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Endothelial cells (ECs) constitute small capillary blood vessels and contribute to delivery

of nutrients, oxygen and cellular components to the local tissues, as well as to removal

of carbon dioxide and waste products from the tissues. Besides these fundamental

functions, accumulating evidence indicates that capillary ECs form the vascular niche.

In the vascular niche, ECs reciprocally crosstalk with resident cells such as epithelial

cells, mesenchymal cells, and immune cells to regulate development, homeostasis, and

regeneration in various organs. Capillary ECs supply paracrine factors, called angiocrine

factors, to the adjacent cells in the niche and orchestrate these processes. Although the

vascular niche is anatomically and functionally well-characterized in several organs such

as bone marrow and neurons, the effects of endothelial signals on other resident cells

and anatomy of the vascular niche in the lung have not been well-explored. This review

discusses the role of alveolar capillary ECs in the vascular niche during development,

homeostasis and regeneration.
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INTRODUCTION

Oxygen is an indispensable element in the human body because it is required to generate energy
as a form of ATP through a process of cellular respiration in which carbon dioxide is generated
as a by-product in mitochondria. Oxygenation of circulating blood and removal of carbon dioxide
take place through the alveolar membrane, a thin (0.6–2mm) and sophisticated barrier structure
that is composed of alveolar epithelial cells, intermediate basement membrane (BM) and capillary
endothelial cells (ECs) in the lung. Therefore, the lung is one of the most vital organs in the
human body. An adult human breathes ∼5–8 liters of air per minute (about 10,000 liters per day)
to exchange oxygen and carbon dioxide through the alveolar membrane. These membranes are
continuously exposed to various toxins or pathogens in the air, and consequently the alveolar
membrane is vulnerable to the outer gaseous environment. Although adult lung is thought to
be relatively quiescent, specific repair programs are constantly employed to maintain or repair
the alveolar membrane in the alveoli. These repair programs are operated by well-organized
cooperation of tissue resident cells in the alveoli.

When these repair programs are hampered by aging or an impaired self-defense system, end-
stage lung diseases such as chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, and
cystic fibrosis ensue. Lung transplantation is the only available therapy for patients with end-stage
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lung diseases; however, the shortage of donor organs, aggressive
surgical procedure, huge economic cost, necessity of life-
long immunosuppressive treatment and limited long-term graft
engraftment present significant challenges (Mahida et al., 2012;
Konigshoff et al., 2013). Therefore, it is critically important
to understand the innate alveolar repair programs in order to
prevent or treat end-stage lung diseases.

In addition to alveolar epithelial cells, alveolar capillary ECs
constitute another integral part of the alveoli. Although the
mechanisms by which alveolar epithelial progenitor/stem
cells regulate alveolar development, homeostasis, and
regeneration have been well-explored (Rawlins and Hogan,
2006; Hogan et al., 2014; Kotton and Morrisey, 2014), less
is known about the contribution of alveolar capillary ECs to
these processes.

Vascular ECs constitute the inner lining of capillary blood
vessels and operate fundamental functions such as delivery
of oxygen, nutrients and cellular components, while removing
carbon dioxide and cellular waste. ECs are also involved in
angiogenesis, microcirculation, coagulation, and inflammation
in the local tissues (Cines et al., 1998). Besides these functions,
capillary ECs form specific microenvironment, named vascular
niche, in which capillary ECs reciprocally interact with
other resident cells to regulate development, homeostasis and
regeneration in various organs (Lazarus et al., 2011; Ramasamy
et al., 2015; Rafii et al., 2016a). Although microanatomy
and functionalities of the vascular niche are relatively well-
characterized in bone marrow (Kopp et al., 2005; Morrison and
Scadden, 2014) and neurons (Ottone et al., 2014; Licht and
Keshet, 2015; Karakatsani et al., 2019), the vascular niche in the
lung has not been well-characterized. In this review, we discuss
the reciprocal interactions between capillary ECs and other
resident cells in the alveoli during development, homeostasis, and
regeneration. Characterizing the role of ECs in the niche may
not only help to understand the mechanisms of lung biology, but
also lead to the development of efficient therapeutic strategies
for various lung diseases. Moreover, a greater understanding
of the niche may identify ways to ex vivo engineer functional
adult lung tissue that could be implanted into patients with
end-stage lung disease. Since the program utilized during organ
development is partly utilized in the process of homeostasis and
regeneration, we start by discussing the development of alveolar
capillaries in the lung.We also discuss the importance of capillary
ECs in the vascular niche for homeostasis and regeneration of
adult lung.

LUNG DEVELOPMENT

Lung development has been studied for many years with
an emphasis on elucidating the mechanisms that control
differentiation and morphogenesis of airway epithelial cells.
Although spatio-temporal interactions between alveolar ECs and
other resident cells (e.g., airway epithelial cells, mesenchymal
cells, immune cells) play an important role in alveolar
development, the role of alveolar ECs in this process has not
been well-reviewed.

EMBRYONIC STAGE (E9.5-12 IN MOUSE,
3–7 WEEKS IN HUMAN)

At embryonic day (E) 9.5 in mouse, primary lung buds are
derived from anterior foregut endoderm, which is clearly marked
by a homeodomain transcription factor Nkx2.1 (Lazzaro et al.,
1991; Kimura et al., 1996). Subsequently, the bud grows and
splits into prospective left and right lobes that protrude into
the mesenchyme. At E10, density of the mesenchyme around
the buds becomes sparse and mesenchymal cells start expressing
abundant vascular endothelial growth factor (VEGF) (Shifren
et al., 1994; Gebb and Shannon, 2000; Greenberg et al., 2002;
White et al., 2007), which is a ligand for VEGF receptor 2
(VEGFR2) on ECs and plays important roles in vasculogenesis
and angiogenesis (Chung and Ferrara, 2011; Patel-Hett and
D’Amore, 2011; Karaman et al., 2018; Apte et al., 2019).
Expression of VEGF, which stimulates alveolar capillary network
around the buds, is controlled by epithelial-derived morphogens
such as FGF9 and SHH (White et al., 2007). In response to
VEGF, hemangioblasts, a subpopulation of mesenchymal cells,
form blood lakes in the mesenchyme (vasculogenesis) (deMello
et al., 1997; Drake, 2003; Patan, 2004).Morphologically, the blood
lakes are formed by outer VEGFR2-positive thin ECs and inner
hematopoietic cells (Yamaguchi et al., 1993; deMello et al., 1997;
Gebb and Shannon, 2000) (Figure 1A). These blood lakes are
closely positioned to the epithelium and predominantly located
in the mesenchyme around the distal tips of the epithelial buds
(Gebb and Shannon, 2000), suggesting that airway epithelium,
mesenchymal cells, and ECs cooperatively interact to form
the primitive niche and regulate early epithelial and vascular
morphogenesis at this stage. Besides well-known mesoderm-
derived EC lineage, lung-specific EC lineage may be derived from
Nkx2.1-positive endoderm (Bostrom et al., 2018), suggesting that
heterogeneity of ECs already exists at the early developmental
stage of the lung.

At E11 in the mouse lung, the proximal vessels now can
be clearly identified as vascular tubes that run alongside the
trachea, and blood vessels sprout from these larger blood vessels
(proximal angiogenesis) (Gebb and Shannon, 2000). Density of
the blood lakes increases in the mesenchyme (deMello et al.,
1997), and ECs in the blood lake proliferate, migrate and
coalesce into a primitive capillary plexus (distal angiogenesis)
around the epithelial buds at E12 of mouse lung development
(Figure 1A) (Moore and Metcalf, 1970; Pardanaud et al., 1987;
deMello et al., 1997; Gebb and Shannon, 2000; Drake, 2003;
Parera et al., 2005). Branching of the lung buds and lineage
specifications of the airway epithelium are mainly orchestrated
by interactions between mesenchyme-derived FGF10 and its
counter receptor, FGFR2b on epithelium (Bellusci et al., 1997;
Park et al., 1998). Importantly, mesenchyme-derived FGF10 also
stimulates epithelial mTORC1/Spry2 signaling, and this signaling
triggers the production of VEGF in the epithelium (Scott et al.,
2010), which in turn stimulates migration and proliferation
of ECs in the mesenchyme around the buds. Conditional
VEGF knockdown in distal and proximal airway epithelial cells
exhibits disrupted distal vascular network and arrested epithelial
branching (Akeson et al., 2003, 2005). Recirpocal interaction
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FIGURE 1 | Embryonic and pesudoglandular stage. (A) During the embryonic stage, NKX2.1+ epithelial buds grow and protrude into the mesenchyme (E9.5).

Density of the mesenchyme becomes sparse and mesenchymal cells start expressing VEGF and stimulate formation of blood lake (vasculogenesis), which is

consisted of outer thin endothelial cells (ECs) and inner hematopoietic cells (E10). Blood lakes proliferate, migrate and coalesce into a primitive capillary plexus around

the buds (angiogenesis) (E11-12). In the vascular niche, expression of VEGF, which stimulates alveolar capillary network around the buds, is controlled by

epithelium-derived morphogens such as FGF9 and SHH. Mesenchyme-derived FGF10 also triggers the production of VEGF in the epithelium. Capillary EC-derived

HGF controls lineage commitment in the airway epithelium. (B) During the pesudoglandular stage, repeated epithelial branching starts and proximal artery and vein

start communicating with the capillaries around the buds. Mesenchyme becomes sparse and the main source of VEGF shifts from mesenchyme to the epithelium,

which results in attraction of capillary ECs toward the epithelium.
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among epithelium, mesenchyme and endothelium modulates
lung morphogenesis through VEGF signaling in the niche.

While mesenchymal cells play key roles in lineage
specification (e.g., Nkx2-1 expression) and epithelial
morphogenesis (Shannon and Hyatt, 2004; McCulley et al.,
2015), capillary ECs adjacent to the distal airway epithelium
(Parera et al., 2005) are also involved in lung-specific lineage
commitment in the airway epithelium (e.g., Nkx2.1 expression)
by modulating EC-derived morphogens such as HGF (Havrilak
et al., 2017; Yao et al., 2017). Capillary ECs also control
specification of respiratory progenitors and early budding
morphogenesis through non-specific capillary functions (e.g.,
oxygen and nutrients supply) (Havrilak et al., 2017). These
findings suggest that capillary ECs form the vascular niche with
other resident cells (epithelial and mesenchymal cells) and play
important roles in the primitive stage of the lung development.

PSEUDOGLANDULAR STAGE (E12-16.5 IN
MOUSE, 5–17 WEEKS IN HUMAN)

The pseudoglandular stage is characterized by repeated
dichotomous branching of the original lung buds. During the
pseudoglandular stage, the airway tubes are lined by a high
columnar epithelium at the proximal region, and the height of
the cells decreases continuously toward the periphery to reach
a cuboidal shape in the terminal branches. During this stage,
the proximal vascular system, which arises from the sixth aortic
arch, develops parallel to the bronchial tree so that all of the
pre-alveolar capillary and vein are formed in the characteristic
pattern by the end of this stage. When active epithelial branching
morphogenesis starts, the mesenchymal cells become apoptotic
and density of the mesenchyme between epithelium and ECs
gets sparse (deMello et al., 1997). At this stage, the main source
of VEGF starts shifting from mesenchyme to epithelium (Yang
et al., 2016). Consequently, the epithelium attracts ECs and the
buds are completely covered by a polygonal capillary plexus
that is formed by Tie2-, PECAM-1, and VEGFR-positive ECs
(Parera et al., 2005) (Figure 1B). The capillary plexus contains
a lumen filled with erythrocytes, indicating a direct connection
between capillaries and embryonic circulation at this stage
(Parera et al., 2005).

FGF9 is expressed in epithelium during this stage to regulate
FGF10 expression in mesenchyme (White et al., 2007), which
also dictates morphogenesis and differentiation of distal airway
epithelium (Volckaert et al., 2013). Fgf9−/− mouse lungs show
a significant reduction in the distal capillary network density
overlying airway epithelium (Greenberg et al., 2002; White et al.,
2007), suggesting that epithelium- and/or mesenchyme-derived
morphogens regulate capillary morphogenesis. On the contrary,
ablation of capillary blood vessels disrupts epithelial morphology
(Lazarus et al., 2011), and alveolar capillaries regulate epithelial
morphogenesis by generating HGF (Yamamoto et al., 2007).
These findings suggest that interdependent crosstalk between
epithelium, capillary ECs and mesenchyme in the niche regulates
epithelial and capillary morphogenesis at this stage. It is
demonstrated that lung epithelial branching morphogenesis does
not require capillary ECs in the explant culture (Havrilak and

Shannon, 2015). However, physiological mechanical forces such
as blood flow in the capillaries and distention of epithelial airways
caused by intrauterine-breathing movement, which play crucial
roles in epithelial branching morphogenesis are missing in the
conventional lung explant culture. Using more sophisticated ex
vivo culture systems that recapitulate physiological mechanical
forces (e.g., miniature bioreactor) (Petersen et al., 2011; Raredon
et al., 2016) may further clarify physiological interaction between
capillary ECs and epithelial cells in the niche.

CANALICULAR STAGE (E16.5–17.5 DAYS
IN MOUSE, 16–26 WEEKS IN HUMAN)

After completion of the branching morphogenesis in
pseudoglandular stage, the canalicular stage begins in which
the respiratory tree is further expanded in diameter and length
and characterized by further vascularization along the airway.
The pulmonary acinar units, which contain alveolar ducts and
alveolar sacs are formed during this period. While capillaries in
the mesenchyme move toward the epithelium by the gradient
of epithelium-derived VEGF, distal multipotent epithelial
progenitor cells (Id2+, Sox9+, Pdpn+, Sftpc+) differentiate
into alveolar type (AT) 1 and AT2 cells (Makanya et al., 2001,
2007). AT1 cells form a thin sheet-like structure covering most
of the inner surface area of the terminal airway, whereas AT2
cells are interposed between the sheets of AT1 cells (Schittny,
2017). At this stage, VEGF production is completely shifted
from mesenchyme to epithelium (mainly AT2 cells) (Kaner and
Crystal, 2001; Pham et al., 2002). The epithelium further attracts
capillaries (Yang et al., 2016), and their close interactions induce
thinning of the epithelium and differentiation of epithelial
progenitor cells into AT1 and AT2 cells (Figure 2A). Inhibition
of epithelial-derived VEGF results in abnormal vascular and
epithelial morphogenesis in allograft experiment (Zhao et al.,
2005), suggesting that reciprocal interactions between epithelial
cells and ECs through VEGF-VEGFR signaling play crucial
roles in the formation of primitive acinar units. At their contact
surface, AT1 cells and ECs form a sheet like structure and are
separated by a common layered basement membrane (BM),
which is formed by fusion of endothelial and epithelial-derived
BM (Schittny, 2017). Extracellular matrix (ECM) acts not only
as a physical scaffold, but also as a source of growth factors
and biochemical signaling (Hynes, 2009; Ishihara et al., 2018).
Therefore, ECM modulates self-renewal and differentiation of
stem cells and represents an essential part of the stem cell niche
(Nikolova et al., 2007; Brizzi et al., 2012; Ahmed and Ffrench-
Constant, 2016). Given that ECM produced by pulmonary ECs
can induce proliferation and differentiation of AT2 cells in vitro
(Adamson and Young, 1996), EC-derived ECM may form an
integral part of the vascular niche and play important roles in
development of distal airways at this stage.

SACCULAR STAGE (E17.5 TO P5 IN
MOUSE, 26–36 WEEKS IN HUMAN)

The saccular stage is characterized by alveolar sac formation
(primitive alveoli), surfactant production, and further expansion
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FIGURE 2 | Canalicular and saccular stage. (A) During canalicular stage, distal airway is further expanded and vascularized by capillaries. Distal multipotent epithelial

progenitor cells differentiate into AT1 and AT2 at the alveolar wall. The source of VEGF is completely shifted from mesenchyme to epithelium, which facilitates closer

interaction between epithelium and endothelium. This close interaction also contributes to differentiation of the epithelial progenitor cells into AT1 and AT2 cells.

Endothelial and epithelial basement membrane (BM) fuse to form layered BM. BM-bound VEGF and other growth factors (GFs) modulate self-renewal and

differentiation of AT2 cells. (B) During saccular stage, primitive alveoli are formed, in which alveolar epithelium and capillary endothelium form the interface for

gas-exchange by sharing their basement membrane. This process includes further thinning of AT1 cells. Thick primary septa, which include double-layered capillaries,

are formed between the walls of primitive alveoli. EC-derived angiocrine factors such as HGF and NO stimulate alveolar epithelial cell maturation and morphogenesis.

of the capillary networks around the airway (Compernolle et al.,
2002). This stage is a pre-requisite for establishment of gas-
exchange units in the alveoli. Tremendous expansion of the
prospective airway surface during this stage is accompanied
by a significant increase in capillary growth and endothelial
heterogeneity (Guo et al., 2019). Expression of epithelium-
derived VEGF further increases (Bhatt et al., 2000), and the
capillary surface area significantly expand at this stage (Burri,
1984). Through reduction of the mesenchyme due to apoptosis
of mesenchymal cells (Kresch et al., 1998) and a VEGF gradient,
the distance between the capillary endothelium and the alveolar
epithelial surface diminishes to prepare for effective gas exchange.
The lateral walls of the distal sac approach each other to form
the thick primary septa, and dense capillary networks that cover
each distal airway sac invaginate into the septa to form double
capillary layers (Figure 2B). Presence of capillaries seems to be
required for the initiation of primary septation, because lung
ECs express HGF, and selective deletion of the HGF receptor
gene in respiratory epithelium leads to malformation of the
septa (Yamamoto et al., 2007). Another major change during this
period is maturation of AT2 cells, which accelerates secretion of
surfactant protein to reduce alveolar surface tension for post-
natal air breathing (Young et al., 1991). Endothelial-derived
nitric oxide (NO) not only induces maturation of AT1 cells, but
also stimulates AKT/eNOS signaling in ECs and upregulates the
production of surfactant proteins in AT2 cells (Coulombe et al.,
2019). These findings suggest that the EC-derived angiocrine
factors (e.g., HGF, NO) play crucial roles in the formation of
primitive alveolar septa at this stage.

Combinations of various pre-natal conditions (e.g.,
preeclampsia, chorioamnionitis), subsequent pre-mature birth at
this stage and post-natal challenges (e.g., mechanical ventilation,
oxygen therapy) result in developmental lung disorders including
bronchopulmonary dysplasia (BPD) in preterm neonates (Burri,
1984; Balany and Bhandari, 2015; Schittny, 2017). Lungs of the
BPD patients exhibit decreased alveolar capillary density and
impaired septation (Meller and Bhandari, 2012; Stark et al.,
2018). Epithelial-derived VEGF and endothelial VEGFR2 are
significantly downregulated in the lungs of BPD patients (Bhatt
et al., 2001), and inhibition of angiogenesis by blocking VEGF
receptor at this stage phenocopies BPD pathology (Jakkula et al.,
2000; Le Cras et al., 2002; Tang et al., 2012). VEGF therapy
rescues the BPD phenotype in animal models (Kunig et al., 2005;
Thebaud et al., 2005), suggesting that angiogenic factors such
as VEGF may be utilized for the reciprocal crosstalk between
ECs and epithelial cells in the niche at this stage. Exploration
of the mechanism by which pre-natal and post-natal challenges
deregulate the niche formation will lead to the development of
efficient therapeutic strategies for BPD.

ALVEOLAR STAGE (P5-30 IN MOUSE, 36
WEEKS-8 YEARS POST-NATALLY IN
HUMAN)

The final stage of lung development occurs after birth. Inner
alveolar surface area significantly increases by further subdivision
of the primitive alveoli through the process of secondary
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septation (alveolarization). After birth, dynamic environment
changes such as clearance of airway fluid, expansion of
the alveolar sac, increased oxygen tension and pulmonary
circulation, ensue in the lung. These changes stimulate vascular
growth; alveolar capillary surface area increases by∼20-fold from
birth to adulthood (Zeltner et al., 1987). Lung ECs adapt to
these dynamic environmental changes and regulate post-natal
pulmonary circulation by secreting various vasoactive molecules
including NO (Gao and Raj, 2010; Gao et al., 2016). Endothelial
NO synthase (eNOS)-deficient mice exhibit paucity of alveolar
capillary ECs and arrested alveolarization (Han et al., 2004),
suggesting that EC-derived NO not only regulates pulmonary
vascular tone, but also contributes to alveolarization at this stage.

Elastin, which is synthesized and secreted by myofibroblasts,
accumulates in the specific area of primary septa, and this area
gives rise to a secondary crest that protrudes perpendicularly
from the saccular wall into the air space forming the secondary
septa (Figure 3). The outer layer of the double capillary network,
existing within the primary septa, folds up to support the
secondary septa in which new double-layered capillaries exist.
During the extension of the secondary septa, depositions of
elastin are located at the tip of the newly formed secondary
septa. Elastin-derived fragments also stimulate EC migration and
vascular morphogenesis (Robinet et al., 2005). Alveolar capillary
ECs also produce retinoic acid (RA), which stimulate not only
angiogenesis, but also synthesis of elastin in myofibroblasts
(Yun et al., 2016). Although the mechanisms of secondary
septation have not been well-explored, these findings suggest that
reciprocal interactions between myofibroblasts and ECs in the
niche drive these processes.

In later stages of alveolarization, double layers of capillaries
in the secondary septa become a single capillary network
via a remodeling process, called microvascular maturation, in
order to create thinner septa for gas-exchange. This remodeling
produces a simple and thin alveolar membrane composed of
a single layer of endothelia, intermediate BM and sheet-like
epithelia (AT1 cells), which facilitates efficient gas-exchange
through the membrane. The mechanisms of this dynamic
capillary remodeling are still unknown. However, endothelial
Tie2 receptor, which plays crucial roles in vascular remodeling
(Dumont et al., 1994; Suri et al., 1996; Shen et al., 2014), may play
important roles in this process (Mammoto et al., 2013) because
knockdown of angiopoietin (Ang)1, a ligand of the Tie2 receptor,
impairs the formation of secondary septa without affecting
the dynamics of elastin at the tip of the extending secondary
septa (Kato et al., 2018). Pericytes, which are mesenchymal
cells forming focal contacts with adjacent ECs, closely interact
with alveolar capillary ECs and AT2 cells in the developing
alveoli (Kato et al., 2018) and contribute to alveolarization. For
example, dynamic changes of the mechanical environment in the
developing lung tissues stimulate mechanosenstivie YAP1/TAZ
signaling in pericytes to release Ang 1 and HGF that act on ECs
and AT2 cells, respectively, during alveolarization (Kato et al.,
2018). The importance of capillary ECs in the niche for alveolar
development is also supported by the fact that rat alveolarization
is significantly inhibited by treatment with anti-angiogenesis
agents (e.g., fumagillin, thalidomide, SU5416, VEGF antagonist)

(Jakkula et al., 2000; Maniscalco et al., 2002). Furthermore, loss of
PECAM-1, an EC surface molecule that promotes EC migration
and angiogenesis, in ECs also impairs post-natal alveolarization
(DeLisser et al., 2006). Anti-PECAM-1 antibody that inhibits
migration of ECs disrupts alveolar septation in neonatal rats
without reducing the number of capillary ECs (DeLisser et al.,
2006). Consistently, inhibition of VEGFR2 or Tie2 in ECs
decreases alveolarization (Jakkula et al., 2000). These findings
suggest that alveolar capillary ECs form the niche, in which
ECs reciprocally interact with other resident cells to drive septal
morphogenesis and capillary remodeling during alveolarization.

ADULT LUNG

In an adult alveolus, the alveolar membrane (thin parts of
the alveolar wall), through which the gas exchange occurs, is
simply composed of sheet-like AT1 cells interposed by AT2 cells,
intermediate BM, and capillary ECs. In contrast, the alveolar
interstitium, a thick portion of the alveoli, consists of stromal
cells (e.g., fibroblasts, pericytes, macrophages), fibrillar ECMs
(e.g., collagens, elastin) and separated capillaries (Vaccaro and
Brody, 1981; Dunsmore and Rannels, 1996) (Figure 4). Capillary
ECs create a specific microenvironment with adjacent cells at
both the alveolar membrane and insterstitium, and may form
a distinct vascular niche similar to the niche in bone marrow
(Hooper et al., 2009; Kunisaki et al., 2013; Kusumbe et al., 2014).
Targeted induction of apoptosis (Kasahara et al., 2000; Tang et al.,
2004; Giordano et al., 2008; Chambers et al., 2018) or senescence
(Giordano et al., 2008; Kim et al., 2019) in alveolar capillary
ECs leads to destruction of the alveolar structures in adult
mouse. It has been demonstrated that Piezo1, a mechanosensing
ion channel expressed on the lung capillary ECs, maintains
homeostasis by sensing microvessel pressure and contributes to
homeostasis of mouse alveoli (Friedrich et al., 2019), suggesting
that alveolar capillary ECs in the niche maintain homeostasis of
alveoli. By combining the use of novel site-specific EC surface
markers, lineage-tracing strategies, and appropriate experimental
model systems, we will be able to better understand how the
specific microenvironment and function of the EC niche impacts
homeostasis and regeneration of the alveoli.

AT1 cells have a thin and flat shape with multiple branches
spread over a large area of the alveolar membrane; this shape
facilitates their close contact with the capillary endothelium
through the BM, thereby allowing efficient gas exchange (Vaccaro
and Brody, 1981). Since AT1 cells share the BMwith capillary ECs
in the alveolar membrane (Vaccaro and Brody, 1981), alveolar
capillary ECs may regulate the behaviors of alveolar epithelial
cells (AT1 and AT2 cells) by supplying ECM components to
the BM in alveoli (Adamson and Young, 1996; Witjas et al.,
2019). Cuboidal AT2 cells that usually reside at the corners
of alveoli and being a source of VEGF (Ng et al., 2001),
not only produce surfactant in cooperation with interstitial
lipofibroblasts (Griffin et al., 1993; Torday and Rehan, 2016),
but also function as progenitor cells for AT1 cells (Evans
et al., 1973, 1975; Barkauskas et al., 2013). Importantly, AT2
cells extend their cytoplasmic processes into the interstitium
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FIGURE 3 | Alveolar stage. During alveolarization, alveolar area significantly increases by secondary septation, in which secondary septa subdivide the terminal sac.

Elastic fibers and myofibroblasts exist at the tip of growing secondary septa. Outer layer of the capillary folds up to drive extension of the septa, in which new

double-layered capillary exists (middle). At the later stage of alveolarization, these double layers of the capillaries in the secondary septa remodel to form a single layer

of the capillary to facilitate septal thinning for efficient gas exchange (right). Alveolar capillary ECs produce retinoic acid (RA) and stimulate synthesis of elastin in

myofibroblasts, which in turn stimulate capillary morphogenesis. Dynamic changes in the mechanical environment stimulate mechanosenstivie YAP1/TAZ signaling in

pericytes to release Ang1 and HGF that act on ECs and AT2 cells and stimulate septation.

through the BM and closely interact with interstitial cells
such as fibroblasts (Vaccaro and Brody, 1978). Although direct
anatomical communication between AT2 cells and ECs has
not been reported, they may communicate through the BM
that can act as a sink for various growth factors [e.g., VEGF,
thrombospoindin-1 (THBS1)] (Park et al., 1993; Ruhrberg et al.,
2002; Tan and Lawler, 2009) as well. In vitro co-culture of AT2
cells and ECs demonstrated that physical contact between AT2
cells and ECs is crucial for the propagation of AT2 cells (Ding
et al., 2011). Thus, there may be direct communications between
AT2 cells and ECs in the alveoli. Further nanoscale imaging
analysis (e.g., electron microscopy) needs to be employed to
characterize the anatomical relationship between AT2 cells
and ECs in the niche. Interstitial capillary ECs interact with
myofibroblasts that produce lung specific ECM such as elastin
and collagen to provide physical stability and elastic recoil of
the alveoli (Kapanci et al., 1974). These fibroblasts support

capillary structures by remodeling the local ECM components
and supplying various growth factors (Hughes, 2008; Costa-
Almeida et al., 2015) to maintain alveolar homeostasis (Cao et al.,
2016; Mammoto et al., 2016a). Site-specific capillary ECs may
constitute a distinct niche with other resident cells and maintain
alveolar homeostasis.

The contribution of alveolar capillary ECs to adult alveolar
regeneration has been demonstrated by the unilateral
pneumonectomy (PNX) model (surgical removal of one
lobe) (Leuwerke et al., 2002; Ding et al., 2011; Lin et al., 2011;
Bolte et al., 2017; Mammoto T. et al., 2019). After left PNX,
neo-alveolarization is induced in the remaining right lobes in
adult animals (Fehrenbach et al., 2008; Ochs, 2019). Similar
to developmental alveolarization, newly formed septa, which
include capillaries and mesenchymal cells, arise from the
preexisting septa in the alveoli of the remaining lung after
PNX (Ackermann et al., 2014; Ysasi et al., 2015), suggesting
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FIGURE 4 | Adult lung. In adult alveoli, alveolar membrane (thin part of the alveolar wall) is simply composed of sheet-like AT1 cells, intermediate basement membrane

(BM) and capillary ECs, while alveolar interstitium, a thick portion of the alveoli, consists of stromal cells (e.g., fibroblasts, pericytes, macrophages), fibrillar ECMs and

separated capillaries. AT1 cells tightly share the basement membrane with capillary ECs in the alveolar membrane. In the interstitium, fibroblasts play a critical role in

supporting the capillary structures by remodeling the local ECM components and supplying growth factors.

that a developmental program is employed for the post-PNX
alveolarization (Kho et al., 2013).

Angiogenesis is one of the key events during new
alveolar formation after PNX; functional alveoli cannot be
formed without expansion of capillary networks. Similar to
developmental alveolarization, during post-PNX alveolarization,
double-layered capillaries formed by angiogenesis cover the
bottom of the new alveoli and fold up inside the new septa
(Ackermann et al., 2014), which is elaborately orchestrated by
capillary EC signaling in the niche. It has been demonstrated
that PNX activates VEGFR2 and FGFR2 on ECs to produce the
angiocrine molecule MMP14 in the vascular niche. EC-derived
MMP14 then cleaves the EGF-like ectodomain on EGFR to
activate EGFR on the alveolar epithelial progenitor leading
to the expansion of AT2 cells and bronchioalveolar stem cells
(BASCs) for post-PNX alveolarization in mouse (Figure 5)
(Ding et al., 2011). After PNX, the remaining lung tissues
are exposed to dynamic changes in various mechanical forces

(e.g., tissue distortion toward dead space, increased capillary
perfusion) (Hsia et al., 2001; Dane et al., 2013, 2016), and these
mechanical forces may directly or indirectly stimulate capillary
ECs in the niche to accelerate alveolarization. The post-PNX
lung tissues are significantly deformed in the subpleural regions
(Konerding et al., 2012; Filipovic et al., 2013), and capillary ECs
actively interact with AT2 cells and macrophages to expand
the vascular plexus in this region (Ackermann et al., 2014).
It has been demonstrated that activation of mechanosensitive
YAP1 signaling in ECs stimulates angiogenesis and consequently
modulates compensatory post-PNX-alveolarization through
Ang/Tie2 signaling (Mammoto T. et al., 2019). Since capillary
ECs are localized in the specific domains of the alveoli
(interstitium and alveolar wall) that are constantly exposed to
the mechanical forces (e.g., shear, stretch, deformation, perfusion
pressure), ECs may act as a mechano-sensor in the niche to
trigger angiogenesis and alveolarization after PNX. Further
exploration of the mechano-chemical mechanism of post-PNX
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FIGURE 5 | Alveolar repair in the vascular niche. Capillary ECs sense damage or loss of alveoli and produce angiocrine factors (e.g., thrombospondin 1 (THBS1),

MMP14, HGF) in the vascular niche. These angiocrine factors enhance repair and/or regeneration of the damaged alveoli by stimulating propagation and/or

differentiation of epithelial stem cells (e.g., AT2, BASC) in the alveoli. In the niche, ECs also adapt to physiological stress/injury to maintain tissue homeostasis. Under

severe or chronic stress/injury, maladapted ECs provoke myofibroblasts, leading to pathological conditions such as fibrosis. Maladapted ECs also transdifferentiate

into myofibroblasts (End-MT) to accelerate fibrosis.

alveolarization is needed to fully understand the role of the
vascular niche during adult lung regeneration.

In addition to physiological alveolar regeneration, capillary
ECs also accelerate repair of the damaged alveoli by producing
angiocrine factors (Rafii et al., 2016a). For example, bleomycin-
induced alveolar injury induces expression of THBS1 in alveolar
ECs, which stimulates differentiation of BASC residing at the
bronchio-alveolar duct junction (BADJ) into alveolar epithelial
lineages to repair damaged alveoli (Lee et al., 2014). Capillary ECs
also communicate with adjacent fibroblasts and macrophages
using angiocrine factors to modulate the severity of bleomycin-
induced alveolar injury (Cao et al., 2016). These findings suggest
that alveolar capillary ECs utilize various angiocrine signals to
stimulate other cells in the niche and repair the injured alveoli
in adult (Figure 5).

Although ECs adapt to physiological stress to maintain tissue
homeostasis, severe and/or chronic stress leads to maladaptation

of ECs in the niche. Maladapted ECs contribute to multiple
pathological conditions such as fibrosis (Cao et al., 2016, 2017)
and cancer (Chouaib et al., 2010; Cao et al., 2014). While
EC-derived HGF prevents acute injury-induced mouse lung
fibrosis by acting on perivascular fibroblasts in the niche,
chronic lung injury stimulates ECs to provoke fibroblasts
and induces lung fibrosis (Cao et al., 2016). Maladapted
ECs in the niche also transdifferentiate into myofibroblasts
(endothelial-mesenchymal transition: End-MT) through TGF-
β signaling and accelerate the fibrotic lesion (Pardali et al.,
2017). The maladapted ECs also activate cancer-associated
fibroblasts and support cancer progression by remodeling the
ECM or by secreting cytokines (Zeisberg et al., 2007). Thus,
ECs may exhibit plasticity in the niche, and modulation of
EC plasticity in the niche can be a promising therapeutic
target for various pathological conditions such as fibrosis
and cancer.
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Various infectious lung diseases such as influenza and
bacterial pneumonia severely damage alveoli, and the innate
repair programs are employed to repair the damaged alveoli.
A number of infectious lung disease models have been used to
explore the mechanism of alveolar regeneration/repair in adult
lung (Kumar et al., 2011; Vaughan et al., 2015; Zuo et al., 2015;
Zacharias et al., 2018; LaCanna et al., 2019). However, most of
these studies have focused on behaviors of the epithelium or
functional aspects of the capillary ECs (e.g., vascular leakiness)
(Wang et al., 2015; Birukov and Karki, 2018; Torres, 2018),
and the mechanism by which ECs contribute to alveolar repair
after the infectious conditions has not been well-explored. Since
capillary ECs directly or indirectly modulate the local reactions
to inflammation (Danese et al., 2007; Al-Soudi et al., 2017) that
contribute to the alveolar damage, the role of alveolar capillary
ECs in infection-induced alveolar damage and regenerative
processes using the relevant animal models should be explored
in the future.

It is well-known that the alveolar repair program initiates
in response to environmental challenges (e.g., air pollution,
smoking, viruses, bacteria). However, genetic and epigenetic
status also contributes to the repair processes. Aging, which
alters genetic and epigenetic conditions, may tip the balance of
physiological repair process toward destruction of the alveoli.
Human lung functions decline at a rate of 1% per year after
around the age of 25 years even without lung diseases (Fletcher
and Peto, 1977; Janssens et al., 1999; Sharma andGoodwin, 2006).
Upon aging, the lung exhibits multiple age-associated changes,
including increased secretion of pro-inflammatory cytokines,
attenuated immune response, and alterations in structural ECM
proteins (Meiners et al., 2015; Navarro and Driscoll, 2017) that
are all important for the niche functions. These changes are
accompanied by structural alterations such as enlarged airspaces,
loss of surface area and a decrease in static elastic recoil.
Importantly, it is demonstrated that one of the most significant
changes in the aged lung is a decline in the number and functions
of capillary ECs (Thurlbeck and Angus, 1975; Georges et al.,
1978). In fact, structures of alveolar capillary blood vessels are
severely disorganized with aging in mice, and ECs in the old
mouse lung lose not only angiogenic ability, but also the ability to
interact with alveolar epithelial cells (Mammoto A. et al., 2019).
Consistently, compensatory lung growth after PNX is inhibited
in the aged animals (Paxson et al., 2011; Mammoto A. et al.,
2019). These findings suggest that age-associated alterations of
the vascular niche may contribute to vulnerability of the aged
alveoli. Given that the aging population is booming and age-
associated lung diseases such as COPD and pneumonia are one
of the leading causes of death in aged adults (Fry et al., 2005; Ito
and Barnes, 2009; Stupka et al., 2009; Akgun et al., 2012; Lowery
et al., 2013; Brandsma et al., 2017), it is critically important to
investigate the effects of aging on structures and functionality
of the niche to develop therapeutic options for age-associated
alveolar dysfunction and diseases.

Advanced stem cell technologies, including creation of
patient-derived pluripotent stem cells (iPSCs), establishment
of stem cell differentiation protocols, programming of these
pluripotent cells into the tissue-specific targeted cells, and

targeted engraftment of the programmed cells in vivo have
been changing the concept of current regenerative medicine.
The knowledge regarding the vascular niche needs to be
incorporated into the current regenerative strategy to efficiently
regenerate the damaged lung. It has been demonstrated that
intravenously injected ECs engraft to the mouse alveoli,
accelerate post-PNX alveolar growth (Ding et al., 2011) and
repair the radiation-induced organ injury (Rafii et al., 2016b).
Intravenous injection of ECs from young animals also reverts
the age-associated alterations of the vascular niche (decreased
capillary density and losing ability to support hematopoietic
stem cells) in bone marrow in old animals (Kusumbe et al.,
2016; Poulos et al., 2017). Furthermore, intravenous injection
of c-kit+ ECs stimulates angiogenesis and prevents alveolar
simplification in the mouse BPD model (Ren et al., 2019).
Although the precise mechanisms of EC engraftment need to
be characterized and the efficiency of engraftment should be
optimized, the approach to reconstitute ECs in the vascular
niche seems to be a promising strategy to repair damaged or
aged alveoli.

Organ specific acellular scaffolds that are created by treating
the whole organ with a cocktail of detergents hold organ
specific biomechanical cues (e.g., ECM) as well as important
biochemical cues (e.g., ECM-bound growth factors) (Badylak
et al., 2011; Song and Ott, 2011). These scaffolds have
been utilized to engineer functional organs including lung
by recellularizing the scaffolds with specific tissue-resident
cells and/or iPSC-derived targeted cells (Petersen et al., 2010;
Ghaedi et al., 2013; Gilpin et al., 2014; Dorrello et al., 2017).
However, implanted bioengineered lung fails within several
hours in animals mainly due to the inadequate maturity of
the alveolar membrane (e.g., alveolar edema, hemorrhage) (Ott
et al., 2010; Petersen et al., 2010). Since multiple cellular
components interdependently act with ECM structures in the
vascular niche and control maturation and homeostasis of
the alveoli, the concept of the vascular niche needs to be
leveraged to develop more efficient strategies for fabrication and
recellarization of the scaffolds. More precise anatomical and
functional characterization of the vascular niche in the alveoli will
be necessary.

Due to the anatomical complexity of the lung tissue, there
is a challenge to define the vascular niche in the lung. Various
in vitro culture systems including organoids have been used
to explore behaviors of alveolar epithelial cells and cellular
interactions (Barkauskas et al., 2017). In the orthodox alveolar
organoid culture, alveolar epithelial cells morphologically self-
organize in the presence of stromal cells (e.g., fibroblasts)
and/or differentiate into the specific lineages (Barkauskas
et al., 2013; Jain et al., 2015; Frank et al., 2016). Most
of the alveolar organoids exhibit a closed sphere structure
(alveolosphere), which is composed of the layers of polarized
alveolar epithelial cells on the BM (Barkauskas et al., 2017). Given
that physiological alveoli are covered by capillary blood vessels
(vascularized) to form the interfaces between the alveolar sac
and ECs, modification of the conventional organoid system to
further recapitulate a physiologically relevant interface will be
necessary to characterize the vascular niche in the alveoli. In
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addition, several epithelial-endothelial co-culture studies have
demonstrated that ECs stimulate patterns of lung epithelial
morphogenesis (e.g., budding, branching) in vitro (Lee et al.,
2014; Mammoto et al., 2016b; Mammoto T. et al., 2019).
However, the interface between the cells including ECMs that
are crucial for the formation of the vascular niche has not been
visualized, and physiological mechanical forces such as blood
flow and respiratory movement that are important for the EC
and epithelial behaviors are not recapitulated in the systems.
Modification of these systems is necessary to define the niche
structure in vitro.

As another in vitro approach, the alveolar-on-a-chip system
has been utilized to recapitulate the interface between alveolar
epithelial cells and ECs in vitro for various applications (Huh
et al., 2010, 2012; Benam et al., 2016; Stucki et al., 2018).
Most of the systems compose of two overlapping microchannels
separated by a thin, flexible, and inert microporous membrane.
By culturing alveolar epithelial cells and lung microvascular
ECs on each side of the membrane, either type of cells can
be exposed to their respective tissue-specific microenvironment
(e.g., mechanical stretch, air flow on the alveolar side and
fluid flow on the vascular side). The system may be useful for
exploring the effects of drugs and/or factors on behaviors of each
cell type. However, since layers of each cell type are separated
by an inert membrane, it is challenging to recapitulate the
reciprocal morphogenetic interactions and ECM remodeling that
are crucial for niche formation. Recently, a vascularized kidney
organoid has been created on a chip by exposing it to laminar
flow, and this organoid-on-a-chip system successfully visualizes
the epithelial-endothelial interface (Homan et al., 2019). The
organoid-on-a-chip system, in which alveolar epithelial cells and
ECs physically interact and self-assemble into physiologically
relevant alveolar units (alveolar epithelial budding covered by
capillary EC plexus to form the air-blood barrier interface) in
the tissue-specific mechanical environment (e.g., air and blood
flow), may be able to define and explore the vascular niche
in alveoli.

As a new in vivo approach, intravital microscopy (Looney
and Bhattacharya, 2014; Yang et al., 2018) may be useful to
visually characterize the vascular niche in alveoli. The lung
hydrogel implantation system (Mammoto andMammoto, 2014),
in which hydrogels supplemented with the cellular and non-
cellular component (e.g., growth factors, ECM) are implanted
on the lung surface of a living mouse, can also be used for
visualizing interactions between ECs and other lung resident
cells and characterizing the specific microenvironment of the
niche (Mammoto et al., 2016a, 2018; Mammoto A. et al., 2019;
Mammoto T. et al., 2019). These interdisciplinary approaches
may enable us to anatomically and functionally investigate the
vascular niche in alveoli in the future.

SUMMARY

Due to exposure to an outer gaseous environment, the tissue
regeneration program is constantly employed to repair the

injured alveoli; deregulation of this mechanism leads to end-
stage lung diseases. Therefore, it is critically important to
understand the mechanism of innate alveolar repair, which
will restore alveolar structures and delay disease progression.
Understanding the mechanism will also help to develop
cell-based regenerative therapies and/or create implantable
functional lung tissues using engineering approaches such as
acellular scaffolds.

During organ development and regeneration, ECs form
capillary blood vessels and supply oxygen, nutrients, and cellular
components to the local tissues. Besides these fundamental
functions, ECs form a specific microenvironment, named
vascular niche. When the niche is challenged, ECs in the
niche attempt to maintain homeostasis, whereas maladapted
ECs in the niche lead to various pathological conditions.
Accumulating evidence that we discussed in this review
indicates that capillary ECs create the vascular niche in
which ECs interdependently interact with other resident
cells (e.g., epithelium, fibroblasts, macrophages) and structural
components (e.g., ECM) to maintain homeostasis of the
alveoli. Thus, although most of the lung development and
regeneration studies focus on the mechanism of alveolar
epithelium repair, it is critically important to comprehensively
understand the role of alveolar capillary endothelium in
alveolar development, homeostasis and regeneration as well
as the anatomy and functionality of the vascular niche
in alveoli. Future investigation of (1) EC lineages in the
niche, (2) detailed nanoscale anatomy of the niche, (3)
spatio-temporal changes in microenvironment in the niche,
and (4) functionalities of the distinct niche during alveolar
development, homeostasis and regeneration will enable us to
reverse pathological alveolar conditions (e.g., BPD, COPD)
or bioengineer implantable lung tissues. These goals will
be achieved by interdisciplinary approaches, which include
developmental biology, imaging science, molecular and cellular
biology, and engineering.
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