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abstract

PURPOSEHLA protein receptors play a key role in cellular immunity. They bind intracellular peptides and display
them for recognition by T-cell lymphocytes. Because T-cell activation is partially driven by structural features of
these peptide-HLA complexes, their structural modeling and analysis are becoming central components of
cancer immunotherapy projects. Unfortunately, this kind of analysis is limited by the small number of ex-
perimentally determined structures of peptide-HLA complexes. Overcoming this limitation requires developing
novel computational methods to model and analyze peptide-HLA structures.

METHODS Here we describe a new platform for the structural modeling and analysis of peptide-HLA complexes,
called HLA-Arena, which we have implemented using Jupyter Notebook and Docker. It is a customizable
environment that facilitates the use of computational tools, such as APE-Gen and DINC, which we have
previously applied to peptide-HLA complexes. By integrating other commonly used tools, such as MODELLER
and MHCflurry, this environment includes support for diverse tasks in structural modeling, analysis, and
visualization.

RESULTS To illustrate the capabilities of HLA-Arena, we describe 3 example workflows applied to peptide-HLA
complexes. Leveraging the strengths of our tools, DINC and APE-Gen, the first 2 workflows show how to perform
geometry prediction for peptide-HLA complexes and structure-based binding prediction, respectively. The third
workflow presents an example of large-scale virtual screening of peptides for multiple HLA alleles.

CONCLUSION These workflows illustrate the potential benefits of HLA-Arena for the structural modeling and
analysis of peptide-HLA complexes. Because HLA-Arena can easily be integrated within larger computational
pipelines, we expect its potential impact to vastly increase. For instance, it could be used to conduct structural
analyses for personalized cancer immunotherapy, neoantigen discovery, or vaccine development.
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INTRODUCTION

Immunotherapy treatments are now at the forefront of
methods used for cancer therapy. These treatments aim
at harvesting a patient’s own immunologic defenses to
identify and eliminate cancer cells.1 Many of these im-
munotherapy treatments involve class I HLA protein re-
ceptors. HLA receptors bind peptides produced by the
cleavage of intracellular proteins, which is a continuous
process present in almost every cell. The resulting peptide-
HLA (pHLA) complexes are then exposed at the surface of
cells. Also present in cancer cells, this mechanism allows
circulating T-cell lymphocytes to recognize tumor-associated
peptides, thus triggering T-cell activation, tumor elimination,
and immunologic memory against the tumor.1,2

It has been shown that immunologic outcomes are
partially driven by structural features of pHLA complexes.2-4

Therefore, the structural modeling and analysis of

these complexes are becoming essential to ensure the
efficacy and safety of immunotherapy treatments.2

However, pHLA structural features are affected by
the genetic variability of both patients and tumors.2,5

First, the set of peptides available for presentation
reflects the patient’s genetic background and cancer-
specific alterations.2,5 Second, each individual has up
to 6 class I HLA alleles,6 among the nearly 19,000
alleles in the human population.7 Each allele encodes
for a receptor with specific characteristics, which will
display a different pool of peptides. Therefore, the
structural modeling and analysis of pHLA complexes
for cancer immunotherapy require fast and custom-
izable methods that can handle patient-specific data.

Unfortunately, the cost and time requirements of gold-
standard experimental techniques in structural biology
prevent their use in personalized medicine. In addi-
tion, few structures of pHLA complexes have been
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determined experimentally. Therefore, researchers have
turned toward computational methods for the structural
modeling of pHLA complexes. However, the length and
flexibility of displayed peptides represent major challenges
for traditional methods.5 As an alternative, in previous work,
we have developed several computational tools for the
accurate and efficient modeling of pHLA complexes. For
example, we have described a fast method, called APE-
Gen, to generate ensembles of peptide conformations
bound to a given HLA receptor.8 We have also developed
a meta-docking approach, called DINC, which allows
prediction of binding modes of pHLA complexes.9,10

In this report, we present a higher-level platform, called
HLA-Arena, that allows the carrying out of sophisticated
structural modeling and analysis of pHLA complexes. In-
stead of having to deal with several computational tools,
HLA-Arena provides researchers with a single customizable
environment that fully integrates the tools we have de-
veloped, as well as other commonly used software. HLA-
Arena simplifies the interactions with these tools by
leveraging the capabilities of Jupyter Notebook and Docker.
It allows users to perform various workflows, each involving
a specific combination of tools and steps within a coherent
scenario. In addition to APE-Gen and DINC, HLA-Arena
currently integrates MODELLER11 for homology modeling,
MHCflurry12 for binding affinity prediction, and NGL
Viewer13 for structure visualization, among others.

Here, we present 3 example workflows illustrating the
capabilities of HLA-Arena. The first relies on DINC to
predict the binding modes of 2 known peptides with their
corresponding HLA receptors (ie, geometry prediction).
The second relies on APE-Gen to assess differences in
binding between peptides restricted to a given HLA re-
ceptor, based on generated binding mode ensembles (ie,
binding prediction). The third aims at performing structure-
based virtual screening, which requires speed and scal-
ability. Using real immunopeptidomic data and a fictitious
diplotype (ie, 6 classic class I HLA alleles), we show how

MHCflurry and APE-Gen can complement each other to
select target peptides for a hypothetic immunotherapy
treatment.

METHODS

Computational Approaches for pHLA Binding

Mode Prediction

Despite their huge sequence diversity, HLA receptors
feature conserved secondary and tertiary structures, as
illustrated by available data.14-16 Such conserved folding
makes HLA modeling an easy task with tools leveraging
homology modeling.8,17,18 In contrast, predicting the
bindingmodes of peptides to HLA receptors is much harder
because of the size and flexibility of these peptides. As
recently reviewed, strategies used to overcome this chal-
lenge include constrained backbone prediction, con-
strained termini prediction, and incremental prediction.5

In recent years, we have implemented 2 computational
approaches for pHLA binding mode prediction using these
strategies. The first, called APE-Gen (anchored peptide-
MHC ensemble generator), can quickly produce an en-
semble of binding modes for a pHLA complex, using termini
templates to position the peptide in the HLA binding cleft
(Fig 1; Appendix).8 The second, called DINC, can in-
crementally dock a peptide in the binding site and does not
require any template (Fig 2; Appendix).9,10,21 Each approach
has different strengths and limitations and can therefore suit
various user needs, depending on the task at hand. For
instance, its speed makes APE-Gen better suited for large-
scale modeling and structure-based virtual screening. In
contrast, because it does not rely on templates, DINC’s
predictions can be more general and account for unusual
binding modes, thus making it more suited for geometry
prediction.9,22 Both APE-Gen and DINC have been validated
in previous publications.8,10,23 In this report, we present
a unified environment that facilitates the use of APE-Gen,
DINC, and other tools for various research applications.

CONTEXT

Key Objective
Enabling large-scale structural modeling and analysis of peptide-HLA complexes for cancer immunotherapy applications.
Knowledge Generated
We created a customizable environment, called HLA-Arena, with user-friendly computational workflows that allow for varied

structure-based analyses of peptide-HLA complexes. To illustrate this, we show how researchers can use HLA-Arena to
perform geometry prediction of peptide binding modes, peptide binding energy prediction, and structure-based virtual
screening of tumor-derived peptides, for any classic class I HLA of interest.

Relevance
HLA-Arena can be integrated in computational pipelines to support basic cancer research or to help inform physicians in

preclinical settings. It can be used to perform structure-based selection of peptides for T cell–based immunotherapy,
neoantigen discovery, and vaccine development.
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HLA-Arena: Structural Modeling and Analysis of

pHLA Complexes

Using Jupyter Notebook and Docker, we have created
a customizable environment, called HLA-Arena, that en-
ables researchers to easily model any class I pHLA complex
of interest and perform varied structural analyses (Fig 3).

HLA-Arena includes different workflows, defined as
separate notebooks, which consist of the following
main stages:

Input processing. Available structures of HLA receptors are
obtained from the Protein Data Bank (PDB)27 to be used as
such or as templates. Unavailable HLA structures are

A   Anchor alignment B   Backbone reconstruction

C   Full-atom reconstruction and local optimization

FIG 1. Generating bindingmode ensembles with APE-Gen. (A) Templates of backbone termini are used to position
the anchor residues of a peptide in the binding site. (B) The random coordinate descent loop closure tool19 is used
to generate an ensemble of backbone conformations for this peptide. (C) Full-atom reconstruction of peptide side
chains and local optimization of the resulting complex are performed for each sampled backbone. The highest-
quality binding mode can be selected to be used as a template for the next round of the iterative process.
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FIG 2. Workflow of DINC parallel and incremental meta-docking approach. DINC starts by selecting a small fragment of the input ligand, with only k flexible
bonds. Multiple conformations are created by randomly sampling different values for the dihedral angles of this fragment. These n conformations are then
used as input for multiple independent runs of a docking tool (in this example, Vina20), which are executed in parallel by different threads. From all the
binding modes produced by these parallel runs, the n best modes are selected for expansion; they are grown by adding several atoms and bonds from the
input ligand. These larger fragments are then docked independently, in parallel, while keeping the number of flexible bonds equal to k. This process is
repeated until the entire input ligand has been incrementally reconstructed and is docked in the binding site of the receptor.
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modeled with MODELLER,11 using an HLA sequence and
the structure of a similar HLA receptor as template, if these
are provided by the user. Alternatively, users can just
provide an allele name (eg, HLA-A*24:02); HLA-Arena will
then fetch the proper sequence from IMGT/HLA,7 and
a reasonable template (based on the HLA supertype28

classification) from the PDB. In addition, binding affinity
of peptides can be estimated with MHCflurry12 to select
the most relevant ones. Minimal example: HLA_allele =
arena.model_hla(‘HLA-A*24:02’)

Peptide docking. Structures of pHLA complexes are
modeled with APE-Gen and/or DINC, which only require the
sequence of the target peptide(s) and the HLA structure(s)
obtained previously. Modeled structures can also be mini-
mized with a force field using OpenMM.24

structure = arena.dock(‘QFKDNVILL’, HLA_allele)

Data analysis. A variety of postprocessing options for data
analysis can be incorporated into a workflow. These include
binding mode rescoring or peptide ranking with DINC and
structure visualization with NGL Viewer,13 among others.
Minimal example: arena.visualize(structure)

For a smooth user experience, all computational tools in-
volved in HLA-Arena are packaged within a Docker image
(Appendix provides installation details), thus eliminating
the burden of managing software dependencies. Another
advantage of Docker containerization is that it makes HLA-
Arena platform agnostic. As a result, it can be deployed on
a desktop computer or a high-performance computing
cluster, across different operating systems. Users can
customize available workflows by adding modeling or
analysis steps. We plan to continuously expand the ca-
pabilities of HLA-Arena by providing support for additional
tools.29-31
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FIG 3. HLA-Arena leverages Docker and Jupyter Notebook, offering a customizable environment to build and
execute various workflows for the structural modeling and analysis of peptide-HLA (pHLA) complexes. Three
proposed workflows are depicted here: (1) geometry prediction of pHLA binding modes, (2) structure-based
prediction of binding energy, and (3) virtual screening of tumor-derived peptides. In the geometry prediction
workflow, after obtaining the structure of an HLA receptor, a peptide of interest is docked in its binding site by
DINC, and all generated (Gen) binding modes are scored with several scoring functions. In the binding
prediction workflow, after modeling a given HLA structure (struct.), ensembles of binding modes are generated
with APE-Gen (and optionally minimized with OpenMM24) for various peptides, and these binding modes are
scored to rank the peptides with Smina.25 In the virtual screening workflow, after filtering peptides with
MHCflurry,12 ensembles of binding modes are generated with APE-Gen for the selected peptides, and the top-
scoring binding modes are used to rank these peptides with Smina, in terms of binding affinity to an HLA receptor
or set of receptors. Note that these workflows can be modified, and new workflows can be created by users. In
each application, different types of data analysis can be used to guide the selection of the best pHLAs before
experimental validation. The screen icon was modified from Flaticon.26 PDB, Protein Data Bank; V, Viewer.
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 Minimal example:



RESULTS

We now present the results we obtained when carrying out
3 different workflows that exemplify the diversity of appli-
cations offered by HLA-Arena. Each workflow leverages the
functionalities of several tools in a coherent scenario.

Geometry Prediction of pHLA Binding Modes

HLA-Arena can be used to predict conformations of pep-
tides bound to HLA receptors, even for peptides presenting
unusual binding modes.10 To illustrate this, using the ge-
ometry prediction workflow based on DINC (Fig 3), we tried
to reproduce the crystal structures of 2 such peptides.

First, we conducted a self-docking experiment with
a crystal structure (with PDB code 1E27) involving HLA-
B*51:01 and a 9-mer peptide derived from HIV-1. It has
been suggested that the fifth residue acts as a secondary
anchor for this peptide, leading to structural rearrange-
ment of its central and amino-terminal residues.32 Our
experiment evaluated the capability of DINC to reproduce
the bound geometry of this peptide, without consid-
ering receptor flexibility. To evaluate performance and
reproducibility, we carried out this experiment with either 8
or 32 threads (for the parallel process in DINC), running 5
replicates in each case. Default values were used for other
DINC parameters.23 Results (Appendix Fig A1A) show that,
in every single run, HLA-Arena sampled a near-native
peptide conformation (ie, a conformation with an all-
heavy-atom root mean square deviation [RMSD] to the
crystal structure , 2.5 Å).

Geometry prediction involves 2 issues that are especially
challenging with peptides.5 The first relates to sampling (ie,
how to explore the full flexibility of a large ligand). The
second relates to scoring (ie, how to identify the best ligand
conformation in a pool of diverse binding modes). HLA-
Arena relies on the incremental process of DINC to over-
come the sampling issue. It also includes a filtering step to
remove peptide conformations with reverse orientation in
the binding cleft. To address the scoring issue, HLA-Arena
makes use of multiple scoring functions. For instance, in
this self-docking experiment, conformations were ranked
with the scoring functions of AutoDock4,33 Vina,20 and
Vinardo.34 All 3 scoring functions were able to identify near-
native conformations. However, in the case of AutoDock4
(Fig 4A), the top-5 ranking conformations in 1 of the
replicates included the overall lowest RMSD conformation
(ie, the conformation with the lowest RMSD to the crystal
structure among all sampled conformations; Appendix
Fig A1A).

Second, we tried to reproduce a crystal structure (with PDB
code 2GTW) involving HLA-A*02:01 and a 9-mer peptide
derived from the MART-1/melan-A protein.35 This peptide
has an A27L substitution in comparison with the MART-1
peptide targeted by numerous clinical studies.36,37 This
substitution leads to an alternative arrangement of primary
anchor residues, resulting in an unusual binding mode.10,30,35

Again, we ran 5 replicates of the geometry prediction
workflow, using either 8 or 32 threads. For the prediction
task to be closer to a real-case scenario, we performed
a cross-docking experiment, accounting for receptor flexi-
bility. It made this taskmuch harder, from both sampling and
scoring perspectives.38,39 Despite this, HLA-Arena sampled
near-native conformations, although it performed better
when using 32 threads (Appendix Figs A1B and A2). In
terms of scoring, only AutoDock4 and Vinardo were able
to recover near-native conformations (Fig 4B). Note that
HLA-Arena also allows visualization of the 3-dimensional
structure of the top-ranking binding mode (Figs 4C and 4D).

Structure-Based Prediction of Binding Energy

To demonstrate another application of HLA-Arena, we used
the binding prediction workflow (Fig 3) to predict binding to
HLA-A*02:01 for a small data set of selected peptides
(Appendix Table A1). This data set included 5 experi-
mentally identified nonbinders, as well as 11 binders with
experimental binding affinities available in the Immune
Epitope Database40 and crystal structures in complex with
HLA-A*02:01 available in the PDB. For each peptide, we
generated an ensemble of bound conformations with APE-
Gen. The binding energy of each peptide was then estimated
as the median score within the conformation ensemble for
each scoring function (ie, AutoDock4, Vina, and Vinardo).
Correlations between these predicted binding energies and
experimentally determined binding affinities were then de-
termined (Fig 5).

In addition to the default local optimization performed by
APE-Gen, HLA-Arena provides the option of minimizing the
resulting complexes with OpenMM.24 To evaluate the im-
pact of this procedure, we recalculated binding energies
and correlations after running this energy minimization for
all conformations in each ensemble. Our results showed
a consistent increase of the predicted binding energies for
all scoring functions (Fig 5). This might reflect the differ-
ences in binding energy estimation that exist between these
empirical or semi-empirical scoring functions41 and the
force field used by OpenMM (ie, amber99sbildn).24 Despite
increasing binding energies, the OpenMM minimization
had a positive impact on overall correlations.

Interestingly, the best correlation with experimental binding
affinities was obtained when using Vina. This result is in
agreement with previous studies evaluating the perfor-
mance of Vina in virtual screening of drug-like ligands.41,42

Note that contrary to the geometry prediction workflow, in
which a scoring function was only used to rank different
conformations of a given peptide, here the scoring function
also had to rank different peptides. Although the same
function can be used for both purposes,5 it is possible that
better results are obtained when using functions optimized
for each task.

For the HLA-A*02:01 binders in our data set, we can compute
RMSDs between their associated crystal structures and

HLA-Arena: A Customizable Environment for Modeling pHLA Complexes

JCO Clinical Cancer Informatics 627



conformations generated by APE-Gen. This allows verifi-
cation that APE-Gen ensembles include near-native con-
formations (Appendix Fig A3) and evaluation of the impact
of the OpenMM minimization on these conformations. This
also allows comparing the use of an ensemble of confor-
mations to predict binding energies with the use of a single
conformation from this ensemble (eg, the conformation
with the lowest RMSD to the corresponding crystal struc-
ture). Our results with the Vina scoring function suggest that
better correlations are obtained with ensembles of con-
formations (Appendix Fig A4).

Virtual Screening of Tumor-Derived Peptides

HLA-Arena allows researchers to perform, for the first time
to our knowledge, a large-scale structure-based virtual

screening of HLA-binding peptides. In addition, by com-
bining sequence- and structure-based methods, HLA-
Arena represents a fresh alternative for the identification
of tumor-derived peptide targets considering patient-
specific HLAs. To demonstrate this application, we used
the virtual screening workflow (Fig 3) to predict which
peptides were the strongest binders to the class I HLA
receptors of a fictitious patient with cancer.

We considered 6 alleles: HLA-A*24:02, HLA-A*26:01, HLA-
B*15:01, HLA-B*35:01, HLA-C*04:01, and HLA-C*05:01.
We built a peptide data set by selecting 500 known binders and
1,000 decoys for each allele, for a total of 9,000 peptides.
Sequences of knownbinderswere obtained from the SysteMHC
Atlas,43 where they were derived from immunopeptidomics
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FIG 4. Geometry prediction of peptide-HLA binding modes. (A) Three scoring functions are used to select the top-5 ranking conformations produced
by 5 replicates of a self-docking experiment aimed at predicting the binding mode of a 9-mer peptide (under Protein Data Bank [PDB] code 1E27)
using 8 or 32 threads for DINC. Each box plot aggregates results of the 5 replicates. Each dot corresponds to a conformation plotted according to its all-
heavy-atom root mean square deviation (RMSD) to the reference crystal structure. (B) Results of a cross-docking experiment aimed at predicting the
bindingmode of a 9-mer peptide (under PDB code 2GTW) obtained with the samemethodology. (C) Side view of the best bindingmode (red) identified
by AutoDock4 and Vinardo and aligned with the crystal structure (blue) of this peptide (under PDB code 2GTW). Only heavy atoms are depicted, using
a sticks representation. Note that this sampled conformation has an all-heavy-atom RMSD of 2.35 Å and does not perfectly reproduce the side-chain
arrangement of the first residue. A better conformation, with an all-heavy-atomRMSD of 2.15 Å, was sampled by HLA-Arena (Appendix Fig A2) but was
not among the top-ranking conformations. (D) Top view of the HLA binding site (depicted by a gray surface) with peptide conformations shown in panel
C within it (as sticks). This peptide uses its first amino acid as primary anchor (ie, residue p1 is anchored in pocket B), which is quite unusual for HLA-
A*02:01 binders. Images in panels C and D were generated with HLA-Arena using the embedded NGL Viewer.13 Both images were edited to add
labels.
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studies. Sequences of decoys were obtained from the
training set of NetMHCpan.44

First, the whole data set of peptides was screened for HLA
binding with MHCflurry,12 using an affinity threshold
specified by the user. This allows the user to quickly select
the most likely binders for each HLA receptor, before
moving on to the more computationally expensive steps.
In this example, a threshold of 500 nM selected 2,604
peptides. Then, we proceeded with the structural modeling
of the full pHLA complex for all selected peptides. Finally,
peptides were ranked based on binding energies derived
from the modeled structures. The entire pipeline took
86 hours on a desktop computer or 5 hours on a high-
performance cluster (Appendix).

The threshold used in MHCflurry directly affects the sen-
sitivity/specificity of the overall prediction. Recent surveys
indicate that commonly used thresholds for sequence-
based HLA binding predictors (eg, 500 nM) can yield
a sensitivity as low as 40%,45 with great variation in ac-
curacy between HLA alleles.46 On our data set, a 500-nM

threshold produced several false-positive (Fig 6A, blue
dots) and false-negative predictions (data not shown).
In trying to address this issue, we observed that our structure-
based analysis could usually eliminate at least half of the
false-positive predictions and recover significant numbers
of false-negative predictions, although results varied
depending on the studied HLA allele (data not shown).

Because our workflow allowed variation of the MHCflurry
threshold, we repeated the aforementioned virtual screening
experiment with a 50,000-nM value. This led to all 9,000
peptides being selected for modeling and ranking. The
observed enrichment of true binders among the top-
ranking peptides (Fig 6B, red dots at the bottom of the
distributions) further corroborates our claim that structural
information is useful when screening HLA binders.

In these examples, we performed only 1 sampling round in
APE-Gen for each complex, and only the top-scored
conformation was used as input for ranking. Better re-
sults could be obtained by executingmore sampling rounds
in APE-Gen, performing the OpenMM minimization, or
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using the whole APE-Gen ensemble. More importantly,
accurate scoring remains an open challenge. Therefore,
structure-based predictions cannot yet outperform
sequence-based methods, but they can be combined to
provide additional information when selecting peptides for
experimental validation.

DISCUSSION

HLA-Arena provides researchers with a customizable en-
vironment to create and execute sophisticated workflows
for the structural modeling and analysis of pHLA com-
plexes. Its intuitive interface relies on Jupyter Notebook and
Docker to dramatically reduce the burden of software
dependencies and the need for advanced programming
skills, making its resources accessible to a wide audience.
Available workflows combine commonly used software for
proteinmodeling and analysis, with tools that we developed to
address challenges specific to pHLA complexes. We believe
that HLA-Arena could become a stepping stone toward
a broad collaborative effort to study pHLA complexes.

In this report, we present 3 workflows to showcase the
capabilities of HLA-Arena. First, HLA-Arena enabled the
geometry prediction of pHLA structures, even for peptides
with unusual binding modes, by using template-free mo-
lecular docking. Second, HLA-Arena allowed prediction of
binding energies for potential HLA binders by quickly
producing ensembles of bound conformations for these
peptides and rescoring all the results. Third, HLA-Arena
enabled a more accurate virtual screening of HLA binders
by combining sequence- and structure-based approaches.

These workflows can be modified to allow for additional
analysis of the modeled pHLA complexes (eg, to perform
molecular dynamics with OpenMM47,48 or cross-reactivity
assessment).2,49,50 Thanks to high-performance computing
and efficient sampling, molecular dynamics could play
a bigger role in providing accurate estimates of pHLA
binding affinity and complex stability.51,52

HLA-Arena can be integrated into computational pipelines
for basic cancer research or to help inform physicians in
preclinical settings. It can be used to perform the large-
scale modeling and selection of tumor-associated peptides,
computer-aided design of altered peptide ligands, and
study of T-cell cross-reactivity.2,8 In addition to HLA binding
prediction, immunotherapy applications require identifi-
cation of peptides that are uniquely displayed by cancer
cells. This important task will be addressed in future up-
dates of HLA-Arena.

It is important to note that HLA-Arena provides efficient
solutions to sampling challenges associated with pHLA
modeling8,23 and facilitates the integration of these solu-
tions with other tools for structural analysis. However, the
accuracy of structure-based peptide ranking is limited by
existing scoring functions. As they improve, new scoring
functions will be incorporated into HLA-Arena to replace
current ones or be combined with consensus methods.53,54

In time, we expect that structure-based analyses will be-
come essential to peptide target prediction for neoantigen
discovery, vaccine development, and cancer immuno-
therapy, especially for patients with less prevalent HLA
alleles.
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FIG 6. Structure-based virtual screening for high-affinity HLA binders. The HLA-Arena virtual screening workflow was used to predict peptide binders for 6
HLA receptors of interest. For this exercise, a data set of 9,000 peptides was created, using 500 known binders (red dots) and 1,000 decoys (blue dots) for
each HLA. (A) Results of a combined virtual screening (ie, MHCflurry plus APE-Gen) with a 500-nM threshold for MHCflurry. (B) Results of the same virtual
screening using a 50,000-nM threshold for MHCflurry. In both plots, each dot corresponds to the top-scoring conformation of a modeled peptide-HLA
complex, selected from the ensemble of conformations produced by APE-Gen. For each HLA (on the x-axis), complexes with the lowest-binding energies
(on the y-axis) would be predicted as the best candidates for further analysis or experimental validation.

Antunes et al

630 © 2020 by American Society of Clinical Oncology



AFFILIATIONS
1Department of Computer Science, Rice University, Houston, TX
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APPENDIX

APE-GEN: FAST GENERATION OF PHLA BINDING MODE
ENSEMBLES
We recently released a new tool, the anchored peptide-HLA (pHLA)
ensemble generator (APE-Gen), which produces an ensemble of
binding modes for a pHLA complex, starting from the sequences of
a peptide and HLA receptor.8 APE-Gen involves an iterative process
repeating the 3 following steps. First, the ends of the peptide backbone
are anchored within known pockets in the HLA binding site using
available backbone termini templates. Second, the peptide backbone
is completed by applying the random coordinate descent loop mod-
eling tool,19 which efficiently yields several valid backbone confor-
mations. Third, side chains are added to the backbone conformations,
and local optimization is performed with Smina25 to fix steric clashes.
This step considers full-peptide flexibility and binding site side-chain
flexibility, producing a set of full-atom peptide conformations within the
HLA binding site. After each such round of sampling, the highest-
quality conformation (according to the internal scoring function,
currently Vinardo) can be used as a template for the next round.

By generating a diverse ensemble of pHLA binding modes, APE-Gen
implicitly accounts for the natural flexibility of peptides within the
binding site. We showed that APE-Gen could reproduce the entire set
of nonredundant classic class I pHLA structures available in the
Protein Data Bank27 (535 complexes at the time of the study).8 In that
case, we used a single round of sampling per complex. The average
root mean square deviation (RMSD) between modeled peptides and
their corresponding crystal structure (considering all heavy atoms) was
only 2.02 Å, which is considered an accurate reproduction. Even better
results can be obtained when performing optimization and/or addi-
tional rounds of sampling, especially for longer peptides.8

APE-Gen is computationally efficient, producing dozens of binding
modes in a fewminutes on a standard desktop computer. It can be run
for several peptides and a given HLA receptor, thus producing valuable
information for peptide ranking and binding affinity prediction and
enabling structure-based virtual screening of HLA binding peptides.
We have also shown the potential benefits of APE-Gen when studying
T-cell cross-reactivity.8

DINC: INCREMENTAL DOCKING OF PHLA COMPLEXES
In previous work, we presented a molecular docking approach called
DINC (which stands for docking incrementally), specifically developed
for large ligands, including peptides.21 The underlying idea is to in-
crementally dock larger and larger fragments of a ligand, instead of
trying to dock it all at once. Note that this incremental docking process
focuses on ligand flexibility, although selected receptor side chains can
also be sampled. This process is parallelized to allow for broader
sampling, by having several runs of docking performed independently
at each step and grouping their results together. DINC is also a meta-
docking method, in the sense that it relies on existing molecular
docking tools, such as AutoDock4,33 Vina,20 and Smina25 to perform
the docking of the fragments at each step. As a consequence, frag-
ment sampling and scoring can be performed by different tools.

The latest version of our software, called DINC 2.0, has been made
available as a Web server.9 We recently showed that it performs a more
exhaustive sampling than other docking approaches.23 In that study,
DINC was benchmarked using 5 public data sets including large li-
gands; it reproduced many crystal structures on which other docking
tools had failed.23 For example, it has been used to study the inhibition

of the Src homology 2 domain of STAT3 by peptidomimetics.22 We also
showed that DINC could reproduce a diverse set of pHLA structures
encompassing 10 HLA alleles and peptides with diverse binding
modes; it achieved an average all-heavy-atom RMSD of 1.92 Å.10 Note
that DINC is not limited to common class I HLA receptors, contrary to
many related tools.5 It can be applied to complexes involving synthetic
ligands, to rare and nonclassical class I HLAs, and potentially to class II
HLA receptors.9 An updated version of DINC is made available through
Docker Hub (docker pull kavrakilab/dinc-bin).

HLA-ARENA PERFORMANCE FOR VIRTUAL SCREENING
HLA-Arena provides the most efficient workflow available for structure-
based virtual screening of HLA binders. For the experiment we report in
the Results section, the breakdown of computing time is as follows:
MHCflurry12 needs approximately 15 seconds to screen the entire data
set of 9,000 peptides. The homology modeling step takes approxi-
mately 3 minutes for each HLA allele and can be skipped for HLAs with
available crystal structures. The APE-Gen step takes approximately
2 minutes per pHLA complex on a desktop computer with 6 to 8
threads. The (optional) rescoring takes approximately 2 seconds per
complex using an HLA-Arena function that relies on Smina.25

Therefore, running the entire workflow on a desktop computer
takes approximately 86 hours with an MHCflurry threshold at 500 nM
and approximately 300 hours with an MHCflurry threshold at 50,000
nM. This running time can be dramatically reduced if the APE-Gen
step is executed on a cluster. For instance, on a machine with 64
threads, with an MHCflurry threshold at 500 nM or 50,000 nM, the
same workflow could be executed in 5 or 19 hours, respectively
(without rescoring). Future updates of HLA-Arena should provide
additional resources for running workflows in a remote high-
performance computing cluster.

HLA-ARENA INSTALLATION
1. If you do not already have it, install Docker for Mac or Windows

(https://www.docker.com/products/docker-desktop) or for Linux
(https://docs.docker.com/install).

2. In a command prompt, pull the HLA-Arena image from Docker Hub
by typing:
docker pull kavrakilab/hla-arena

3. Create a folder in which you want to run the workflows (optional).

4. Copy HLA-Arena notebooks and associated data to your local
machine by typing:
docker run --rm -v $(pwd):/temp--entrypoint cp kavrakilab/hla-
arena /hla_arena_data/data.tar.gz \ /temp/; tar -xzvf data.tar.gz

5. Run HLA-Arena in this folder by typing:
docker run --rm -v $(pwd):/data -p 8888:8888 \ --entrypoint=“”
kavrakilab/hla-arena jupyter \ notebook --port=8888 –no-browser \
--ip=0.0.0.0 --allow-root.

6. This should generate a URL with the following format:
http://127.0.0.1:8888/?token=,token_value..

7. Copy and paste this URL into a browser, and open any available
Jupyter notebook (ie, 1 of the files with extension .ipynb). Note that
all the data created in the container will be saved inside sub-
directories of the current folder.

8. Check out the file DOCUMENTATION (https://kavrakilab.github.io/
hla-arena/DOCUMENTATION.html) for additional information on
the workflows and available functions.
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FIG A1. Lowest root mean square deviation (RMSD) binding modes sampled by DINC in the geometry prediction workflow. (A) Results of a self-docking
experiment aimed at reproducing a crystal structure (with Protein Data Bank [PDB] code 1E27) involving a 9-mer peptide derived from HIV-1 and the
HLA-B*51:01 receptor. This experiment was carried out with either 8 or 32 threads. Each bar corresponds to the so-called top RMSD conformation (ie,
the conformation with the lowest RMSD to the target crystal structure) sampled in each of 5 replicated runs. Near-native peptide conformations (ie,
conformations with an all-heavy-atom RMSD to the crystal structure, 2.5 Å) were sampled in all runs. The best conformation across all runs had an all-
heavy-atom RMSD of 0.84 Å. (B) Results of a cross-docking experiment aimed at reproducing a crystal structure (with PDB code 2GTW) involving HLA-
A*02:01 and a 9-mer peptide derived from the MART-1/melan-A protein. Near-native peptide conformations were sampled in 2 of 5 runs when using 8
threads and in 4 of 5 runs when using 32 threads. The best conformation sampled across all runs had an all-heavy-atom RMSD of 2.15 Å.
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FIG A2. Lowest root mean square deviation (RMSD) binding
mode sampled in a cross-docking experiment. Depicted in red
is the lowest RMSD conformation sampled by DINC in the
cross-docking experiment aimed at reproducing a crystal
structure (with Protein Data Bank code 2GTW) involving HLA-
A*02:01 and a 9-mer peptide derived from the MART-1/melan-
A protein. The all-heavy-atom RMSD of this conformation to the
crystal structure (depicted in blue) is only 2.15 Å. This con-
formation accurately reproduces the geometry of the first res-
idue (p1), which has an unusual arrangement (ie, anchored in
pocket B of the binding cleft).
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FIG A4. Binding energy rankings associated with ensembles or single
conformations. This plot reports correlations (assessed as Pearson’sR)
between experimentally determined binding affinities and structure-
based binding energies predicted by the Vina scoring function using
different procedures. More specifically, the binding energy of a given
peptide can be defined as: the score of the conformation with the
lowest RMSD to the crystal structure in the ensemble produced by
APE-Gen (R = 0.54), the score of that same conformation minimized
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A*02:01 (Appendix Table A1). Note that the nonbinders were not
included in this analysis.
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TABLE A1. Curated Data Set of Experimentally Determined Peptide Binders Restricted to HLA-A*02:01
Peptide Method Assay Affinity (nM) IEDB Label IEDB ID PDB ID

FLPSDFFPSV Cellular/radioactivity IC50 0.57 Positive-high 201178 3OXR

ALWGFFPVL Purified/radioactivity IC50 2.7 Positive 1775814 1LP9

LLFGYPVYV Purified/radioactivity KD (≈ IC50) 3.8 Positive-high 201486 1DUZ

CINGVCWTV Purified/radioactivity KD (≈ IC50) 55 Positive-medium 1955167 3MRG

VLRDDLLEA Purified/fluorescence IC50 365 Positive-low 1809531 3FT4

AAGIGILTV Purified/radioactivity IC50 395 Positive-medium 201470 3QFD

RQISQDVKL Purified/radioactivity KD (≈ IC50) 1,925 Positive 3243420 4NO5

RGPGRAFVTI Purified/radioactivity KD (≈ IC50) 4,600 Positive-low 1022278 3ECB

ILKEPVHGV Purified/fluorescence IC50 7,082 Positive-medium 1783069 2X4U

EAAGIGILTV Purified/fluorescence IC50 14,560 Positive-low 2369616 2GT9

SLLMWITQC Purified/radioactivity KD (≈ IC50) 21,070 Positive-low 208218 2P5E

AAEQRRSTI Cellular/fluorescence IC50 . 70,000 Negative 1873146 —

DAKRNSKSL Cellular/fluorescence IC50 . 70,000 Negative 1872692 —

EIDVSEVKT Cellular/fluorescence IC50 . 70,000 Negative 1874620 —

ATKRYPGVM Cellular/fluorescence IC50 . 70,000 Negative 1875085 —

ETLNEYKQL Cellular/fluorescence IC50 . 70,000 Negative 1873828 —

NOTE. Selected methods include either cellular HLA or purified HLA, used for competitive radioactive or competitive fluorescence
measurements. Assays measured either the half maximal inhibitory concentration (IC50) or the dissociation constant (KD). Nonbinders are
characterized by the lack of a precise measurement in the Immune Epitope Database (IEDB; eg, affinity. 70,000 nM) and of a crystal structure
in the Protein Data Bank (PDB).

Abbreviation: ID, identifier.
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