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Utilizing neuroimaging and machine learning (ML) to differentiate schizophrenia (SZ) patients from normal controls (NCs) and
for detecting abnormal brain regions in schizophrenia has several benefits and can provide a reference for the clinical diagnosis of
schizophrenia. In this study, structural magnetic resonance images (sMRIs) from SZ patients and NCs were used for dis-
criminative analysis. This study proposed an ML framework based on coarse-to-fine feature selection. The proposed framework
used two-sample t-tests to extract the differences between groups first, then further eliminated the nonrelevant and redundant
features with recursive feature elimination (RFE), and finally utilized the support vector machine (SVM) to learn the decision
models with selected gray matter (GM) and white matter (WM) features. Previous studies have tended to report differences at the
group level instead of at the individual level and cannot be widely applied. The method proposed in this study extends the
diagnosis to the individual level and has a higher recognition rate than previous methods. The experimental results of this study
demonstrate that the proposed framework distinguishes SZ patients from NCs, with the highest classification accuracy reaching
over 85%. The identified biomarkers are also consistent with previous literature findings. As a universal method, the proposed
framework can be extended to diagnose other diseases.

1. Introduction

Schizophrenia (SZ) is a group of major psychiatric diseases
with unknown etiology. SZ has the highest prevalence of all
mental illnesses and is very difficult to treat. Over the last few
decades, many neuroimaging studies have demonstrated
that schizophrenia is a disorder involving widespread ab-
normalities in the brain structure [1–5]. However, the
specific mechanisms involved in producing these structural
deficits remain incompletely understood. In recent years, it

has been consistently reported that SZ patients have
structural abnormalities in the brain, including the middle
temporal gyrus, middle frontal gyrus, thalamus, and corpus
callosum (CcSum) [6–8]. The brain structure location and
neurobiological processes underlying these structural ab-
normalities are central to the pathophysiology of schizo-
phrenia. Furthermore, alterations to the brain structure are
linked to key psychotic symptoms (such as auditory hal-
lucinations [9, 10], neurosensory deficits [11, 12], and social
dysfunction [13, 14] in SZ).
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At present, the diagnosis and monitoring of SZ mainly
hinge on doctors’ judgment through patients’ clinical re-
sponse, history, and neurological examination. The diag-
nosis and monitoring of SZ are heavily dependent on
doctors’ clinical experience and related knowledge. In other
words, this subjective judgment may add risk to the diag-
nosis and treatment of SZ. For a more accurate diagnosis,
neuroimaging methods have been widely used to study brain
morphology, which provides important information about
possible pathophysiologic mechanisms [15–18].

Due to its good contrast and high spatial resolution,
structural magnetic resonance imaging (sMRI) has become
one of the most popular neuroimaging modalities [19–21].
Most existing research has investigated conventional sta-
tistical analysis methods to explore the differences between
SZ patients and normal controls (NCs) based on group
studies [15, 22, 23]. Despite the ability of conventional
statistical analysis methods to detect some abnormal brain
regions in SZ, they are univariate methods and often
overlook the correlations among voxels, which often contain
important characteristic information. Furthermore, con-
ventional statistical analysis only considers differences
among groups, and it is difficult to generalize the diagnosis
to individual patients.

To overcome the drawbacks of conventional statistical
analysis, machine learning (ML) techniques have been ap-
plied to analyze neuroimaging data. These techniques can
extract stable structural or functional patterns from neu-
roimaging data and may potentially be useful for finding
significant neuroimaging-based biomarkers. Currently,
promising results have been reported for the classification of
SZ patients and NCs [24–26].

The most common feature of sMRI is the so-called brain
tissue volume (obtained from voxel-based morphometry).
However, the existence of too many irrelevant features can
greatly degrade the classification accuracy, especially in
neuroimaging studies. The preprocessed brain MRI may
contain >100,000 nonzero voxels. In comparison, the sample
size (number of subjects or observations) is often less than
1000 [27]. Thus, the number of features (voxels) greatly
exceeds the number of observations (sample size). This issue
is a common problem in machine learning studies and is
known as the “curse of dimensionality” [28–30].The curse of
dimensionality can lead to overfitting of the learned model.
Therefore, choosing and utilizing appropriate feature se-
lection methods can effectively improve the performance of
the model.

For most supervised ML studies, the corresponding
supervised feature selection method uses high-dimensional
neuroimaging data and the required outcome labels (e.g., +1
treatment responders and −1 treatment nonresponders) to
select relevant features and discard redundant features and
noise [27]. More specifically, these techniques are sub-
divided into three categories [30–32]: (1) “filter methods,”
which use simple statistical measures (e.g., mean, variance,
and correlation coefficients) to rank features according to
their relevance in detecting group-level differences, such as s
t-tests, analysis of variance (ANOVA), and Pearson corre-
lation coefficients; (2) “wrapper methods,” which use a cost

function to optimize the machine learning model and rank
features in terms of their relevance; and (3) “embedded
methods,” which select relevant features as “part” of the
machine learning process by enforcing certain “penalties” on
the machine learning model to yield a small subset of rel-
evant features.

A recent study [33] utilized a support vector machine
(SVM) to learn the decision model to classify Alzheimer’s
disease patients and normal controls, which achieved an area
under the curve (AUC) of over 88.82%. Another study [8]
used cortical thickness in conjunction with surface area in
schizophrenia patients to perform discriminative analysis
and obtained an accuracy of 85.0%. Though the good per-
formance with machine learning produced an excessive
number of features (voxels), there is a risk of overfitting
[34, 35]. To overcome this problem, a large number of
feature selection methods have been proposed. One study
[36] selected discriminative features using Fisher’s criterion
to train the SVM model. As a result, the classification ac-
curacy reached 76.25% for identifying bipolar disorder
patients from normal controls. Another study [37] detected
first episode psychosis, which utilized principal component
analysis (PCA) to reduce the number of nonrelevant features
in cortical thickness and gray matter volume and then ap-
plied deep neural networks (DNNs) to construct the clas-
sification model. The authors achieved a classification
accuracy of over 70.5%. However, most of these studies have
analyzed only gray matter (GM). In fact, several studies
[17, 38, 39] have demonstrated that there is a nonnegligible
change in white matter (WM) in SZ and that it is also
necessary to analyze WM.

As an effective feature selection algorithm, recursive
feature elimination (RFE) evaluates the contribution of each
feature and then eliminates the smallest contribution fea-
tures iteratively [40–42]. In this study, a machine learning
framework based on coarse-to-fine feature selection is
proposed. The framework first uses two-sample t-tests to
roughly select features and then eliminates the nonrelevant
and redundant features via RFE. Finally, the SVM is utilized
to learn the decisionmodels forWM andGM separately.The
experimental results demonstrate that the proposed method
is able to differentiate SZ patients from NCs with a maxi-
mum accuracy of approximately 85% and can find bio-
markers of SZ that are consistent with those found in
previous studies, including the left and right middle tem-
poral gyrus, right middle frontal gyrus, thalamus, corpus
callosum, fusiform gyrus, occipital lobe, cuneus, postcentral
gyrus, and cerebellum.

The contributions of our work include the following:

(1) We developed a machine learning framework to
differentiate SZ patients from NCs. The proposed
machine learning framework adopts a coarse-to-fine
approach to roughly reduce the dimensionality of
features with two-sample t-tests and then further
with RFE. Hierarchical feature selection is helpful for
preserving informative features and eliminating re-
dundant ones. Furthermore, coarse-to-fine feature
selection is easy to use to identify biomarkers of
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schizophrenia (abnormal brain regions). The pro-
posedmachine learning framework does not apply to
schizophrenia only. It can also be generalized to
other diseases to classify patients and NCs based on
sMRI.

(2) The experimental results demonstrate that the pro-
posed method achieves a better classification per-
formance than other methods. Furthermore, the
identified biomarkers are consistent with the find-
ings of previous related research works.

(3) Previous research works have mainly focused on
gray matter and have seldom investigated white
matter in schizophrenia patients. This study analyzes
gray matter and white matter separately and finds
that white matter has a better discriminative ability
than gray matter, which provides a reference for
clinical diagnosis.

2. Materials and Methods

2.1. Subjects and MRI Data Acquisition. The imaging data
and phenotypic information used in this study were ob-
tained from the Centers for Biomedical Research Excellence
(COBRE) dataset, which was collected and shared by the
Mind Research Network andThe University of New Mexico
(http://fcon_1000.projects.nitrc.org/indi/retro/cobre.html).
To reduce the impact of different subtypes of SZ, we chose
only paranoid schizophrenia from the dataset. Paranoid
schizophrenia is the most common type of SZ and has a
slower course of disease development, a later neurodegen-
erative onset time, and a better curative effect [43, 44].

In this study, we selected 34 paranoid schizophrenia pa-
tients and 34 normal controls from the dataset. The selected
subjects were right-handed and were aged between 20 and 60.
All subjects were examined and excluded if they had a history
of a neurological disorder, a history of mental retardation, a
history of severe head trauma with more than 5 minutes of loss
of consciousness, or a history of substance abuse or dependence
within the last 12 months. Diagnostic information was gath-
ered using the Structured Clinical Interview forDSMDisorders
(SCID). The demographics are reported in Table 1.

All sMRI data were acquired with a multiecho MPRAGE
(MEMPR) sequence. The parameters used were a repetition
time (TR) of 2530ms; echo times (TEs) of 1.64, 3.5, 5.36, 7.22,
and 9.08ms; an inversion time (TI) of 900ms; an FOV (field of
view) of 256× 256mm; a matrix of 256× 256×176; a flip angle
of 7°; a voxel size of 1× 1× 1mm; a slab thickness of 176mm; a
number of echoes of 5; and a total scan time of 6min.

2.2. Preprocessing. sMRI data were analyzed with the Sta-
tistical Parametric Mapping (SPM) software package SPM8
(Wellcome Department of Imaging Neuroscience, London,
UK; http://www.fil.ion.ucl.ac.uk/spm) using the voxel-based
morphometry (VBM) [45, 46] protocol. First, spatial nor-
malization of all 3D volumeswith the T1 template was provided
by SPM8 for bias correction (removal of positional and volume
differences). Second, each T1-weighted MRI was segmented
into three tissue probabilitymaps (TPMs), includingGM,WM,
and cerebrospinal fluid (CSF). Third, the tissue volume was
obtained by modulating the segmented tissue maps. Finally, a
Gaussian kernel with a 6mm isotropic full width at half
maximum was employed for spatial smoothing.

2.3. Machine Learning Framework. After the preprocessing
step, feature selection based on the coarse-to-fine approach
was conducted to reduce the dimensionality of the features.
First, two-sample t-tests were conducted to roughly select
features, and then, RFE was used to further eliminate
nonrelevant and redundant features. Lastly, a linear SVM
classifier was trained to classify SZ patients and NCs. The
workflow of the proposed machine learning framework is
shown in Figure 1.

2.4. Feature Selection. To obtain a good classification per-
formance, two-sample t-tests were used to perform a rough
preliminary selection in this paper. Then, RFE was used to
further select discriminative features.

2.4.1. Two-Sample t-Tests. Due to the large amount of re-
dundant information in sMRI, two-sample t-tests were used
to initially screen the voxels. As a classical statistical analysis
method, two-sample t-tests can extract significant differ-
ences between groups by computing the statistical signifi-
cance value. Suppose x1 and x2 represent the means of a
feature of the two groups. S21 and S22 denote the corre-
sponding variances, and the significant differences between
groups on this feature can be calculated as follows:

T �
x1 − x2

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

����������������������������������������������������
N1 − 1( 􏼁S21 + N2 − 1( 􏼁S22( 􏼁/ N1 + N2 − 2( 􏼁( 􏼁 · 1/N1( 􏼁 + 1/N2( 􏼁( 􏼁

􏽱 , (1)

where N1 and N2 denote the sample sizes. The ability of a
feature to distinguish between two groups is evaluated by the

absolute value of T. The greater the absolute value of T, the
more discriminative the feature.

Table 1: Demographic information for patients with SZ and NCs.

SZ NC
Gender (M/F) 27/7 23/11
Age 36.85± 10.91 39.53± 10.59
Note: SZ, schizophrenic; NC, normal control; M, male; F, female.
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2.4.2. Recursive Feature Elimination. RFE [47] is a greedy
method for ranking all features to obtain an optimal feature
subset for classification. To perform this ranking, RFE trains
a machine learning model (e.g., linear support vector machine
or relevance vectormachine), then ranks all features in terms of
some specific ranking criteria, and finally removes the features
with the smallest rankings. The procedure is repeated until all
features are removed. Since RFE can eliminate a fixed quantity
or percentage of features depending on the user’s requirements
and has a strong ability to explain differences, it has been
popular in neuroimaging studies [40–42].

Currently, most studies [48–51] have combined RFE
with the SVM to perform feature selection. The SVM is
presently one of the best-known classification techniques
and has computational advantages over other classification
methods, and many previous studies [52–56] have proven
that the linear SVM performs well in small sample datasets.
To allow the classifier to generalize unseen data well and to
avoid overfitting problems, we introduced the SVM soft
margin classifier.

Taking the soft margin SVM as an example, assuming m

input training samples x � x1, x2, . . . , xm􏼈 􏼉, each sample has

Preprocessing Coarse-to-fine feature selection

Two-sample t-test GM

WM
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Figure 1: Workflow diagram of the proposed framework. The framework contains three phases: (1) the preprocessing phase, which
normalizes the brains of different subjects into the standard MNI space, segments them into gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF), and smoothes voxels to reduce the effects of noise; (2) the feature selection phase, which uses two-sample t-tests
and RFE to select discriminative features with a coarse-to-fine approach; and (3) the feature classification phase, which employs the linear
SVM to classify features.
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n features (i.e., xi � xi1, xi2, . . . , xin􏼈 􏼉, i � 1, 2, . . . , m{ }) and
corresponding labels y � y1, y2, . . . , ym􏼈 􏼉; the decision
function D(x) is formulated as

D(x) � min
ω,b,ζ i

1
2

‖ω‖
2

+ C 􏽘
m

i�1
ζ i,

precondition:

ζ i � 1 − yi ωTxi + b( 􏼁

subject to

yi ωTxi + b( 􏼁≥ 1 − ζ i,

ζ i ≥ 0,

(2)

where ω is the weights of features, C is a nonzero penalty
coefficient that controls the trade-off between the training
error and the margin, and ζ is called slack variables that are
associated with the misclassified samples.

Since the above optimization problem is difficult to
solve, it can be rewritten as a dual problem using a La-
grangian multiplier method as follows:

D(x) � max
a

􏽐
m

i�1
αi −

1
2

􏽘

m

i,j�1
αiαjyiyjx

T
i xj,

subject to

αi ≥ 0,

􏽐
m

i�1
αiyi � 0,

(3)

where α corresponds to the weights of observation samples.
The observation samples with nonzero weights represent
support vectors. Consequently, the weights of features or
voxels are calculated as

ω � 􏽘
m

i�1
αiyixi. (4)

To evaluate the contribution of each feature, the weightω
is ranked based on its squared value (ωi)

2. Finally, the lowest
ranking feature is removed from feature sets F:

F � F − Fω[Lowest Ranking]. (5)

Subsequently, the above process is iterated until a
termination criterion is reached or until the feature set F

is empty. Then, each feature corresponds to a weight,
which expresses the importance of the feature. Finally, a
user-defined ratio (e.g., 2%) is applied to remove the
lower ranking features. The RFE process is shown in
Figure 2.

2.5. Performance Evaluation. To assess the performance of
the proposed method robustly, leave-one-out cross valida-
tion (LOO) was applied in this study. Suppose there are N

samples of SZ patients and M samples of NCs; of them, N1
samples of SZ patients and M1 samples of NCs are correctly
classified. Five performance measures (accuracy, sensitivity,
specificity, F2 measure, and G mean) were used to evaluate
the performance:

accuracy(ACC) �
TP + TN

TP + FN + TN + FP
, (6)

sensitivity(SN) �
TP

TP + FN
, (7)

specificity(SP) �
TN

TN + FP
, (8)

geometricmean(GM) �

��������������������
TP × TN

(TP + FN) ×(TN + FP)

􏽳

, (9)

Dicemeasure(DM) �
2

(TP + FN)/TP +(TP + FP)/TP
,

(10)

F2measure(F2M) �
5

4(TP + FN)/TP +(TP + FP)/TP
,

(11)

where TP � (N1/N), TN � (M1/M), FN � ((N − N1)/N),
and FP � ((M − M1)/M). SN represents the proportion of
SZ patients predicted correctly, and SP represents the
proportion of normal controls predicted correctly. GM, DM,
and F2M are defined as the harmonic mean of SN and

Training examples

Feature sets of each examples

Training examples

Repeat until termination criterion:

Inputs:

Operation:

Output:
Reserved feature list F

x = {x1, x2, ..., xm}

y = {y1, y2, ..., ym}

F = {1, 2, ..., n}

F = F – Fω[Lowest Ranking]

α = SVMtrain (x, y)

ω =
n
i=1 αiyixi

ωi = (ωi)2

ω = Rank {ω1, ω2, ..., ωn}

Figure 2: Flow diagram for recursive feature elimination. The
entire flow consists of three phases: obtaining the weights of the
observation samples α, calculating the weight of each feature and
ranking based on the weight, and removing the lowest ranking
feature from the feature set.
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precision (TP/(TP + FP)), of which GM and DM are
computed with the same weights of SN and precision and
F2M is computed with higher weights of SN.

3. Results

To verify the performance of the coarse-to-fine feature se-
lection proposed in this study, we compared it with six other
machine learning methods: (1) directly using SVM to classify
(SVM), (2) using two-sample t-tests to select features and
SVM to classify (2T + SVM), (3) using RFE to select
features and SVM to classify (RFE + SVM), (4) using
principal component analysis (PCA) and SVM to classify
(PCA + SVM), (5) using independent component analysis
(ICA) and SVM to classify (ICA + SVM), and (6) using
tree-based feature selection and SVM to classify
(TBFS + SVM). Furthermore, to test the performance of
the proposed machine learning framework, we compared
it with other frameworks that select features roughly
based on 2T, perform PCA (ICA, TBFS), and then apply
SVM for classification (2T+PCA+SVM, 2T+ ICA+SVM,
2T+TBFS+SVM). Finally, we analyzed the biomarkers of SZ
using coarse-to-fine feature selection.

3.1. Parameter Setting. A linear SVM was applied in this
study, and previous studies [52, 53] proved that the linear
SVM works better on small sample datasets. The value of the
penalty coefficient “C” was set to 1.0 because many exper-
imental tests have shown that a value of 1.0 can obtain a
satisfactory discrimination performance.

The number of retained features has a significant impact
on the results when using RFE. We tested the effect of
different numbers of retained features on the results. The
experimental results showed that retaining 40% and 14% of
the voxels for GM and WM, respectively, and using an
elimination ratio of voxels each round of 5% achieved the
best performance.

3.2. Two-Sample t-Tests. To test the performance of different
P values, two-sample t-tests were performed with three
different P values (<0.05 [57–59], <0.01 [60], and <0.001
[61]). The cluster-size value was set to 50 [62–65], and three
differentiated tissue maps of GM and WM were obtained
and are shown in Figures 3 and 4. From the figures, we can
see that as the P values decrease, the region selected (red
parts) becomes smaller. Consequently, the smaller the P

value, the more the information being filtered, which may
result in the removal of useful features. Therefore, the
P< 0.05 criterion was adopted in our coarse-to-fine feature
selection algorithm.

3.3. Classification Performance. The results of different
methods based on GM andWM are shown in Tables 2 and 3,
respectively.

From Table 2, we can see that feature selection can
achieve a better classification performance than using SVM
directly for GM. When using only one feature selection

algorithm, such as 2T+ SVM, RFE+ SVM, or PCA+ SVM,
RFE+ SVM can achieve the best performance, which shows
that RFE has a better feature selection ability than other
methods. When the coarse-to-fine approach is used, such as
2T+RFE+ SVM, 2T +PCA+ SVM achieves the best per-
formance and reaches an accuracy of 79.81%. The proposed
2T+RFE+ SVM method achieves a similar performance
(accuracy of 79.62%).

From Table 3, when only one feature selection algorithm
is used for WM, all five feature selection methods
(2T + SVM, RFE + SVM, PCA+ SVM, ICA+ SVM, and
TBFS-SVM) have a better classification performance than
using SVM directly. However, the performances of
RFE+ SVM, PCA+ SVM, ICA+ SVM, and TBFS + SVM are
worse than that of 2T + SVM for WM. The reason for this
result may be that WM has more redundant features, and
RFE, PCA, and other methods did not identify useful fea-
tures from many irrelevant voxels. In contrast, as a tradi-
tional statistical analysis, it is easy to explore significant
differences based on prior knowledge about different groups.
Four coarse-to-fine frameworks perform better than using
single feature selection, and the proposed 2T+RFE+ SVM
method achieves the best performance and reaches an ac-
curacy of over 85% for WM.

According to the above experiments, we can see that
coarse-to-fine feature selection selects more discriminative
features. Using the same coarse-to-fine machine learning
framework, RFE can achieve a better performance than the
others, and the receiver-operating characteristic (ROC)
curves ofWM andGMwith the proposedML framework are
shown in Figure 5. The AUC represents the performance of
the classification experiment. The larger the AUC, the better
the performance. It can be seen that the AUC for WM is
better than that for GM.

3.4. Identification of Abnormal Brain Regions. The dis-
criminative brain regions (biomarkers) of GM and WM
selected by the proposed method are illustrated in Fig-
ure 6. We selected clusters as biomarkers when the cluster
size was ≥50. For GM, 14 brain regions were detected. For
WM, 24 brain regions were detected. Detailed brain
biomarkers are shown in Tables 4 and 5. From Table 4, we
can see that the GM brain regions that were detected
included the cerebellum, fusiform gyrus, temporal lobe,
occipital lobe, frontal lobe, right supramarginal gyrus,
angular gyrus, and postcentral gyrus. From Table 5, we
found that the WM brain regions that were detected
included the cerebellum, fusiform gyrus, temporal lobe,
occipital lobe, frontal lobe, lentiform nucleus, thalamus,
corpus callosum, cuneus, subgyral, and postcentral gyrus.
The selected abnormal brain regions were similar in GM
and WM. This finding shows that SZ can cause changes in
specific brain regions, and these regions are also con-
sidered SZ biomarkers.

4. Discussion

Previous group-level statistical analysis of neuroimaging
data uncovered some neuroanatomical and functional
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differences between SZ patients and NCs [66–68]. Never-
theless, those findings had limited clinical applications. Ma-
chine learning can be adopted for single subject prediction and
has shown significant potential for disease diagnosis [69–72] at
the individual level.

To verify the performance of the proposed method, we
performed the following experiments: (1) We used the SVM
directly on smoothed voxels. (2) We used single feature

selection and SVM, such as 2T+SVM, RFE+SVM,
PCA+SVM, ICA+SVM, and TBFS+SVM. (3) We used
coarse-to-fine feature selection methods for classification, such
as 2T+PCA+SVM, 2T+ ICA+SVM, 2T+TBFS+SVM, and
2T+RFE+SVM.The experiments illustrated the following: (1)
SVM classification with feature selection is better than direct
SVM classification, which means that the feature selection
method can discard redundant features and extract useful

(a) (b) (c)

Figure 3:Three two-sample t-test maps with different P values in GM.The red brain region represents the differential brain region between
SZ patients and NCs. As the P value becomes stricter (smaller), the differential brain region becomes smaller. (a)P< 0.05. (b)P< 0.01.
(c)P< 0.001.

(a) (b) (c)

Figure 4: Three two-sample t-test maps with different P values in WM. As the P value becomes smaller, the changes in WM are similar to
those in GM. However, compared with GM, the differentialWMbrain regions between SZ patients and NCs are relatively small. (a)P< 0.05.
(b)P< 0.01. (c)P< 0.001.

Table 2: Classification performance of different methods based on GM.

Method ACC SN SP GM DM F2M
SVM 0.6277 0.6923 0.5711 0.6288 0.6167 0.6339
2T+ SVM 0.6829 0.7226 0.6431 0.6817 0.6741 0.6812
RFE+ SVM 0.7326 0.8427 0.6533 0.7420 0.7321 0.7699
PCA+ SVM 0.7057 0.7712 0.6521 0.7092 0.7029 0.7103
ICA+ SVM 0.6806 0.7114 0.6862 0.6987 0.6571 0.6968
TBFS + SVM 0.7118 0.8200 0.6267 0.7169 0.7155 0.7327
2T+PCA+ SVM 0.7981 0.8193 0.7704 0.7945 0.7896 0.7922
2T+ ICA+ SVM 0.7504 0.7727 0.7111 0.7413 0.7359 0.7394
2T+TBFS + SVM 0.7794 0.8009 0.7484 0.7742 0.7658 0.7701
Ours 0.7962 0.8142 0.7777 0.7957 0.7851 0.7896
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information. (2) Among the single feature selection frame-
works, 2T+SVM achieved good results for WM, but
2T+SVM required prior knowledge about the groups, which
may lead to the poor generalizability of the learning model.
Furthermore, using the same framework (RFE+SVM,
PCA+SVM, etc. vs. 2T+RFE+SVM, 2T+PCA+SVM, etc.),
the frameworks for RFE were synthetically better, which in-
dicated that the features extracted by RFE were more efficient.
(3) The performance of the coarse-to-fine framework was
better than that of single feature selection methods, which
indicates that selecting features hierarchically can filter features
more effectively.

Structural abnormalities have been repeatedly demon-
strated in SZ patients compared to NCs in previous MRI
studies [73–75]. However, most research has focused on DTI
to analyze structural changes in SZ and has rarely found
structural differences on sMRI. In the current study, the GM
andWM features selected by the proposed method provided
discriminatory information about anatomically abnormal

patterns in schizophrenia. The proposed method in the
current study revealed sensitive and accurate information
about anatomically abnormal patterns in the frontal lobe,
postcentral gyrus, corpus callosum, and cuneus, especially in
the thalamus, fusiform gyrus, temporal lobe, and cerebellum.
These identified abnormal biomarkers were consistent with
those found in the literature [8, 76–79]. Some brain regions
were found in both GM and WM, including the cerebellum,
fusiform gyrus, temporal lobe, occipital lobe, and frontal
lobe, which showed that SZ could indeed cause structural
changes in these brain regions. Many previous studies have
reported that the concentrations of some substances (such as
dopamine) change in the cingulate cortex and amygdale in
SZ, but we did not detect structural changes in these areas.
The possible reason is that changes in the dopamine con-
centration do not cause structural abnormalities.

This study has several limitations. First, a small sample
size is a common pitfall in most similar studies. To improve
the generalizability and clinical applicability of machine

Table 3: Classification performance of different methods based on WM.

Method ACC SN SP GM DM F2M
SVM 0.5689 0.5674 0.5716 0.5695 0.5621 0.5665
2T+ SVM 0.7832 0.7818 0.7871 0.7844 0.7798 0.7788
RFE+ SVM 0.6427 0.6700 0.6300 0.6497 0.6418 0.6469
PCA+ SVM 0.6172 0.5968 0.6370 0.6166 0.6101 0.5996
ICA+ SVM 0.5774 0.5796 0.5830 0.5813 0.5721 0.5740
TBFS + SVM 0.5879 0.5547 0.6211 0.5867 0.5662 0.5593
2T+PCA+ SVM 0.8372 0.8474 0.8323 0.8398 0.8338 0.8375
2T+ ICA+ SVM 0.7992 0.7992 0.8037 0.8014 0.7952 0.7978
2T+TBFS + SVM 0.8197 0.7926 0.8351 0.8136 0.8080 0.7965
Ours 0.8527 0.8587 0.8508 0.8547 0.8497 0.8532
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Figure 5: ROC curves using four coarse-to-fine ML frameworks. The ranked list of AUCs is 2T +RFE+ SVM, 2T+ ICA+ SVM,
2T+PCA+ SVM, and 2T+TBFS+ SVM. The proposed framework, 2T +RFE+ SVM, has the best AUC of over 97%. (a) GM. (b) WM.
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learning methods, more samples need to be collected in
future studies. Second, only sMRI data were investigated.
Multimodal data, such as fMRI, DTI, and brain connectivity
data, remain to be explored to provide either complementary
or additional information for accurate recognition and
lateralization in SZ. Finally, we identified the discriminative
regions based on the AAL, BA, and JHU atlas, with the

potential drawback that some atlas areas might be too large
or unspecific to detect group differences.

5. Conclusion

In this study, a coarse-to-fine ML framework was investi-
gated to differentiate SZ patients from NCs and to detect
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Figure 6: Abnormal brain regions located by our method. The selected feature is shown as a cross section of the brain, which is scanned
every 5mm, and the red brain regions are selected regions. Each discriminative brain region contains more than 50 voxels and has a P value
<0.05. (a) GM. (b) WM.

Table 4: Abnormal brain regions (biomarkers) of GM.

Location
Region of interest

(ROI) Size of cluster MNI coordinates
P value

AAL BA X Y Z
lCbe9 105 5 167 −6 −55.5 −45 0.05
rCbe9 106 — 88 9 −54 −45 0.05
FFG.R 56 20 251 31.5 −8 −41.5 0.05
rCbeCru1 92 — 96 34.5 −63 −39 0.05
lCbeCrul 91 — 168 −36 −53.5 −37 0.05
lCbe6 99 — 87 −36 −52 −41.5 0.05
lCbe4-5 97 — 61 −18 −42 −28.5 0.05
ITG.R 90 20 63 55.5 −30 −30 0.05
MOG.L 51 17 127 −26.5 −96.5 0 0.05
SOG.L 49 17 62 −22 −96.5 15.5 0.05
MTG.R 86 37 311 45.5 −66 14.5 0.05
MTG.L 85 37 69 −48 −61.5 4.5 0.05
IFGtriang.R 14 48 60 40.5 19.5 21 0.05
SMG.R 64 48 77 51 −48 27 0.05
ANG.R 66 40 69 36 −56 37 0.05
PoCG.L 57 3 87 −21 −34.5 58.5 0.05
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biomarkers of SZ using sMRI. The experiments demon-
strated that feature selection algorithms can effectively
improve the classification performance. The use of coarse-
to-fine feature selection extractedmore effective information
and significantly improved the classification accuracy. The
experiments also indicated that the classification perfor-
mance of WM was significantly better than that of GM.
Therefore, it can be concluded that SZ has a greater impact
on WM. This conclusion is consistent with previous find-
ings. Furthermore, the proposed coarse-to-fine feature se-
lection effectively located abnormal brain regions, which
provides a helpful aid for the clinical diagnosis of SZ. As a
universal method, the proposed framework can be extended
to diagnose other diseases.
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