (altered via your method
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of choice) is an extremely valuable source for phenotypical
information. Not surprisingly, how the tissue is harvested and
processed is important to obtain high-quality, reproducible
studies. Geier et al. have tested and evaluated 12 combinations
using either the solvent chloroform/methanol or aqueous
methanol along with six types of tissue disruption. They
concluded that using 80% methanol as a solvent along with
bead-beating obtains the best results.18 Their optimization for
tissue harvesting and processing should provide others with more
time for actual experiments.

Imaging Probes and Techniques

Expanded palette for optogenetic control. Optogenetic methods
are increasingly popular to manipulate and study behavior in
C. elegans. Two reports early last year describe systems that use
light-activated channels to stimulate or inhibit neurons in freely
moving animals.20 Both systems can track a freely moving animal
in real-time and are able to illuminate targeted regions with laser
light while the animal is moving. This allows optogenetic studies
to be performed in unrestrained animals. The optogenetic tool
set for use in C. elegans has been expanded to include a photo-
activated adenylyl cyclase a (PACa), which can be used to
increase cAMP levels.21 This allows the in vivo manipulation of
yet another important intercellular signaling molecule. Recently,
Zhao et al. have gone even further by expanding the palette of
genetically encoded Ca2+ indicators.22 New indicators include an
improved green indicator as well as novel blue and red indicators.
This allows improved single-color imaging and also simultaneous
imaging of Ca2+ in different subcellular compartments using
different color indicators.

Microfluidic chambers for drug screening and imaging. The
small size of C. elegans and its ability to live in liquid culture
media has made microfluidic devices a method of choice to
observe and manipulate these animals. Novel developments in this
area include a new drug screening microfluidic platform, for
observing and recording multiple response parameters at high
resolution after drug application,23 a microfluidic chip to study
neuronal responses after multiple sequential chemical stimuli in
immobilized animals24 and a new device to study subcellular
processes like axonal transport in unanaesthetized animals.25

These high-throughput devices are changing how experiments
are designed and executed. In return, voluminous amounts of data
have already been collected with much more to come.

Lensfree imaging. As seen above, high-throughout screening
of C.elegans on a microfluidic platform is becoming standard
practice. One notable setback, however, is that a relatively large
field of view (FOV) is required for imaging many worms at one
time, and this is problematic. Standard microscopy techniques can
only image small FOVs at a time and require tedious mechanical
scanning, along with a bulky apparatus. One way to increase the
FOV is by using lensfree on-chip imaging, and Coskun et al. did
just that. Using a prism interface, they were able to capture the
emitted fluorescent signal on a large opto-electronic sensor-array.
The divergent nature of the fluorescent signal results in a blurry
image; however, using a compressive sampling algorithm they

were able to achieve a resolution of around 10 microns.26 Imaging
a large FOV, without time-wasting scanning, should greatly speed
up current research reliant on large, worm-on-a-chip screenings.

3D live imaging of dynamic processes. In vivo imaging is
especially useful for the study of dynamic biological processes. In
the past, confocal epi-fluorescent microscopy27 and single plane
illumination microscopy (SPIM)28 have been able to reconstruct
3D images of small organisms in vivo. However, these images
lack high-resolution and the ability to observe ongoing biologi-
cal processes mainly because the epi-fluorescence required for
visualization restricts the ability to image intrinsic or extrinsic
absorption. Riecker et al. have overcome this problem by adapting
the existing technology of optical projection tomography (OPT)
to resolve in vivo microscopic organisms at high-resolution using
both fluorescence and absorption/brightfield imaging. Using this
technology, the authors were able to resolve specific neuronal
structures in live C. elegans, making this system ideal for the
study of dynamic neuronal processes; such as degeneration,
regeneration and migration.29 Ultimately, this technology could
be combined with microfluidics for high-throughput, dynamic,
in vivo imaging.

Ultra quick, damage-free cryoprocessing. Preserving the
ultrastructure in a tissue sample during the fixation process is a
frustrating, long and perilous task. Typically, ice crystals that form
during the freezing process destroy the delicate structures of a
sample. One of the best ways to prevent ice crystals from forming
during the freezing process is to use freeze- substitution (FS). FS
circumvents damage by replacing the cellular fluid in the sample
with an organic solvent. However, getting good results with FS
requires quite a bit of time, taking anywhere from 3 h30 to 4 d,31

depending on the amount of tissue and cell type involved.
McDonald and Webb have vastly improved the FS protocol by
reducing this time to between 90 min and 3 h, otherwise known
as the quick-freeze substitution (QFS).32 Using this method, it is
now possible to freeze cells in the morning and be off to image
them by the afternoon.

Fluorescence on a nano scale. To get a full picture of the
molecular topography of a cell, we have to be able to visualize
proteins along with the organelles they are associated with. This
poses a problem as current microscopy of imaged fluorescent
proteins only gives a resolution around 200 nm. Not nearly
enough to resolve tiny proteins and organelles that fit in a much
smaller, even single digit, range. Combining the high resolution
obtained from electron microscopy (EM), with fluorophore
detection, would be the best of both worlds. Immunocyto-
chemical electron microscopy (immune-EM) is one answer to
this dilemma, but this method comes with its own technical
difficulties; including a lack of antibodies, low resolution and a
processing protocol that squelches much of the fluorescent signal.
Watanabe et al. have found an answer to this dilemma by
combining two microscopy techniques: stimulated emission
depletion microscopy (STED) and photo-activated localization
microscopy (PALM). This combo not only retains fluorescence,
but also can image at a nanoscale resolution.33 Using this method,
the authors were not only able to pinpoint a protein’s location,
but also to see its associated structure. Imaging cells in this way
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will provide us with a new level of detail, providing an increasingly
more descriptive molecular topography.

Automatic cell identification for genetic and phenotypic
assays. Identifying individual cells in C. elegans is not always
easy, even when automatic single-cell tracking and identifica-
tion techniques are applied. These techniques rely on a two-
stage process: first segment, then recognize. Needless to say, any
inaccuracies in the segmentation process results in inaccurate cell
identification. This process is also limited by how many color
channels are available during imaging and also by the availability
of transgenic animals. Qu et al. have bypassed these setbacks by
developing a new method for automatic cell identification called
simultaneous recognition and segmentation (SRS). This method
uses a direct atlas-to-image approach by aligning a 3D atlas image
to a 3D image stack. Using this approach, they were able to
correctly identify 97.7% of cells with accuracy rising to 99.1%
when heavily rotated images, around 90°, were removed from the
calculation.34 This new method not only improves the reliability
of existing protocols, it is also applicable to many other protocols,
including those for other animal models.

Behavioral Analysis

A new tracking system, called Multi-Worm-Tracker (MWT),
can simultaneously record the movement parameters of a large
number of animals moving on an agar plate in real time.35 Large
scale screens are now feasible for behavioral studies such as
chemotaxis assays or habituation assays. A new microfluidic
system with microstructured areas allows researchers to evaluate
the crawling behavior in response to defined spatio-temporal
chemical stimuli.36 The automated analysis helps to dissect
behavior into specific components and allows a more repro-
ducible and flexible experimental design. C. elegans move along
straight lines at a fairly constant speed in an electric field.

Taking advantage of this peculiar behavior, Maniere et al.
manufactured a simple sorting device to separate populations
according to their speed of movement, a gel electrophoresis
chamber.37 This technique was able to successfully separate
animals moving at different speeds.

Genome Analysis, Bioinformatics and Databases

The identification of homologous genes is not always trivial.
Recently She et al.38 used a new approach based on the Basic
Local Alignment Search Tool (BLAST).39 BLAST provides short
local alignments from pair-wise sequence comparisons, which
by themselves do not necessarily identify homologous genes.
She et al. took advantage of the speed of BLAST and used the
local alignments produced by BLAST as input for an algorithm
(genBlastG) to build gene models by exploiting sequence signals
to identify introns as well as the beginning and end of a gene.
genBlastG runs faster than commonly used algorithms while at
the same time performing better. With more and more genome
sequences becoming available genBlastG should speed up analysis
and gene identification.

An additional database, NEMBASE (link: www.nematodes.
org/nembase4/), allows for the analysis of nematode transcrip-
tomes. This database has recently been updated to version
NEMBASE4 and now contains data from 62 different nematode
species.40 As sequencing costs keep dropping, the sequencing of
new genomes no longer requires the resources of large genome
sequencing centers. Consequently, even small labs are able to
sequence nematode genomes. Kumar et al. established a wiki to
track sequencing efforts of nematode genomes with the
ultimate goal of having the genomes of 959 nematodes
sequenced.41,42 The wiki is community-based and should allow
researchers to connect more easily to establish collaborations or
to share data.
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